

COMPUTING ON ENCRYPTED DATA: THEORY AND
APPLICATION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JANUARY 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-004

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2016-004 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
CARL THOMAS MARK LINDERMAN
Work Unit Manager Technical Advisor, Computing &

Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2011 – JUN 2015
4. TITLE AND SUBTITLE

COMPUTING ON ENCRYPTED DATA: THEORY AND APPLICATION

5a. CONTRACT NUMBER
FA8750-11-2-0225

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Shafi Goldwasser and Vinod Vaikuntanathan

5d. PROJECT NUMBER
BL11

5e. TASK NUMBER
0M

5f. WORK UNIT NUMBER
IT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
77 Massachusetts Ave
Cambridge, MA 02139-4301

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-004
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report documents the development of second generation Fully Homomorphic Encryption (FHE) schemes providing
simple and efficient FHE operations based on standard cryptographic hardness assumptions. These solutions form the
current state-of-the-art in fully homomorphic encryption. This was further developed into attribute based encryption
schemes, reusable garbled circuits, functional encryption schemes and secure multi-party computations solutions.

15. SUBJECT TERMS
Fully Homomorphic Encryption (FHE), Secure Multiparty Computation (SMC), Learning with Errors (LWE), Attribute
Based Encryption (ABE), Predicate Encryption (PE), Functional Encryption (FE), Pseudorandom Functions (PRFs)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CARL THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

662

Table of Contents
1 Summary . 1

2 Introduction . 2

3 Methods, Assumptions and Procedures . 3

4 Results and Discussion . 5

4.1 Results: Fully Homomorphic Encryption . 5

4.1.1 Second Generation FHE: Simpler, Faster, Stronger 7
4.1.2 Third Generation FHE: Best Possible Assumptions 8
4.1.3 Multi-key FHE and On-the-Fly Multiparty Computation 8
4.1.4 Practical HE: Machine Learning on Encrypted Data 9

4.2 Results: Functional Encryption . 9
4.2.1 Attribute-based Encryption . 10
4.2.2 Bounded-Key Functional Encryption . 11
4.2.3 Succinct Functional Encryption and Reusable Garbled Circuits 11
4.2.4 Multi-Input Functional Encryption . 12

4.3 Results: Large-Scale Multiparty Computation . 12
4.4 Results: Leakage-Resilient Computation . 13

4.4.1 Goldwasser-Rothblum Leakage-Resilience Compiler 14
4.4.2 Leakage-Resilient Multiparty Computation . 14

4.5 Results: Functional Signatures and Pseudorandom Functions 15
4.5.1 Functional Signatures and Pseudorandom Functions 15
4.5.2 Constrained PRFs for Arbitrary Circuits from LWE 16
4.5.3 Aggregate Pseudo-random Functions and Connections to Learning Theory 16

5 Conclusions and Recommendations . 17

i

7 Appendix - Papers
7.1 Efficient Fully Hoimororphic Encryption from (Standard) LWE . 27
7.2 Fully Homomorphic Encryption without Bootstrapping . 65
7.3 On-the-Fly Multiparty Computation on the Cloud via Multikey Fully

 Homomorphic Encryption 92
7.4 Lattice-Based FHE as Secure as PKE . 165
7.5 Machine Learning Classification over Encrypted Data . 186
7.6 Functional Encryption with Bounded Collusions via Multi-Party Computation 220
7.7 Attribute-Based Encryption for Circuits . 258
7.8 Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE, and

 Compact Garbled Circuits . 293
7.9 Reusable Garbled Circuits and Succinct Functional Encryption . 334
7.10 Multi-Input Functional Encryption . 385
7.11 Optimally Resilient and Adaptively Secure Multi-Party Compuation with Low

 Communication Locality 426
7.12 Functional Signatures and Pseudorandon Functions . 451

6. Bibliography . 18

Appendix - Papers (Continued)
7.13 Aggregate Pseudorandom Functions and Connections to Learning . 485
7.14 Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions Or: How to

 Secretly Embed a Circuit in Your PRF . . 523
7.15 Communication Locality in Secure Multi-party Computation, How to Run Sublinear

 Algorithms in a Distributed Setting . 552
7.16 How to Compute in the Presence of Leakage . 573
7.17 Multiparty Computation Secure Against Continual Memory Leakage 636

ii

Table of Contents (Continued)

8. Glossary of Terms .. 656

List of Figures

Figure 1: A list of major FHE schemes. All encryption schemes are leveled FHE schemes,
namely they support evaluation of circuits of a-priori bounded depth. They can be generically
con-verted into a pure FHE using Gentry’s bootstrapping method [Gen09], assuming that the
underlying leveled FHE scheme is circular secure. The rows in gray represent contributions from
our team. SSS denotes the sparse subset sum assumption, BDD the bounded distance decoding
assumption, GCD is greatest common divisors, LWE is learning with errors and
NTRU is the N-th order truncated ring encryption scheme. 6

Figure 2: Attribute-based, Predicate and Functional Encryption Schemes. The first six rows are
ABE, the next two PE and the rest are FE schemes. The rows in gray represent contributions from
our team. 11

iii

Summary

This report describes the results we obtained as a result of our project “Computing on Encrypted Data:
Theory and Applications” as part of the DARPA PROCEED program. Our results form a strong theoretical
foundation of the science of computing on encrypted data.

A major outcome of our project was the invention of the second generation FHE schemes which gave
us several simple and efficient FHE schemes based on standard cryptographic hardness a ssumptions. Our
solutions [BV11a, BGV12, LTV12] form the state of the art in fully homomorphic encryption, and formed
the backbone of homomorphic encryption implementations in the PROCEED program. In addition, they
have also been implemented as part of the open source homomorphic encryption library HELib.

Going forward, we developed new cryptographic primitives that achieve the dual goals of supporting
sophisticated functionalities while admitting efficient and practical constructions, including the first general-
purpose attribute-based encryption [GVW13], reusable garbled circuits [GKP+13] and several types of func-
tional encryption [GVW12, GVW15] schemes. Our project also contributed to the development of novel
secure multi-party computation solutions.

1
Approved for Public Release; Distribution Unlimited.

Introduction
We live in a world where information and computation is at our fingertips, but also a world where our per-
sonal data is stored and processed in highly adversarial environments. While we now have cryptographic
methods such as public-key encryption, digital signatures and secure protocols that form the basis of secure
electronic transactions, traditional cryptography is inadequate to handle the challenges posed by modern
technologies. In particular, the emerging paradigm of cloud computing lets us outsource storage and com-
putation to powerful third-party servers, but raises serious privacy concerns. Of course, encrypting the data
we hand over to the cloud protects its privacy, but how then can the cloud compute on the encrypted data?

The answer lies in fully homomorphic encryption (FHE), a special type of encryption system where one
can perform arbitrarily complex computations on encrypted data without ever decrypting it. Long considered
the unattainable holy grail of cryptography, this primitive was recently realized in the ground-breaking work
of Craig Gentry in 2009. Unfortunately, Gentry’s construction suffers from inherent limitations in efficiency,
was considered impractical and raised widespread speculation that computing on encrypted data might never
see the light of day.

A major outcome of our project has been the invention of the second generation FHE schemes which
gave us several simple and efficient FHE schemes based on standard cryptographic hardness assump-
tions. Our solutions [BV11a, BGV12, LTV12] form the state of the art in fully homomorphic encryption,
and formed the backbone of homomorphic encryption implementations in the PROCEED program. In ad-
dition, they have also been implemented as part of the open source homomorphic encryption library HELib.

Going forward, we developed new cryptographic primitives that achieve the dual goals of supporting so-
phisticated functionalities while admitting efficient and practical c onstructions. While fully homomorphic
encryption permits any computation on encrypted data, we would like to provide fine-grained control over
what types of functions can be computed. This ability comes in handy in a number of scenarios, such as
ensuring the correctness of outsourced computations. We constructed the first general-purpose attribute-
based encryption [GVW13], reusable garbled circuits [GKP+13] and several types of functional en-
cryption [GVW12, GVW15] schemes that address these issues.

Our project also contributed to the development of novel secure multi-party computation solutions.
Multiparty computation is a notion that was introduced and studied in cryptography from the 1980s [Yao86,
GMW87, BGW88], and provides a generally more efficient, but interactive, alternative to the problem of
computing on encrypted data. We developed several communication-local MPC protocols that handle a very
large number of users, and in addition, withstand leakage of the internal states of 99% of the participants.

Our results form a strong theoretical foundation of the science of computing on encrypted data, powerful
enough to address the new and emerging challenges. We now proceed to describe our results in detail.

2
Approved for Public Release; Distribution Unlimited.

Methods, Assumptions and Procedures
Our methods are largely algorithmic. Meaning, we construct algorithms (sometimes interactive algorithms,
which we call protocols) that solve several cryptographic problems and provide formal security proofs under
well-defined and well-studied computational hardness assumptions. We now state our assumptions, together
with some mathematical preliminaries below.

Lattices and lattice problems. A lattice is a discrete additive subgroup of Rn. A lattice can be charac-
terized as the integer span of basis vectors, usually denoted as a matrix B ∈ Rn×` (` is the rank of the
lattice, for simplicity we assume that ` = n, but all definitions carry over to the general case). The mini-
mum distance between two lattice points is equal to the length of the shortest nonzero lattice point and is
denoted by λ1 = λ1(B) (many norms can be considered, most commonly `2). The shortest vector problem
SVPγ(B) is to find a lattice vector of length at most γ · λ1 given B. The decision version GapSVPγ(B, d)
is the promise problem which accepts if λ1 ≤ d and rejects if λ1 > γ · d. The closest vector problem
CVPγ(B, t) is to find the closest lattice vector to the target t, up to an approximation factor γ. The decision
version GapCVPγ(B, t, d) is defined analogously. The parameter γ = γ(n) is called the approximation
factor, and controls the hardness of GapSVPγ (increasing γ makes it easier). It was known early on that
when γ = O(1), GapSVPγ is NP-complete, while when γ = 2n, it is solvable in polynomial time. Ajtai’s
original work on lattice cryptography gave a one-way function based on the hardness of GapSVPγ when
γ = poly(n).

An ideal lattice is a lattice that is defined by an embedding into Rn of an ideal in the ring of integers of
some number field.

Learning with Errors (LWE). The problem is defined with respect to parameters q, n, χ (some variants
require additional parameters). Let Zq be the ring of integers modulo q and let χ be a distribution over
Zq (referred to as the noise distribution). The parameter n ∈ N is the dimension of the problem. For all
s ∈ Zn consider the oracle As,χ that for every call returns (a, b) where a ∈ Znq is uniformly distributed and
b = 〈a, s〉+ e (mod q), where e is drawn from χ.

The search LWE problem LWEn,q,χ is to retrieve a uniformly distributed s given oracle access to As,χ.
The decision LWE problem DLWEn,q,χ is to distinguish between oracle access to As,χ (for a uniformly
distributed s) and oracle access to a random oracleO that on every call returns a uniform element in Znq ×Zq.

The hardness of solving search LWE with discrete gaussian noise distribution has been shown to be
related to the hardness of GapSVPγ via quantum [Reg05] and classical [Pei09] reductions. The classical

3

reduction results in a worse parameter γ and as is, it is only applicable to q ≈ 2n. Search to decision
connections are known for many values of q.

Approved for Public Release; Distribution Unlimited.

Ring Learning with Errors (Ring LWE). The ring learning with errors (RLWE) problem was introduced
by Lyubashevsky, Peikert and Regev. Here, let R denote the ring of integers of a number field, namely
R = Z[x]/f(x) for some cyclotomic f(x). For all s ∈ Rq := R/qR consider the oracle As,χ that for every
call returns (a,b) where a ∈ Rq is uniformly distributed and b = a · s + e (over Rq), where e is drawn
from χ (here, χ is a distribution over the ring of integers of the number field R).

The search Ring LWE problem RLWEn,q,χ is to retrieve a uniformly distributed s given oracle access
to As,χ. The decision Ring LWE problem DLWEn,q,χ is to distinguish between oracle access to As,χ (for a
uniformly distributed s) and oracle access to a random oracleO that on every call returns a uniform element
in Znq × Zq.

4
Approved for Public Release; Distribution Unlimited.

Results and Discussion

4.1 Results: Fully Homomorphic Encryption

The evolution of fully homomorphic encrytion schemes can be roughly partitioned into three generations.

First Generation. The first generation of fully homomorphic encryption (FHE) s tarted with the break-
through work of Gentry [Gen09] and was followed by several simplications [vDGHV10, SV09, BV11b].
This sequence of works had two major disadvantages. First, they had extremely large key-sizes and ex-
tremely slow algorithms. Secondly, the security of these schemes were based on complex, little-studied
assumptions. We believe that these two issues are correlated: indeed, the schemes relied on complex hard-
ness assumptions because we lacked a fundamental understanding of the basis for their security. In turn, this
caused us to add on “band-aids” that had negative effects on efficiency.

Second Generation. A major contribution of our project was the invention of the second generation of
fully homomorphic encryption, in a sequence of papers [BV11a, BGV12] which we describe in detail below.
These works not only constructed (leveled) FHE schemes from standard computational assumptions, but
also offered orders of magnitude better efficiency. These schemes were quickly built upon, most notably
in a sequence of works by Gentry, Halevi and Smart [GHS12a, GHS12b] who showed powerful techniques
for “SIMD” evaluation, namely methods to pack many inputs into one ciphertext and to homomorphically
evaluate on them in parallel.

A leveled FHE is one which can evaluate circuit of a-priori bounded polynomial depth. One can convert
any leveled FHE scheme into a pure FHE scheme that can evaluate arbitrary circuits, using Gentry’s boot-
strapping theorem [Gen09]. This involves making an additional hardness assumption, namely the “circular
security” of the leveled HE scheme. We refer the reader to [BV11a] for more details.

Third Generation. Finally, a third generation of (leveled) FHE schemes emerged with the work of Gentry,
Sahai and Waters [GSW13]. Even simpler to describe than the second generation FHE schemes, these
were extended in our work [BV14] to result in FHE schemes that relied on the worst-case hardness of
approximating shortest vectors to within polynomial factors, or equivalently, the hardness of LWE with a
polynomial modulus. These schemes enjoy a very slow noise growth, and hence result in better parameters.
There have since been several extensions of these schemes [AP14, DM15].

5
Approved for Public Release; Distribution Unlimited.

Scheme Assumption Note
[Gen09] av-case ideal-BDD and SSS
[SV09] av-case principal-ideal-BDD and SSS Improved efficiency of [Gen09]
[vDGHV10] av-case approximate GCD and SSS simple to describe
[BV11b] Ring-LWE and SSS
[BV11a] (sub-exponential) LWE efficient instantiation from Ring-LWE

introduced dimension/modulus switching
[GH11] av-case ideal-BDD
[BGV12] (super-polynomial) LWE efficient instantiation from Ring-LWE
[Bra12] (super-polynomial) LWE efficient instantiation from Ring-LWE
[LTV12] NTRU assumption also multi-key HE
[GHS12a,
GHS12b]

Ring LWE SIMD and polylog overhead HE

[BLLN13] NTRU = Ring-LWE based [LTV12] on Ring LWE
[GSW13] (super-polynomial) LWE efficient instantiation from Ring-LWE
[BV14] (polynomial) LWE efficient instantiation from Ring-LWE
[AP14] (polynomial) LWE efficient instantiation from Ring-LWE

Figure 1: A list of major FHE schemes. All encryption schemes are leveled FHE schemes, namely they
support evaluation of circuits of a-priori bounded depth. They can be generically converted into a pure
FHE using Gentry’s bootstrapping method [Gen09], assuming that the underlying leveled FHE scheme is
circular secure. The rows in gray represent contributions from our team. SSS denotes the sparse subset sum
assumption, BDD the bounded distance decoding assumption, GCD is greatest common divisors, LWE is
learning with errors and NTRU is the N-th order truncated ring encryption scheme.

6
Approved for Public Release; Distribution Unlimited.

4.1.1 Second Generation FHE: Simpler, Faster, Stronger

We describe here the sequence of works [BV11a, BGV12]. The first of these works with Brakerski and
Vaikuntanathan [BV11a], for the first time, showed how to construct a leveled homomorphic encryption
scheme solely under the learning with errors (LWE) assumption. All previous constructions were natively
able to evaluate circuits of depth O(log n) where n is the security parameter, and extending these into fully
homomorphic schemes required making additional assumptions.

The starting point of our construction is Regev’s encryption scheme in which the ciphertext encrypting
a bit m ∈ {0, 1} is of the form (

a, 〈a, s〉+ e+mbq/2c
)

where a ∈ Znq is a uniformly random vector, s ∈ Znq is the secret key, and e ← χ is a “small” error term
drawn from an error distribution χ (typically a discrete Gaussian distribution). All computations here are
performed mod q. It is not hard to see that this scheme is, by itself, additively homomorphic.1 Our main
contribution is to show how to do homomorphic multiplication. In particular, our HE construction uses two
new ideas, both of which have found uses in later designs of homomorphic encryption and elsewhere.

Relinearization (or Dimension Reduction). We first observe that a tensor product of two ciphertexts is
an encryption of the product of two messages, albeit under a longer key, namely s⊗ s, the tensor product of
the secret key with itself. However, in doing so, the size of the ciphertext increases dramatically, to O(n2)
from O(n). Clearly, this is not sustainable and thus, we come up with a way to reduce the dimension back
to n.

Roughly speaking, this is done by publishing several “hints” in the public key which consist of encryp-
tions of the quadratic monomials in the coefficients of s using a different secret key s′. Of course, the key
idea is in doing so without compromising the security of the overall system at all.

Modulus Switching (or Modulus Reduction). Relinearization by itself only gives us a somewhat homo-
morphic encryption scheme capable of evaluating O(log n) depth circuits since the ciphertext error squares
every level of homomorphic multiplication. With d levels, the noise becomesB2d

0 whereB0 is the magnitude
of the initial ciphertext noise. Now,

B2d

0 < q/4 < 2n
ε

(4.1)

for some constant 0 < ε < 1. Here, the first inequality is to ensure correctness of decryption, and the second
to ensure security. This gives us d ≈ ε log n. Unfortunately, this turns out to be not quite enough to apply
bootstrapping [Gen09] and obtain an FHE scheme.

The second major idea in [BV11a] is a way to slow down the noise growth during homomorphic mul-
tiplication. The basic idea is simple and two-fold. First, the modulus does not really matter in LWE as
one can always scale the LWE samples down to the “torus” [0, 1). This observation has been made in sev-
eral prior works including [Reg05]. Second, multiplying two error terms that live in [0, 1) only decreases
their magnitude, as opposed to increasing! This surprisingly simple observation gives us a noise growth of
B0 → B0 · poly(n) as opposed to B0 → B2

0 .

Equation 4.1 now becomes
B0 · nO(d) < q/4 < 2n

ε
(4.2)

1The reader might notice that when adding two ciphertexts, the error terms increase in magnitude. Indeed, this is an issue
which limits the total number of homomorphic operations we can perform on the ciphertexts. However, setting q to be slightly
super-polynomial and the magnitude of errors from χ to be polynomial, allows us to do a superpolynomial number of additions.

7
Approved for Public Release; Distribution Unlimited.

resulting in d ≈ nε/ log n.

Overall, the result is the first leveled FHE scheme that assumes only the hardness of learning with errors
(LWE). With bootstrapping, and using the fact that the decryption circuit can be written as a Boolean circuit
of depth d = O(log n), the resulting scheme relies on the hardness of lwen,q,χ where q = nO(logn) and χ is
any distribution with poly(n)-bounded support.

The ideas underlying the [BV11a, BGV12] scheme can be ported just as well to other settings, such as
ring LWE, NTRU and approximate GCD resulting in several variants. (Indeed, the ring LWE variant was
described explicitly in [BGV12]). In practice, one should use either the ring LWE or the NTRU variant for
reasons of efficiency.

4.1.2 Third Generation FHE: Best Possible Assumptions

All FHE schemes prior to the third generation relied on hardness assumptions that are quantitatively worse
than those needed for public key encryption. In particular, the scheme of [BGV12] described above relies
on the hardness of approximating lattice problems to within nO(logn) factor.

Building on an FHE scheme of Gentry, Sahai and Waters [GSW13], Brakerski and PI Vaikuntanathan
show that (leveled) FHE can be based on the hardness of O(n2+ε)-approximating lattice problems such as
GapSVP (under classical reductions). This matches the best known hardness for regular (non-homomorphic)
lattice based public-key encryption up to the ε factor. As usual, a circular security assumption can be used
to achieve a non-leveled (pure) FHE scheme.

Our approach consists of three main ideas: Noise-bounded sequential evaluation of high fan-in oper-
ations; Circuit sequentialization using Barrington’s Theorem; and finally, successive dimension-modulus
reduction. In particular, the first and the most important of these ideas results in a dramatic slow-down in
noise growth during homomorphic multiplication. Whereas before, multiplying N ciphertexts with a noise
magnitude of B increased the error to O(BlogN) (using a binary multiplication tree), it turns out that in our
scheme, the error only increases to O(BNn) where n is the security parameter. Surprisingly, this is nearly
as small as the error increase during homomorphic addition!

Our scheme has since been improved on, first to remove the use of Barrington’s theorem and the associ-
ated inefficiency [AP14] and secondly to implement bootstrapping in under a second [DM15].

4.1.3 Multi-key FHE and On-the-Fly Multiparty Computation

Homomorphic encryption enables an untrusted server to compute on ciphertexts encrypted under a single
user’s key. Often in practice, we want to compute on data belonging to multiple users who encrypt it under
their own keys. Indeed, the most valuable computations are of this nature – hospitals who want to collaborate
on their private datasets on rare diseases, financial institutions that want to collaborate and discover global
trends in the market, and so on.

We define a new type of encryption scheme that we call multikey FHE, which is capable of operating
on inputs encrypted under multiple, unrelated keys. A ciphertext resulting from a multikey evaluation can
be jointly decrypted using the secret keys of all the users involved in the computation. We construct a
multikey FHE scheme based on NTRU [HPS98], a very efficient public-key encryption scheme proposed
in the 1990s. It was previously not known how to make NTRU fully homomorphic even for a single party.
Indeed, our fully homomorphic system based on NTRU is the leading candidate for a practical FHE scheme
as has been demonstrated in several followup works [BLLN13, DDS14, DÖSS15], some of which are part
of the PROCEED program [RC14].

8
Approved for Public Release; Distribution Unlimited.

We also define a new notion of secure multiparty computation aided by a computationally-powerful, but
untrusted ”cloud” server. In this notion that we call on-the-fly multiparty computation (MPC), the cloud can
non-interactively perform arbitrary, dynamically chosen computations on data belonging to arbitrary sets
of users chosen on-the-fly. All user’s input data and intermediate results are protected from snooping by
the cloud as well as other users. This extends the standard notion of fully homomorphic encryption (FHE),
where users can only enlist the cloud’s help in evaluating functions on their own encrypted data.

In on-the-fly MPC, each user is involved only when initially uploading his (encrypted) data to the cloud,
and in a final output decryption phase when outputs are revealed; the complexity of both is independent of
the function being computed and the total number of users in the system. When users upload their data, they
need not decide in advance which function will be computed, nor who they will compute with; they need
only retroactively approve the eventually-chosen functions and on whose data the functions were evaluated.

This notion is qualitatively the best possible in minimizing interaction, since the users’ interaction in the
decryption stage is inevitable: we show that removing it would imply generic (virtual black-box) program
obfuscation and is thus impossible.

While our construction was based on the NTRU assumption, there has since been a novel construction
of multi-key FHE from LWE and Ring LWE assumptions [CM15, MW15].

4.1.4 Practical HE: Machine Learning on Encrypted Data

Machine learning classification is used in numerous settings nowadays, such as medical or genomics predic-
tions, spam detection, face recognition, and financial predictions. Due to privacy concerns in some of these
applications, it is important that both the data and the classifier remain confidential.

In work by PI Goldwasser and collaborators [BPTG15], we construct three major classification protocols
that satisfy privacy constraints: hyperplane decision, Naı̈ve Bayes, and decision trees. These protocols may
also be combined with AdaBoost. They rely on a new library of building blocks for constructing classifiers
securely. We demonstrate the versatility of this library by constructing a face detection classifier. In addition,
our protocols are efficient, taking milliseconds to a few seconds to perform a classification when running on
real medical datasets.

We remark that supervised learning algorithms consist of two phases: (i) the training phase during which
the algorithm learns a model w from a data set of labeled examples, and (ii) the classification phase that runs
a classifier C over a previously unseen feature vector x, using the model w to output a prediction C(x,w).
In applications that handle sensitive data, it is important that the feature vector x and the model w remain
secret to one or some of the parties involved. Our protocols pertain to the second classification phase.

4.2 Results: Functional Encryption

Homomorphic encryption opens the door to many exciting applications, but also raises questions as to its
ultimate usefulness. Perhaps the biggest such question is:

Who can decrypt the result of computations on encrypted data?

Although computation on encrypted data using FHE can be performed by anyone, only the holder of the
secret key can decrypt the result of a computation; the secret key, however, allows decryption of the entire
data and not just the result. This rules out a large class of applications in which the party computing on
the encrypted data needs to determine the computation result on its own, but should not know anything else
about the input, and should not assume that the secret key owner is online to help him decrypt. This leads to

9
Approved for Public Release; Distribution Unlimited.

the question: can we selectively reveal chosen functions of the data while keeping all other information hid-
den? This question truly exemplifies the essence of the paradigm of computing on encrypted data, namely,
the delicate balance between keeping data private on the one hand, and revealing carefully chosen functions
of it on the other hand.

A promising approach to this problem is functional encryption [SW05, GPSW06, KSW13, BSW12]
where the holder of the secret key can generate and provide others with keys for functions, for example,
skf for a function f . Anyone with access to the key skf and an encryption of x can obtain f(x), but
nothing more about x. In fact, we will require that an adversary who obtains polynomially many secret keys
skf1 , skf2 , . . . , skfn and an encryption of x can learn f1(x), . . . , fn(x) but nothing else. This is called many
key security or collusion resistance, whereas the former requirement is called single key security.

There are many variants we will be interested in which differ in the functionality and security properties.

• Attribute-based Encryption: In an attribute-based encryption (ABE) scheme [SW05, GPSW06],
one encrypts a payload data M relative to a set of attributes x. Given the secret key for a Boolean
function (also called a predicate) f , one can decrypt and obtain the payloadM if and only if f(x) = 1.
Attribute-based encryption does not require that the encryption hides the attributes, only that it hides
the payload.

• Predicate Encryption: A predicate encryption (PE) scheme has the exact same interface as ABE,
except that it requires some form of hiding of the attributes. In particular, in the presence of keys that
do not decrypt, namely keys for functions f such that f(x) = 0, we require that the attributes x be
completely hidden. However, if the adversary obtains the key for a function f such that f(x) = 1, we
require no hiding. This is called weak attribute hiding. Thus, predicate encryption is just another way
of saying “ABE with weak attribute hiding”.

• Functional Encryption: In a functional encryption scheme, one encrypts an input x and given a
functional key skf , one can compute f(x) and only f(x). By a simple transformation, this turns out
to be equivalent to an ABE with strong attribute hiding. Namely, where the encryptions of (x0,M0)
and (x1,M1) are computationally indistinguishable given many functional keys skf where either: (a)
f(x0) = f(x1) = 0; or (b) f(x0) = f(x1) = 1 and M0 = M1. Thus, functional encryption is just
another way of saying “ABE with strong attribute hiding”.

A major contribution of our project was the systematic study of various types of functional encryption
schemes. Our results made dramatic advances in the state of the art for functional encryption, constructing
the first ABE schemes for general circuits [GVW13] and the first single-key succinct functional encryption
for general circuits [GKP+13]. We describe our results in detail below. Figure 4.2 contains a summary of
the most significant results to date in the field of functional encryption.

4.2.1 Attribute-based Encryption

In an attribute-based encryption (ABE) scheme, a ciphertext is associated with an L-bit public index IND
and a message m, and a secret key is associated with a Boolean predicate P. The secret key allows to decrypt
the ciphertext and learn m iff P(IND)=1. Moreover, the scheme should be secure against collusions of users,
namely, given secret keys for polynomially many predicates, an adversary learns nothing about the message
if none of the secret keys can individually decrypt the ciphertext.

10
Approved for Public Release; Distribution Unlimited.

Scheme Class of Functions Supported Assumption
Identity-based Encryption [BF01] Point Functions Bilinear DDH
Identity-based Encryption [Coc01] Point Functions Quadratic Residuosity
Fuzzy IBE [SW05] Hamming distance Bilinear DDH
Formula ABE [GPSW06] Boolean formulas Bilinear DDH
Circuit ABE [GVW13] Circuits* (Sub-exponential) LWE
(Compact) Circuit ABE [BGG+14] Circuits* (Sub-exponential) LWE
Inner product PE [AFV11] Inner product zero-testing LWE
Circuit PE [GVW15] Circuits* (Sub-exponential) LWE
Inner product FE [KSW13, LOS+10] Inner product zero-testing Bilinear†

Single-key FE [SS10] Circuits Any public-key encryption
Bounded-key FE [GVW12] Circuits Any public-key encryption
Bounded-key Succinct FE [GKP+13] Circuits* (Sub-exponential) LWE
Many-key FE [GGH+13] Circuits Existence of IO Obfuscation
Multi-input FE [GGG+14] Circuits Existence of IO Obfuscation
Many-key FE [GGHZ14] Circuits Multi-linear Elimination

Figure 2: Attribute-based, Predicate and Functional Encryption Schemes. The first six rows are ABE, the
next two PE and the rest are FE schemes. The rows in gray represent contributions from our team.

We present attribute-based encryption schemes for circuits of any arbitrary polynomial size, where the
public parameters and the ciphertext grow linearly with the depth of the circuit. Our construction is se-
cure under the standard learning with errors (LWE) assumption. Previous constructions of attribute-based
encryption were for Boolean formulas, captured by the complexity class NC1.

In the course of our construction, we present a new framework for constructing ABE schemes. As a by-
product of our framework, we obtain ABE schemes for polynomial-size branching programs, corresponding
to the complexity class LOGSPACE, under quantitatively better assumptions.

4.2.2 Bounded-Key Functional Encryption

We construct a functional encryption scheme secure against an a priori bounded polynomial number of
collusions for the class of all polynomial-size circuits. Our constructions require only semantically secure
public-key encryption schemes and pseudo-random generators computable by small-depth circuits (known
to be implied by most concrete intractability assumptions). For certain special cases such as predicate en-
cryption schemes with public index, the construction requires only semantically secure encryption schemes,
which is clearly the minimal necessary assumption.

Our constructions rely heavily on techniques from secure multiparty computation and randomized en-
codings. All our constructions are secure under a strong, adaptive simulation-based definition of functional
encryption.

4.2.3 Succinct Functional Encryption and Reusable Garbled Circuits

Functional Encryption is a new paradigm for public-key encryption that enables fine-grained control of
access to encrypted data. It provides, for instance, the ability to release secret keys associated with a keyword
that can decrypt only those documents that contain the keyword. More generally, functional encryption

11
Approved for Public Release; Distribution Unlimited.

allows the owner of a “master” secret key to release restricted secret keys that reveal a specific function of
encrypted data. This stands in stark contrast to traditional encryption, where access to the encrypted data is
all or nothing.

Goldwasser, Vaikuntanathan and their co-authors in [GKP+13] proposed new functional encryption
schemes which can evaluate functions and more generally run algorithms, over encrypted data in time which
grows proportionally with the time it takes to evaluate the algorithms over the unencrypted data. This is in
contrast with previous functional encryption schemes where the cost of running algorithms over encrypted
data was proportional to the worst-case running time (over all possible data).

A circuit garbling scheme, which has been one of the most useful primitives in modern cryptography,
is a construction originally suggested by Yao in the 80s in the context of secure two-party computation
[Yao86]. This construction relies on the existence of a one-way function to encode an arbitrary circuit C
(“garbling” the circuit) and then encode any input x to the circuit (where the size of the encoding is short,
namely, it does not grow with the size of the circuit C); a party given the garbling of C and the encoding of x
can run the garbled circuit on the encoded x and obtain C(x). The most basic properties of garbled circuits
are circuit and input privacy: an adversary learns nothing about the circuit C or the input x other than the
result C(x). Over the years, garbled circuits and variants thereof have found many applications. However,
a basic limitation of the original construction remains: it offers only one-time usage. Specifically, providing
an encoding of more than one input compromises the secrecy of the circuit. Thus, evaluating the circuit C
on any new input requires an entirely new garbling of the circuit.

The problem of reusing garbled circuits has been open for 30 years. Using our newly constructed
succinct functional encryption scheme we are now able to build reusable garbled circuits that achieve circuit
and input privacy: a garbled circuit for any computation of depth d (where the parameters of the scheme
depend on d), which can be run on any polynomial number of inputs without compromising the privacy of
the circuit or the input.

4.2.4 Multi-Input Functional Encryption

We introduce the problem of Multi-Input Functional Encryption, where a secret key SKf can correspond to
an n-ary function f that takes multiple ciphertexts as input. Multi-input functional encryption is a general tool
for computing on encrypting data which allows for mining aggregate information from several different data
sources (rather than just a single source as in single input functional encryption). We show wide applications
of this primitive to running SQL queries over encrypted database, non-interactive differentially private data
release, delegation of computation, etc.

We formulate both indistinguishability-based and simulation-based definitions of security for this notion,
and show close connections with indistinguishability and virtual black-box definitions of obfuscation. As-
suming indistinguishability obfuscation for circuits, we present constructions achieving indistinguishability
security for a large class of settings. We show how to modify this construction to achieve simulation-based
security as well, in those settings where simulation security is possible. Assuming differing-inputs obfusca-
tion [Barak et al., FOCS’01], we also provide a construction with similar security guarantees as above, but
where the keys and ciphertexts are compact.

4.3 Results: Large-Scale Multiparty Computation

It turns out that methods for computing on “encrypted” data, broadly defined, were known even before the
current buzz on fully homomorphic encryption. In particular, the notion of secure multi-party computation

12
Approved for Public Release; Distribution Unlimited.

(MPC) has been thoroughly studied over the past decades. Secure multiparty computation protocols allow
us n ≥ 2 parties, each holding its own input, to collaborate and compute a joint function of their inputs,
while ensuring that each party reveals nothing else to the others.

The vast majority of works assume a full communication pattern: every party exchanges messages with
all the network participants over a complete network of point-to-point channels. This can be problematic in
modern large scale networks, where the number of parties can be of the order of millions, as for example
when computing on large distributed data.

Motivated by the above observation, PI Goldwasser, together with graduate student Elette Boyle and
postdoc Stefano Tessaro [BGT13] put forward the notion of communication locality, namely, the total num-
ber of point-to-point channels that each party uses in the protocol, as a quality metric of MPC protocols.
They proved that assuming a public-key infrastructure (PKI) and a common reference string (CRS), an MPC
protocol can be constructed for computing any n-party function, with the following properties:

• The communication locality of the protocol is O(logc n), for an appropriate constant c. that is each
party need only talk to O(logc n) other parties;

• The round complexity O(logc
′
n), for an appropriate constant c;

• The protocol tolerates a static (i.e., non-adaptive) adversary corrupting up to t < (1/3 − ε)n parties
for any given constant 0 < ε < 1/3.

Continuing along this line of thought, further work of PI Goldwasser together with collaborators ad-
dressed two questions left open by this result: (a) Can we achieve low communication locality and round
complexity while tolerating adaptive adversaries? and (b) Can we achieve low communication locality with
optimal resiliency t < n/2?

In work with collaborators [CCG+15], PI Goldwasser answered both questions affirmatively. First, we
consider the model from [BGT13], where we replace the CRS with a symmetric-key infrastructure (SKI). In
this model we give a protocol with communication locality and round complexity polylog(n) (as in the work
of [BGT13]) which tolerates up to t < n/2 adaptive corruptions, under a standard intractability assumption
for adaptively secure protocols, namely, the existence of trapdoor permutations whose domain has invertible
sampling. This is done by using the SKI to derive a sequence of random hidden communication graphs
among players. A central new technique then shows how to use these graphs to emulate a complete network
in polylog(n) rounds while preserving the polylog(n) locality. Second, we show how we can even remove
the SKI setup assumption at the cost, however, of increasing the communication locality (but not the round
complexity) by a factor of

√
n.

4.4 Results: Leakage-Resilient Computation

The absolute privacy of the secret keys associated with cryptographic algorithms has been the corner-stone
of modern cryptography. Modern cryptographic algorithms are designed under the assumption that keys
are perfectly secret, and computations done within your personal computer seem like a black-box to the
outside. Still, in practice, keys do get compromised at times and computations are not opaque for a variety
or reasons. A particularly disturbing loss of secrecy is as a result of side channel attacks (see [Koc96,
KJJ99, QS01, AARR02, QK02, BE03, Rel, ECR] for many examples). These attacks exploit the fact that
every cryptographic algorithm is ultimately implemented on a physical device and such implementations
enable “observations” which can be made and measured on secret data and secret keys. Indeed, side channel

13
Approved for Public Release; Distribution Unlimited.

observations can lead to information leakage about secret keys, which in turn can and have lead to complete
breaks of systems which have been proved mathematically secure, without violating any of the underlying
mathematical principles or assumptions. Traditionally, such attacks have been followed by ad-hoc “fixes”
which make specific implementation invulnerable to particular attacks, only to potentially be broken again
by new examples of side-channel attacks.

In recent years, starting with the works of Canetti, Dodis, Halevi, Kushilevitz and Sahai [CDH+00],
Ishai, Sahai and Wagner [ISW03] and Micali and Reyzin [MR04], a new goal has been set within the
cryptography community: to build general theories of physical security against large classes of families of
side channel attacks. A large body of work has accumulated by now [CDH+00, DSS01, ISW03, MR04,
DP08, AGV09, ADW09, NS09, DKL09, Pie09, PSP+08, GKR08, DP08] in which different classes of side
channel attacks have been defined and different cryptographic primitives have been designed to provably
withstand these attacks.

Any cryptographic protocol, including decryption and signature algorithms, multi-party computation
and zero-knowledge, is potentially vulnerable to leakage, and measures must be taken to protect them. Our
goal is to design general purpose tools that accomplish this objective.

4.4.1 Goldwasser-Rothblum Leakage-Resilience Compiler

Goldwasser and Rothblum [GR07] address the following problem: how to execute any algorithm P , for
an unbounded number of executions, in the presence of an adversary who observes partial information on
the internal state of the computation during executions. The security guarantee is that the adversary learns
nothing, beyond P ’s input/output behavior. This general problem is important for running cryptographic
algorithms in the presence of side-channel attacks, as well as for running non-cryptographic algorithms,
such as a proprietary search algorithm or a game, on a cloud server where parts of the execution’s internals
might be observed.

Their main result is a compiler, which takes as input an algorithm P and a security parameter k, and
produces a functionally equivalent algorithm P ′ such that the running time of P ′ is a factor of poly(n)
slower than P and is composed of a series of calls to poly(n) time computable sub-algorithms. During the
executions of P ′, an adversary algorithm A which can choose the inputs of P ′ and can learn the results of
adaptively chosen leakage functions, each of bounded output size Ω(n), on the sub-algorithms of P ′ and the
randomness they use.

They show that for any computationally unbounded A observing the results of computationally un-
bounded leakage functions, will learn no more from its observations than it could given black-box access
only to the input-output behavior of P . This result is unconditional and does not rely on any secure hardware
components.

4.4.2 Leakage-Resilient Multiparty Computation

The problem of leakage on secret inputs is applicable to multi-party secure function evaluation as well as
the basic cryptographic primitives. For some multi-party functions, such as voting, such leakage can be
detrimental.

In work of Goldwasser et. al. [BGJK12], multiparty computation (MPC) protocols are constructed that
are secure even if a malicious adversary which, in addition to corrupting constant 1 > c > 0 fraction of
parties, can leak information about the secret state of each honest, non-corrupt party. This leakage can be
continuous for an unbounded number of executions of the MPC protocol, computing different functions on
the same or different set of inputs. We assumed a (necessary) “leak-free” preprocessing stage.

14
Approved for Public Release; Distribution Unlimited.

We emphasize that leakage resilience is achieved without weakening the security guarantee of classical
MPC. Namely, an adversary who is given leakage on honest parties’ states, is guaranteed to learn noth-
ing beyond the input and output values of corrupted parties. Our result relies on standard cryptographic
assumptions, and our security parameter is polynomially related to the number of parties.

4.5 Results: Functional Signatures and Pseudorandom Functions

In the spirit of our work on functional encryption, PI Goldwasser together with graduate students Boyle
and Ivan [BGI14a] introduced two new cryptographic primitives named functional signature and functional
pseudorandom functions (PRFs) and showed how to construct them under some cryptographic hardness
assumptions. In a functional signature scheme, in addition to a master signing key, there are also auxiliary
signing keys each defined per different function f , which allow one to sign message M if and only if
f(m) = 1. In a functional PRF, there are auxiliary secret keys each for a function f , which allow one to
evaluate PRF on any y if f(y) = 1.

A natural application of functional signature schemes is the delegation of the signing process: For a
policy P, consider a function f such that f(m) = 1 if P (m) = 1 and f(m) = NIL otherwise; then a
signing key for f allows one to sign message m if and only if P (m) = 1. Similarly, with functional PRFs,
one can construct PRFs with selective access, in which there are keys for a policy P that allow one to evaluate
PRF on any x if P (x) = 1.

Another application of functional signatures is to certify that only allowable computations were per-
formed on data. For example, imagine the setting of a digital camera that produces signed photos (i.e
the original photos produced by the camera can be certified). In this case, one may want to allow photo-
processing software to perform minor touch-ups of the photos, such as changing the color scale or removing
red-eyes, but not allow more significant changes such as merging two photos or cropping a picture. But,
how can an original photo which is slightly touched-up be distinguished from one which is the result of a
major change? Functional signatures can naturally address this problem by providing the photo processing
software with keys which enable it to sign only the allowable modifications of an original photograph. Gen-
eralizing, we think of a client and a server (e.g. photo-processing software), where the client provides the
server with data (e.g. signed original photos, text documents, medical data) which he wants to be processed
in a restricted fashion. A functional signature of the processed data provides proof of allowable processing.

4.5.1 Functional Signatures and Pseudorandom Functions

Pseudorandom functions, introduced by Goldreich, Goldwasser, and Micali in 1986 [GGM86], are a family
of indexed functions F = {Fs} such that: (1) given the index s, Fs can be efficiently evaluated on all inputs
(2) no probabilistic polynomial-time algorithm without s can distinguish evaluations Fs(xi) for inputs xi
chosen adversarially from random values. Pseudorandom functions are useful for numerous symmetric-key
cryptographic applications, including generating passwords, identify-friend-or-foe systems, and symmetric-
key encryption secure against chosen ciphertext attacks. In the aforementioned work, Goldwasser et al
[BGI14b] extend pseudorandom functions to a primitive which they call functional pseudorandom functions
(F-PRF). The idea is that in addition to a master secret key (that can be used to evaluate the pseudorandom
function Fs on any point in the domain), there are additional secret keys skf per function f, which allow one
to evaluate F s on any y for which there exists x such that f(x) = y (i.e y ∈ Range(f)). An immediate
application of such a construct is to specify succinctly the randomness to be used by parties in a randomized
distributed protocol with potentially faulty players, so as to force honest behavior.

15
Approved for Public Release; Distribution Unlimited.

The notion of functional pseudorandom functions has many variations. One natural variant that im-
mediately follows is pseudorandom functions with selective access: start with a pseudorandom function as
defined in [GGM86], and add the ability to generate secondary keys skP i (per predicate Pi) which enable
computing Fs(x) whenever Pi(x) = 1. This is a special case of F-PRF, as we can take the secret key for
predicate Pi to be skf i where fi(x) = x if Pi(x) = 1 and NIL otherwise. The special case of punctured
PRFs, in which secondary keys allow computing Fs(x) on all inputs except one, is similarly implied and
has recently been shown to have important applications (e.g., [SW14]). (We note that independently of our
work, a similar primitive was introduced by Bohen et al and named constrained PRF)

4.5.2 Constrained PRFs for Arbitrary Circuits from LWE

Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto 14) constructed pseudorandom functions (PRFs)
from the Learning with Errors (LWE) assumption by embedding combinatorial objects, a path and a tree
respectively, in instances of the LWE problem. In this work, we show how to generalize this approach to
embed circuits, inspired by recent progress in the study of Attribute Based Encryption.

Embedding a universal circuit for some class of functions allows us to produce constrained keys for
functions in this class, which gives us the first standard-lattice-assumption-based constrained PRF (CPRF)
for general bounded-description bounded-depth functions, for arbitrary polynomial bounds on the descrip-
tion size and the depth. (A constrained key w.r.t a circuit C enables one to evaluate the PRF on all x for
which C(x) = 1, but reveals nothing on the PRF values at other points.) We rely on the LWE assumption
and on the one-dimensional SIS (Short Integer Solution) assumption, which are both related to the worst
case hardness of general lattice problems. Previous constructions for similar function classes relied on such
exotic assumptions as the existence of multilinear maps or secure program obfuscation. The main drawback
of our construction is that it does not allow collusion (i.e. to provide more than a single constrained key to
an adversary). Similarly to the aforementioned previous works, our PRF family is also key homomorphic.

Interestingly, our constrained keys are very short. Their length does not depend directly either on the
size of the constraint circuit or on the input length. We are not aware of any prior construction achieving
this property, even relying on strong assumptions such as indistinguishability obfuscation.

4.5.3 Aggregate Pseudo-random Functions and Connections to Learning Theory

In the first part of this work, we introduce a new type of pseudo-random function for which “aggregate
queries” over exponential-sized sets can be efficiently answered. An example of an aggregate query may
be the product of all function values belonging to an exponential-sized interval, or the sum of all function
values on points for which a polynomial time predicate holds. We show how to use algebraic properties
of underlying classical pseudo random functions, to construct aggregatable pseudo random functions for a
number of classes of aggregation queries under cryptographic hardness assumptions. On the flip side, we
show that certain aggregate queries are impossible to support.

In the second part of this work, we show how various extensions of pseudo-random functions considered
recently in the cryptographic literature, yield impossibility results for various extensions of machine learning
models, continuing a line of investigation originated by Valiant and Kearns in the 1980s and 1990s. The
extended pseudo-random functions we address include constrained pseudo random functions, aggregatable
pseudo random functions, and pseudo random functions secure under related-key attacks.

16
Approved for Public Release; Distribution Unlimited.

Conclusions and Recommendations
We conclude by addressing the question of which FHE scheme to use in practice.

It appears that the BGV scheme [BGV12] or one of its adaptations (following Brakerski’s scale-invariant
technique [Bra12], SIMD techniques [GHS12a], using an NTRU variant [LTV12, BLLN13]) is the method
of choice to get the maximal efficiency i n p ractice. I ndeed, t he h omomorphic e ncryption l ibrary HE-
Lib [HS15] implements the BGV encryption scheme + the GHS SIMD techniques. Although the third
generation of FHE schemes appears to be more efficient, they lack mechanisms for SIMD evaluation at the
time of writing. This remains a major open problem in the field, with potentially dramatic implications for
efficiency.

Regarding the ABE, functional encryption and other advanced schemes, the efficiency of these schemes
has been steadily improving over the years, and we believe the current schemes specialized to particular
functions should be efficient enough in practice. Regardless, we leave implementations of these schemes as
future work.

17
Approved for Public Release; Distribution Unlimited.

Bibliography

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM side-
channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume
2523 of Lecture Notes in Computer Science, pages 29–45. Springer, August 13-15 2002.

[ACM88] Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, 2–4 May 1988.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography
in the bounded-retrieval model. In Halevi [Hal09], pages 36–54.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption
for inner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul, South Korea, Decem-
ber 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages 21–40.
Springer, 2011.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, Sixth Theory of Cryptogra-
phy Conference — TCC 2007, volume 5444 of Lecture Notes in Computer Science. Springer-
Verlag, 2009.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In
Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, volume 8616 of Lecture Notes in Computer Science, pages 297–314. Springer, 2014.

[BE03] Hagai Bar-El. Known attacks against smartcards, 2003. http://www.hbarel.com/
publications/Known_Attacks_Against_Smartcards.pdf, last accessed: Au-
gust 26, 2009.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Joe Kil-
ian, editor, Advances in Cryptology—CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer-Verlag, 2001.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit ABE and compact garbled circuits. In Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications

18
Approved for Public Release; Distribution Unlimited.

http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf
http://www.hbarel.com/publications/Known_Attacks_Against_Smartcards.pdf

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
533–556, 2014.

[BGI14a] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Public-Key Cryptography - PKC 2014 - 17th International Conference on Prac-
tice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings, pages 501–519, 2014.

[BGI14b] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, Public-Key Cryptography - PKC 2014 - 17th Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer Sci-
ence, pages 501–519. Springer, 2014.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty compu-
tation secure against continual memory leakage. In Karloff and Pitassi [KP12], pages 1235–
1254.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In TCC, pages
356–376, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In Shafi Goldwasser, editor, Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325. ACM, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In ACM [ACM88],
pages 1–10.

[BLLN13] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved security for
a ring-based fully homomorphic encryption scheme. In Martijn Stam, editor, Cryptography
and Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-
19, 2013. Proceedings, volume 8308 of Lecture Notes in Computer Science, pages 45–64.
Springer, 2013.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classi-
fication over encrypted data. In 22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February 8-11, 2014. The Internet Society,
2015.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In Safavi-Naini and Canetti [SC12], pages 868–886.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM, 2013.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, 2012.

19
Approved for Public Release; Distribution Unlimited.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Ostrovsky [Ost11], pages 97–106.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In Phillip Rogaway, editor, Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 505–524.
Springer, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni
Naor, editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,
January 12-14, 2014, pages 1–12. ACM, 2014.

[CCG+15] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Os-
trovsky, and Vassilis Zikas. The hidden graph model: Communication locality and optimal
resiliency with adaptive faults. In Tim Roughgarden, editor, Proceedings of the 2015 Confer-
ence on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January
11-13, 2015, pages 153–162. ACM, 2015.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Bart Preneel, editor, Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer-Verlag,
2000.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learn-
ing with errors. In Gennaro and Robshaw [GR15], pages 630–656.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram
Honary, editor, Cryptography and Coding, 8th IMA International Conference, Cirencester,
UK, December 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in Computer Science,
pages 360–363. Springer, 2001.

[DDS14] Wei Dai, Yarkin Doröz, and Berk Sunar. Accelerating NTRU based homomorphic encryp-
tion using gpus. In IEEE High Performance Extreme Computing Conference, HPEC 2014,
Waltham, MA, USA, September 9-11, 2014, pages 1–6. IEEE, 2014.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Michael Mitzenmacher, editor, STOC, pages 621–630. ACM, 2009.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In Oswald and Fischlin [OF15], pages 617–640.

[DÖSS15] Yarkin Doröz, Erdinç Öztürk, Erkay Savas, and Berk Sunar. Accelerating LTV based ho-
momorphic encryption in reconfigurable hardware. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture
Notes in Computer Science, pages 185–204. Springer, 2015.

20
Approved for Public Release; Distribution Unlimited.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th Sym-
posium on Foundations of Computer Science, pages 293–302, Philadelphia, PA, USA, Octo-
ber 25–28 2008. IEEE Computer Society.

[DSS01] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive security in exposure-
resilient cryptography. In Birgit Pfitzmann, editor, Advances in Cryptology—EUROCRYPT
2001, volume 2045 of LNCS, pages 301–324. Springer-Verlag, 2001.

[ECR] ECRYPT. Side channel cryptanalysis lounge. http://www.crypto.
ruhr-uni-bochum.de/en_sclounge.html, last accessed: August 26, 2009.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178. ACM, 2009.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441
of Lecture Notes in Computer Science, pages 578–602. Springer, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society, 2013.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryp-
tion without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986. Extended abstract in FOCS 84.

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-
3 arithmetic circuits. In Ostrovsky [Ost11], pages 107–109.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In Safavi-Naini and Canetti [SC12], pages 850–867.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science.
Springer, 2010.

21
Approved for Public Release; Distribution Unlimited.

http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Boneh et al.
[BRF13], pages 555–564.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Cynthia Dwork, editor, STOC, pages 113–122. ACM, 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, pages 218–229, New York City, 25–27 May 1987.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 89–98. ACM, 2006.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 194–213. Springer,
2007.

[GR15] Rosario Gennaro and Matthew Robshaw, editors. Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part II, volume 9216 of Lecture Notes in Computer Science. Springer, 2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of
Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Safavi-Naini and Canetti [SC12], pages
162–179.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In Boneh et al. [BRF13], pages 545–554.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In Gennaro and Robshaw [GR15], pages 503–523.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, volume 5677 of LNCS. Spring-
er-Verlag, 2009.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryp-
tosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume 1423 of Lecture
Notes in Computer Science, pages 267–288. Springer, 1998.

22
Approved for Public Release; Distribution Unlimited.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Oswald and Fischlin [OF15], pages
641–670.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume
2729 of LNCS. Springer-Verlag, 2003.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael
Wiener, editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of LNCS, pages 388–
397. Springer-Verlag, 15–19 August 1999.

[Koc96] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal Koblitz, editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of
LNCS, pages 104–113. Springer-Verlag, 18–22 August 1996.

[KP12] Howard J. Karloff and Toniann Pitassi, editors. Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012. ACM, 2012.

[KSW13] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. J. Cryptology, 26(2):191–224, 2013.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In Gilbert [Gil10], pages 62–91.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Karloff and Pitassi [KP12],
pages 1219–1234.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
Moni Naor, editor, First Theory of Cryptography Conference — TCC 2004, volume 2951 of
LNCS, pages 278–296. Springer-Verlag, February 19–21 2004.

[MW15] Pratyay Mukherjee and Daniel Wichs. Two round MPC from LWE via multi-key FHE. IACR
Cryptology ePrint Archive, 2015:345, 2015.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Halevi
[Hal09], pages 18–35.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture
Notes in Computer Science. Springer, 2015.

[Ost11] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE Computer Society, 2011.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342, 2009.

23
Approved for Public Release; Distribution Unlimited.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor, Advances
in Cryptology - EUROCRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer-Verlag,
2009.

[PSP+08] Christophe Petit, François-Xavier Standaert, Olivier Pereira, Tal Malkin, and Moti Yung. A
block cipher based pseudo random number generator secure against side-channel key recovery.
In Masayuki Abe and Virgil D. Gligor, editors, ASIACCS, pages 56–65. ACM, March 18-20
2008.

[QK02] Jean-Jaques Quisquater and François Koene. Side channel attacks: State of the art, October
2002. http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_
Side_Channel_report.pdf, last accessed: August 26, 2009.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Isabelle Attali and Thomas P. Jensen, editors, E-smart,
volume 2140 of LNCS, pages 200–210. Springer-Verlag, September 19-21 2001.

[RC14] Kurt Rohloff and David Bruce Cousins. A scalable implementation of fully homomorphic
encryption built on NTRU. In Rainer Böhme, Michael Brenner, Tyler Moore, and Matthew
Smith, editors, Financial Cryptography and Data Security - FC 2014 Workshops, BITCOIN
and WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, volume
8438 of Lecture Notes in Computer Science, pages 221–234. Springer, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[Rel] Reliable Computing Laboratory, Boston University. Side channel attacks database. http:
//www.sidechannelattacks.com, last accessed: August 26, 2009.

[SC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings of
the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, pages 463–472. ACM, 2010.

[SV09] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. IACR Cryptology ePrint Archive, 2009:571, 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Spring-
er-Verlag, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 475–484. ACM, 2014.

24
Approved for Public Release; Distribution Unlimited.

http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047_Side_Channel_report.pdf
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com
http://www.sidechannelattacks.com

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Gilbert [Gil10], pages 24–43.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162–167. IEEE Computer Society, 1986.

25
Approved for Public Release; Distribution Unlimited.

Appendix - Published Papers

26
Approved for Public Release; Distribution Unlimited.

Efficient Fully Homomorphic Encryption from (Standard) LWE

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

We present a fully homomorphic encryption scheme that is based solely on the (standard)
learning with errors (LWE) assumption. Applying known results on LWE, the security of our
scheme is based on the worst-case hardness of “short vector problems” on arbitrary lattices.

Our construction improves on previous works in two aspects:

1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new re-
linearization technique. In contrast, all previous schemes relied on complexity assumptions
related to ideals in various rings.

2. We deviate from the “squashing paradigm” used in all previous works. We introduce a
new dimension-modulus reduction technique, which shortens the ciphertexts and reduces
the decryption complexity of our scheme, without introducing additional assumptions.

Our scheme has very short ciphertexts and we therefore use it to construct an asymptotically
efficient LWE-based single-server private information retrieval (PIR) protocol. The communi-
cation complexity of our protocol (in the public-key model) is k · polylog(k) + log |DB| bits per
single-bit query (here, k is a security parameter).

∗Weizmann Institute of Science. Email: zvika.brakerski@weizmann.ac.il. The author’s research was supported
by ISF grant 710267, BSF grant 710613, and NSF contracts CCF-1018064 and CCF-0729011.
†University of Toronto. Email: vinodv@cs.toronto.edu.

27
Approved for Public Release; Distribution Unlimited.

1 Introduction

Fully-homomorphic encryption is one of the holy grails of modern cryptography. In a nutshell, a
fully homomorphic encryption scheme is an encryption scheme that allows evaluation of arbitrar-
ily complex programs on encrypted data. The problem was suggested by Rivest, Adleman and
Dertouzos [RAD78] back in 1978, yet the first plausible candidate came thirty years later with
Gentry’s breakthrough work in 2009 [Gen09b, Gen10] (although, there has been partial progress in
the meanwhile [GM82, Pai99, BGN05, IP07]).

Gentry’s work showed for the first time that fully homomorphic encryption can be based on cryp-
tographic assumptions. However, his solution involved new and relatively untested cryptographic
assumptions. Our work aims to put fully homomorphic encryption on standard, well-studied cryp-
tographic assumptions.

The main building block in Gentry’s construction (a so-called “somewhat” homomorphic en-
cryption scheme) was based on the (worst-case, quantum) hardness of problems on ideal lattices. 1

Although lattices have become standard fare in cryptography and lattice problems have been rela-
tively well-studied, ideal lattices are a special breed that we know relatively little about. Ideals are
a natural mathematical object to use to build fully homomorphic encryption in that they natively
support both addition and multiplication (whereas lattices are closed under addition only). Indeed,
all subsequent constructions of fully homomorphic encryption [SV10, DGHV10, BV11] relied on
ideals in various rings in an explicit way. Our first contribution is the construction of a “somewhat”
homomorphic encryption scheme whose security relies solely on the (worst-case, classical) hardness
of standard problems on arbitrary (not necessarily ideal) lattices.

Secondly, in order to achieve full homomorphism, Gentry had to go through a so-called “squash-
ing step” which forced him to make an additional very strong hardness assumption – namely, the
hardness of the (average-case) sparse subset-sum problem. As if by a strange law of nature, all the
subsequent solutions encountered the same difficulty as Gentry did in going from a “somewhat”
to a fully homomorphic encryption, and they all countered this difficulty by relying on the same
sparse subset-sum assumption. This additional assumption was considered to be the main caveat
of Gentry’s solution and removing it has been, perhaps, the main open problem in the design of
fully homomorphic encryption schemes. Our second contribution is to remove the necessity of this
additional assumption.

Thus, in a nutshell, we construct a fully homomorphic encryption scheme whose security is based
solely on the classical hardness of solving standard lattice problems in the worst-case.2 Specifically,
out scheme is based on the learning with errors (LWE) assumption that is known to be at least
as hard as solving hard problems in general lattices. Thus our solution does not rely on lattices
directly and is fairly natural to understand and implement.

To achieve our goals, we deviate from two paradigms that ruled the design of (a handful of)
candidate fully homomorphic encryption schemes [Gen09b, SV10, DGHV10, BV11]:

1. We introduce the re-linearization technique, and show how to use it to obtain a somewhat
homomorphic encryption that does not require hardness assumptions on ideals.

1Roughly speaking, ideal lattices correspond to a geometric embedding of an ideal in a number field. See [LPR10]
for a precise definition.

2Strictly speaking, under this assumption, our scheme can evaluate polynomial-size circuits with a-priori bounded
(but arbitrary) depth. A fully homomorphic encryption scheme independent of the circuit depth can be obtained by
making an additional “circular security” assumption. See Section 3.

1

28
Approved for Public Release; Distribution Unlimited.

2. We present a dimension-modulus reduction technique, that turns our somewhat homomorphic
scheme into a fully homomorphic one, without the need for the artificial squashing step and
the sparse subset-sum assumption.

We provide a detailed overview of these new techniques in Sections 1.1, 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very short. This is

a desirable property which we use, in conjunction with other techniques, to achieve very efficient
private information retrieval protocols. See also Section 1.3 below.

1.1 Re-Linearization: Somewhat Homomorphic Encryption without Ideals

The starting point of Gentry’s construction is a “somewhat” homomorphic encryption scheme. For
a class of circuits C, a C-homomorphic scheme is one that allows evaluation of any circuit in the
class C. The simple, yet striking, observation in Gentry’s work is that if a (slightly augmented)
decryption circuit for a C-homomorphic scheme resides in C, then the scheme can be converted (or
“bootstrapped”) into a fully homomorphic encryption scheme.

It turns out that encryption schemes that can evaluate a non-trivial number of addition and
multiplication operations3 are already quite hard to come by (even without requiring that they are
bootstrappable).4 Gentry’s solution to this was based on the algebraic notion of ideals in rings.
In a very high level, the message is considered to be a ring element, and the ciphertext is the
message masked with some “noise”. The novelty of this idea is that the noise itself belonged to
an ideal I. Thus, the ciphertext is of the form m + xI (for some x in the ring). Observe right
off the bat that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first, a random
element in the ideal is assumed to “mask” the message; and second, it is possible to generate a
secret trapdoor that “annihilates” the ideal, i.e., implementing the transformation m + xI → m.
The first property guarantees security, while the second enables multiplying ciphertexts. Letting
c1 and c2 be encryptions of m1 and m2 respectively,

c1c2 = (m1 + xI)(m2 + yI) = m1m2 + (m1y +m2x+ xyI)I = m1m2 + zI

When decrypting, the ideal is annihilated and the product m1m2 survives. Thus, c1c2 is indeed an
encryption of m1m2, as required. This nifty solution required, as per the first property, a hardness
assumption on ideals in certain rings. Gentry’s original work relied on hardness assumptions on
ideal lattices, while van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] presented a different
instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning with errors”
(LWE) problem, first presented by Regev [Reg05]. The LWE assumption states that if s ∈ Znq is an
n dimensional “secret” vector, any polynomial number of “noisy” random linear combinations of
the coefficients of s are computationally indistinguishable from uniformly random elements in Zq.
Mathematically, {

ai, 〈ai, s〉+ ei
}poly(n)

i=1

c
≈

{
ai, ui

}poly(n)

i=1
,

3All known scheme, including ours, treat evaluated functions as arithmetic circuits. Hence we use the terminology
of “addition and multiplication” gates. The conversion to the boolean model (AND, OR, NOT gates) is immediate.

4We must mention here that we are interested only in compact fully homomorphic encryption schemes, namely
ones where the ciphertexts do not grow in size with each homomorphic operation. If we do allow such growth in size,
a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

2

29
Approved for Public Release; Distribution Unlimited.

where ai ∈ Znq and ui ∈ Zq are uniformly random, and the “noise” ei is sampled from a noise distri-
bution that outputs numbers much smaller than q (an example is a discrete Gaussian distribution
over Zq with small standard deviation).

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at least as hard
as finding short vectors in any lattice, as follows from the worst-case to average-case reductions of
Regev [Reg05] and Peikert [Pei09]. As mentioned earlier, we have a much better understanding of
the complexity of lattice problems (thanks to [LLL82, Ajt98, Mic00] and many others), compared
to the corresponding problems on ideal lattices. In particular, despite considerable effort, the best
known algorithms to solve the LWE problem run in time nearly exponential in the dimension n.5 The
LWE assumption also turns out to be particularly amenable to the construction of simple, efficient
and highly expressive cryptographic schemes (e.g., [Reg05, GPV08, AGV09, ACPS09, CHKP10,
ABB10] and many others). Our construction of a fully homomorphic encryption scheme from LWE
is perhaps a very strong testament to its power and elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE assumption
is rather straightforward. To encrypt a bit m ∈ {0, 1} using secret key s ∈ Znq , we choose a random
vector a ∈ Znq and a “noise” e and output the ciphertext

c = (a, b = 〈a, s〉+ 2e+m) ∈ Znq × Zq

The key observation in decryption is that the two “masks” – namely, the secret mask 〈a, s〉 and
the “even mask” 2e – do not interfere with each other.6 That is, one can decrypt this ciphertext
by annihilating the two masks, one after the other: The decryption algorithm first re-computes
the mask 〈a, s〉 and subtracts it from b, resulting in 2e + m (mod q). Since e � q, then 2e + m
(mod q) = 2e+m. Removing the even mask is now easy – simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multiplication presents
a thorny problem. In fact, a recent work of Gentry, Halevi and Vaikuntanathan [GHV10b] showed
that (a slight variant of) this scheme supports just a single homomorphic multiplication, but at the
expense of a huge blowup to the ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our focus away
from the encryption algorithm, on to the decryption algorithm. Given a ciphertext (a, b), consider
the symbolic linear function fa,b : Znq → Zq defined as:

fa,b(x) = b− 〈a,x〉 (mod q) = b−
n∑
i=1

a[i] · x[i] ∈ Zq

where x = (x[1], . . . ,x[n]) denotes the variables, and (a, b) forms the public coefficients of the linear
equation. Clearly, decryption of the ciphertext (a, b) is nothing but evaluating this function on the
secret key s (and then taking the result modulo 2).8

5The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of the modulus q).
For smaller errors, as we will encounter in our scheme, there are better – but not significantly better – algorithms.

In particular, if the error is a 1/2n
ε

fraction of the modulus q, the best known algorithm runs in time approx. 2n
1−ε

.
6We remark that using 2e instead of e as in the original formulation of LWE does not adversely impact security,

so long as q is odd (since in that case 2 is a unit in Zq).
7Although the simplified presentation of Gentry’s scheme above seems to deal with just one mask (the “secret

mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b, DGHV10] as well. Roughly speaking,
they needed this to ensure semantic security, as we do.

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the secret was also used
in [BV11].

3

30
Approved for Public Release; Distribution Unlimited.

Homomorphic addition and multiplication can now be described in terms of this function f .
Adding two ciphertexts corresponds to the addition of two linear functions, which is again another
linear function. In particular, f(a+a′,b+b′)(x) = fa,b(x)+f(a′,b′)(x) is the linear function correspond-
ing to the “homomorphically added” ciphertext (a + a′, b + b′). Similarly, multiplying two such
ciphertexts corresponds to a symbolic multiplication of these linear equations

f(a,b)(x) · f(a′,b)(x) = (b−
∑

a[i]x[i]) · (b′ −
∑

a′[i]x[i])

= h0 +
∑

hi · x[i] +
∑

hi,j · x[i]x[j] ,

which results in a degree-2 polynomial in the variables x = (x[1], . . . ,x[n]), with coefficients hi,j
that can be computed from (a, b) and (a′, b′) by opening parenthesis of the expression above.
Decryption, as before, involves evaluating this quadratic expression on the secret key s (and then
reducing modulo 2). We now run into a serious problem – the decryption algorithm has to know
all the coefficients of this quadratic polynomial, which means that the size of the ciphertext just
went up from n+ 1 elements to (roughly) n2/2.

This is where our re-linearization technique comes into play. Re-linearization is a way to reduce
the size of the ciphertext back down to n + 1. The main idea is the following: imagine that we
publish “encryptions” of all the linear and quadratic terms in the secret key s, namely all the
numbers s[i] as well as s[i]s[j], under a new secret key t. Thus, these ciphertexts (for the quadratic
terms) look like (ai,j , bi,j) where

bi,j = 〈ai,j , t〉+ 2ei,j + s[i] · s[j] ≈ 〈ai,j , t〉+ s[i] · s[j] .9

Now, the sum h0 +
∑
hi · s[i] +

∑
hi,j · s[i]s[j] can be written (approximately) as

h0 +
∑

hi(bi − 〈ai, t〉) +
∑
i,j

hi,j · (bi,j − 〈ai,j , t〉) ,

which, lo and behold, is a linear function in t! The bottom-line is that multiplying the two linear
functions f(a,b) and f(a′,b′) and then re-linearizing the resulting expression results in a linear function
(with n+ 1 coefficients), whose evaluation on the new secret key t results in the product of the two
original messages (upon reducing modulo 2). The resulting ciphertext is simply the coefficients of
this linear function, of which there are at most n+ 1. This ciphertext will decrypt to m ·m′ using
the secret key t.

In this semi-formal description, we ignored an important detail which has to do with the fact
that the coefficients hi,j are potentially large. Thus, even though (bi,j − 〈ai,j , t〉) ≈ s[i]s[j], it may
be the case that hi,j · (bi,j − 〈ai,j , t〉) 6≈ hi,j · s[i]s[j]. This is handled by considering the binary

representation of hi,j , namely hi,j =
∑blog qc

τ=0 2τ · hi,j,τ . If, for each value of τ , we had a pair
(ai,j,τ , bi,j,τ) such that

bi,j,τ = 〈ai,j,τ , t〉+ 2ei,j,τ + 2τs[i] · s[j] ≈ 〈ai,j,τ , t〉+ 2τs[i] · s[j] ,

then indeed

hi,j · s[i]s[j] =

blog qc∑
τ=0

hi,j,τ2τs[i]s[j] ≈
blog qc∑
τ=0

hi,j,τ (bi,j,τ − 〈ai,j,τ , t〉) ,

9Actually, calling these “encryptions” is inaccurate: s[i] ·s[j] ∈ Zq is not a single bit and therefore the “ciphertext”
cannot be decrypted. However, we feel that thinking of these as encryptions may benefit the reader’s intuition.

4

31
Approved for Public Release; Distribution Unlimited.

since hi,j,τ ∈ {0, 1}. This increases the number of pairs we need to post by a factor of (blog qc+ 1),
which is polynomial.

This process allows us to do one multiplication without increasing the size of the ciphertext,
and obtain an encryption of the product under a new secret key. But why stop at two keys s and t?
Posting a “chain” of L secret keys (together with encryptions of quadratic terms of one secret key
using the next secret key) allows us to perform up to L levels of multiplications without blowing
up the ciphertext size. It is possible to achieve multiplicative depth L = ε log n (which corresponds
to a degree D = nε polynomial) for an arbitrary constant ε < 1 under reasonable assumptions,
but beyond that, the growth of the error in the ciphertext kicks in, and destroys the ciphertext.
Handling this requires us to use the machinery of bootstrapping, which we explain in the next
section.

In conclusion, the above technique allows us to remove the need for “ideal assumptions” and
obtain somewhat homomorphic encryption from LWE. This scheme will be a building block towards
our full construction and is formally presented in Section 4.1.

1.2 Dimension-Modulus Reduction: Fully Homomorphic Encryption Without
Squashing

As explained above, the “bootstrapping” method for achieving full homomorphism requires a C-
homomorphic scheme whose decryption circuit resides in C. All prior somewhat homomorphic
schemes fell short in this category and failed to achieve this requirement in a natural way. Thus
Gentry, followed by all other previous schemes, resorted to “squashing”: a method for reducing
the decryption complexity at the expense of making an additional and fairly strong assumption,
namely the sparse subset sum assumption.

We show how to “upgrade” our somewhat homomorphic scheme (explained in Section 1.1) into
a scheme that enjoys the same amount of homomorphism but has a much smaller decryption circuit.
All of this, without making any additional assumption (beyond LWE)!

Our starting point is the somewhat homomorphic scheme from Section 1.1. Recall that a
ciphertext in that scheme is of the form (a, b = 〈a, s〉+ 2e+m) ∈ Znq × Zq, and decryption is done
by computing (b − 〈a, s〉 mod q) (mod 2). One can verify that this computation, presented as a
polynomial in the bits of s, has degree at least max(n, log q), which is more than the maximal degree
D that our scheme can homomorphically evaluate. The bottom line is that decryption complexity
is governed by (n, log q) which are too big for our homomorphism capabilities.

Our dimension-modulus reduction idea enbales us to take a ciphertext with parameters (n, log q)
as above, and convert it into a ciphertext of the same message, but with parameters (k, log p) which
are much smaller than (n, log q). To give a hint as to the magnitude of improvement, we typically
set k to be of size the security parameter and p = poly(k). We can then set n = kc for essentially
any constant c, and q = 2n

ε
. We will thus be able to homomorphically evaluate functions of degree

roughly D = nε = kc·ε and we can choose c to be large enough so that this is sufficient to evaluate
the (k, log p) decryption circuit.

To understand dimension-modulus reduction technically, we go back to re-linearization. We
showed above that, posting proper public parameters, one can convert a ciphertext (a, b = 〈a, s〉+
2e + m), that corresponds to a secret key s, into a ciphertext (a′, b′ = 〈a′, t〉 + 2e′ + m) that
corresponds to a secret key t.10 The crucial observation is that s and t need not have the same

10In the previous section, we applied re-linearization to a quadratic function of s, while here we apply it to the

5

32
Approved for Public Release; Distribution Unlimited.

dimension n. Specifically, if we chose t to be of dimension k, the procedure still works. This brings
us down from (n, log q) to (k, log q), which is a big step but still not sufficient.

Having the above observation in mind, we wonder if we can take t to have not only low dimension
but also small modulus p, thus completing the transition from (n, log q) to (k, log p). This is indeed
possible using some additional ideas, where the underlying intuition is that Zp can “approximate”
Zq by simple scaling, up to a small error.

The public parameters for the transition from s to t will be (ai,τ , bi,τ) ∈ Zkp × Zp, where

bi,τ = 〈ai,τ , t〉+ e+

⌊
p

q
· 2τ · s[i]

⌉
.11

Namely, we scale 2τ · s[i] ∈ Zq into an element in Zp by multiplying by p/q and rounding. The
rounding incurs an additional error of magnitude at most 1/2. It follows that

2τ · s[i] ≈ q

p
· (bi,τ − 〈ai,τ , t〉) ,

which enables converting a linear equation in s into a linear equation in t. The result of dimension-
modulus reduction, therefore, is a ciphertext (â, b̂) ∈ Zkp × Zp such that b̂ − 〈â, t〉 = m + 2ê. For
security, we need to assume the hardness of LWE with parameters k, p. We can show that in the
parameter range we use, this assumption is as hard as the one used for the somewhat homomorphic
scheme.12

In conclusion, dimension-modulus reduction allows us to achieve a bootstrappable scheme, based
on the LWE assumption alone. We refer the reader to Section 4 for the formal presentation and full
analysis of our entire solution. Specifically, dimension-modulus reduction is used for the scheme in
Section 4.2.

As a nice byproduct of this technique, the ciphertexts of the resulting fully homomorphic scheme
become very short! They now consist of (k+ 1) log p = O(k log k) bits. This is a desirable property
which is also helpful in achieving efficient private information retrieval protocols (see below).

1.3 Near-Optimal Private Information Retrieval

In (single-server) private information retrieval (PIR) protocols, a very large database is maintained
by a sender (the sender is also sometimes called the server, or the database). A receiver wishes
to obtain a specific entry in the database, without revealing any information about the entry
to the server. Typically, we consider databases that are exponential in the security parameter
and hence we wish that the receiver’s running time and communication complexity are polylog-
arithmic in the size of the database N (at least logN bits are required to specify an entry in
the database). The first polylogarithmic candidate protocol was presented by Cachin, Micali and
Stadler [CMS99] and additional polylograithmic protocols were introduced by Lipmaa [Lip05] and
by Gentry and Ramzan [GR05]. Of which, the latter achieves the best communication complexity

ciphertext (a, b) that corresponds to a linear function of s. This only makes things easier.
11A subtle technical point refers to the use of an error term e, instead of 2e as we did for re-linearization. The

reason is roughly that q
p
· 2 is non-integer. Therfore we “divide by 2” before performing the dimension-reduction and

“multiply back” by 2 after.
12For the informed reader we mention that while k, p are smaller than n, q and therefore seem to imply lesser

security, we are able to use much higher relative noise in our k, p scheme since it needs not support homomorphism.
Hence the two assumptions are of roughly the same hardness.

6

33
Approved for Public Release; Distribution Unlimited.

of O(log3−o(1)(N)).13 The latter two protocols achieve constant amortized communication com-
plexity when retrieving large consecutive blocks of data. See a survey in [OS07] for more details on
these schemes.

Fully homomorphic, or even somewhat homomorphic, encryption is known to imply polylog-
arithmic PIR protocols.14 Most trivially, the receiver can encrypt the index it wants to query,
and the database will use that to homomorphically evaluate the database access function, thus
retrieving an encryption of the answer and sending it to the receiver. The total communication
complexity of this protocol is the sum of lengths of the public key, encryption of the index and
output ciphertext. However, the public key is sent only once, it is independent of the database and
the query, and it can be used for many queries. Therefore it is customary to analyze such schemes
in the public key model where sending the public key does not count towards the communication
complexity. Gentry [Gen09a] proposes to use his somewhat homomorphic scheme towards this end,
which requires O(log3N) bit communication.15 We show how, using our somewhat homomorphic
scheme, in addition to new ideas, we can bring down communication complexity to a near optimal
logN · polyloglogN (one cannot do better than logN). To obtain the best parameters, one needs

to assume 2Ω̃(k)-hardness of polynomial-factor approximation for short vector problems in arbitrary
dimension k lattices, which is supported by current knowledge. Details follow.

A major obstacle in the naive use of somewhat homomorphic encryption for PIR is that ho-
momorphism is obtained with respect to the boolean representation of the evaluated function.
Therefore, the receiver needs to encrypt the index to the database in a bit-by-bit manner. The
query is then composed of logN ciphertexts, which necessitate at least log2N bits of communica-
tion. As a first improvement, we notice that the index needs not be encrypted under the somewhat
homomorphic scheme. Rather, we can encrypt using any symmetric encryption scheme. The
database will receive, an encrypted symmetric key (under the homomorphic scheme), which will
enable it to convert symmetric ciphertexts into homomorphic ciphertexts without additional com-
munication. The encrypted secret key can be sent as a part of the public key as it is independent
of the query. This, of course, requires that our somewhat homomorphic scheme can homomorphi-
cally evaluate the decryption circuit of the symmetric scheme. Fully homomorphic schemes will
certainly be adequate for this purpose, but known somewhat homomorphic schemes are also suf-
ficient (depending on the symmetric scheme to be used). Using the most communication efficient
symmetric scheme, we bring down the query complexity to O(logN). As for the sender’s response,
our dimension-modulus reduction technique guarantees very short ciphertexts (essentially as short
as non-homomorphic LWE based schemes). This translates into logN · polyloglogN bits per ci-
phertext, and the communication complexity of our protocol follows. We remark that in terms of
retrieving large blocks of consecutive data, one can slightly reduce the overhead to O(logN) bits
of communication for every bit of retrieved data. We leave it as an open problem to bring the
amortized communication down to a constant. See Section 5 for the full details.

Prior to this work, it was not at all known how to achieve even polylogarithmic PIR under
the LWE assumption. We stress that even if the size of the public key does count towards the

13It is hard to compare the performance of different PIR protocols due to the multitude of parameters. To make
things easier to grasp, we compare the protocols on equal grounds: We assume that the database size and the
adversary’s running time are exponential in the security parameter and assume the maximal possible hardness of
the underlying assumption against known attacks. We also assume that each query retrieves a single bit. We will
explicitly mention special properties of individual protocols that are not captured by this comparison.

14To be precise, one needs sub-exponentially secure such schemes.
15Gentry does not provide a detailed analysis of this scheme, the above is based on our analysis of its performance.

7

34
Approved for Public Release; Distribution Unlimited.

communication complexity, our protocol still has polylogarithmic communication.

1.4 Other Related Work

Aside from Gentry’s scheme (and a variant thereof by Smart and Vercauteren [SV10] and an
optimization by Stehle and Steinfeld [SS10]), there are two other fully homomorphic encryption
schemes [DGHV10, BV11]. The innovation in both these schemes is the construction of a new
somewhat homomorphic encryption scheme. Both these works then invoke Gentry’s squashing and
bootstrapping transformation to convert it to a fully homomorphic scheme, and thus the security of
both these schemes relies on the sparse subset-sum assumption (plus other assumptions). The first
of these schemes is due to van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10]. Their scheme
works over the integers and relies on a new assumption which, roughly speaking, states that finding
the greatest common divisor of many “noisy” multiples of a number is computationally hard. They
cannot, however, reduce their assumption to worst-case hardness. The second is a recent work of
Brakerski and Vaikuntanathan [BV11], who construct a somewhat homomorphic encryption scheme
based on the ring LWE problem [LPR10] whose security can be reduced to the worst-case hardness
of problems on ideal lattices.

The efficiency of implementing Gentry’s scheme also gained much attention. Smart and Ver-
cauteren [SV10], as well as Gentry and Halevi [GH11b] conduct a study on reducing the complexity
of implementing the scheme.

In a recent independent work, Gentry and Halevi [GH11a] showed how the sparse subset sum
assumption can be replaced by either the (decisional) Diffie-Hellman assumption or an ideal lattice
assumption, by representing the decryption circuit as an arithmetic circuit with only one level of
(high fan-in) multiplications.

1.5 Paper Organization

Some preliminaries and notation are described in Section 2. We formally define somewhat and fully
homomorphic encryption and present the bootstrapping theorem in Section 3. The main technical
section of this paper is Section 4, where our scheme is presented and fully analyzed. Lastly, our
private information retrieval protocol is presented in Section 5.

2 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x
$← D is used to denote

the fact that x is chosen from the distribution D. When we say x
$← S, we simply mean that x

is chosen from the uniform distribution over S. Unless explicitly mentioned, all logarithms are to
base 2.

In this work, we utilize “noise” distributions over integers. The only property of these distri-
butions we use is their magnitude. Hence, we define a B-bounded distribution to be a distribution
over the integers where the magnitude of a sample is bounded with high probability. A definition
follows.

Definition 2.1 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if

Pr
e

$←χn
[|e| > B] ≤ 2−Ω̃(n) .

8

35
Approved for Public Release; Distribution Unlimited.

We denote scalars in plain (e.g. x) and vectors in bold lowercase (e.g. v), and matrices in bold
uppercase (e.g. A). The `i norm of a vector is denoted by ‖v‖i. Inner product is denoted by 〈v,u〉,
recall that 〈v,u〉 = vT · u. Let v be an n dimensional vector. For all i = 1, . . . , n, the ith element
in v is denoted v[i]. We use the convention that v[0] , 1.

We use the following variant of the leftover hash lemma [ILL89].

Lemma 2.1 (matrix-vector leftover hash lemma). Let κ ∈ N, n ∈ N, q ∈ N, and m ≥ n log q+ 2κ.

Let A
$← Zm×nq be a uniformly random matrix, let r

$← {0, 1}m and let y
$← Znq . Then,

∆
(
(A,AT r), (A,y)

)
≤ 2−κ

where ∆(A,B) denotes the statistical distance between the distributions A and B.

2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Zq,
let As,χ be the distribution obtained by choosing a vector a

$← Znq uniformly at random and a noise

term e
$← χ, and outputting (a, 〈a, s〉+ e) ∈ Znq × Zq. A formal definition follows.

Definition 2.2 (LWE). For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is defined as follows: Given m independent samples from
As,χ (for some s ∈ Znq), output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted DLWEn,m,q,χ, is to distinguish

(with non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Znq),

from m samples chosen according to the uniform distribution over Znq×Zq. We denote by DLWEn,q,χ
the variant where the adversary gets oracle access to As,χ, and is not a-priori bounded in the number
of samples.

For cryptographic applications we are primarily interested in the average case decision problem

DLWE, where s
$← Znq . There are known quantum [Reg05] and classical [Pei09] reductions between

DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be (discretized versions of) the Gaussian distribution, which is B-bounded for an appropriate
B. Since the exact distribution χ does not matter for our results, we state a corollary of the results
of [Reg05, Pei09] in terms of the bound on the distribution.

Corollary 2.2 ([Reg05, Pei09]). Let q = q(n) ∈ N be a product of co-prime numbers q =
∏
qi such

that for all i, qi = poly(n), and let B ≥ n. Then there exists an efficiently sampleable B-bounded
distribution χ such that if there is an efficient algorithm that solves the (average-case) DLWEn,q,χ
problem. Then:

• There is a quantum algorithm that solves SIVP
Õ(n
√
n·q/B)

and gapSVP
Õ(n
√
n·q/B)

on any n-

dimensional lattice, and runs in time poly(n).

• There is a classical algorithm that solves the ζ-to-γ decisional shortest vector problem gapSVPζ,γ,

where γ = Õ(n
√
n · q/B), and ζ = Õ(q

√
n), on any n-dimensional lattice, and runs in time

poly(n).

9

36
Approved for Public Release; Distribution Unlimited.

We refer the reader to [Reg05, Pei09] for the formal definition of these lattice problems, as they
have no direct connection to this work. We only note here that the best known algorithms for these
problems run in time nearly exponential in the dimension n [AKS01, MV10]. More generally, the

best algorithms that approximate these problems to within a factor of 2k run in time 2Õ(n/k).

2.2 Symmetric Encryption

A symmetric encryption scheme SYM = (SYM.Keygen, SYM.Enc,SYM.Dec), over message space
M = {Mκ}κ∈N, is a triple of ppt algorithms as follows. We always denote the security parameter
by κ.

• Key generation. The algorithm sk←SYM.Keygen(1κ) takes a unary representation of the
security parameter and outputs symmetric encryption/decryption key sk.

• Encryption. The algorithm c←SYM.Encsk(µ) takes the symmetric key sk and a message
µ ∈Mκ and outputs a ciphertext c.

• Decryption. The algorithm µ∗←SYM.Decsk(c) takes the symmetric key sk and a ciphertext
c and outputs a message µ∗ ∈Mκ.

Correctness and security against chosen plaintext attacks (IND-CPA security) are defined as
follows.

Definition 2.3. A symmetric scheme SYM is correct if for all µ and all sk←SYM.Keygen(1κ),

Pr[SYM.Decsk(SYM.Encsk(µ) 6= µ] = negl(κ) ,

where the probability is over the coins of SYM.Keygen, SYM.Enc.

Definition 2.4. A symmetric scheme SYM is (t, ε)-IND-CPA secure if for any adversary A that
runs in time t it holds that∣∣∣Pr[ASYM.Encsk(·)(1κ) = 1]− Pr[ASYM.Encsk(0)(1κ) = 1]

∣∣∣ ≤ ε ,
where the probability is over sk←SYM.Keygen(1κ), the coins of SYM.Enc and the coins of the
adversary A.

Namely, no adversary can distinguish between an oracle that encrypts messages of its choice
and an oracle that only returns encryptions of 0 (where 0 is some arbitrary element in the message
space).

3 Homomorphic Encryption: Definitions and Tools

In this section we discuss the definition of homomorphic encryption and its properties as well as
some related subjects. We start by defining homomorphic and fully homomorphic encryption in
Section 3.1. Then, in Section 3.2 we discuss Gentry’s bootstrapping theorem.

We note that there are a number of ways to define homomorphic encryption and to describe
the bootstrapping theorem. We chose the definitions that best fit the constructions and we urge
even the knowledgeable reader to go over them so as to avoid confusion in interpreting our results.

10

37
Approved for Public Release; Distribution Unlimited.

3.1 Homomorphic Encryption – Definitions

We now define homomorphic encryption and its desired properties. Throughout this section (and
this work) we use κ to indicate the security parameter. In addition, all schemes in this paper
encrypt bit-by-bit and therefore our definitions only refer to this case. The generalization to an
arbitrary message space is immediate.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows.

• Key generation. The algorithm (pk, evk, sk)←HE.Keygen(1κ) takes a unary representation
of the security parameter and outputs a public encryption key pk, a public evaluation key
evk and a secret decryption key sk.

• Encryption. The algorithm c←HE.Encpk(µ) takes the public key pk and a single bit message
µ ∈ {0, 1} and outputs a ciphertext c.

• Decryption. The algorithm µ∗←HE.Decsk(c) takes the secret key sk and a ciphertext c and
outputs a message µ∗ ∈ {0, 1}.

• Homomorphic evaluation. The algorithm cf←HE.Evalevk(f, c1, . . . , c`) takes the evalua-
tion key evk, a function f : {0, 1}` → {0, 1} and a set of ` ciphertexts c1, . . . , c`, and outputs
a ciphertext cf .

The representation of the function f is an important issue. Since the representation can vary
between schemes, we leave this issue outside of this syntactic definition. We remark, however,
that in this work, f will be represented by an arithmetic circuit over GF(2).

We note that while one can treat the evaluation key as a part of the public key, as has been done
in the literature so far, we feel that there is an expository value to treating it as a separate entity
and to distinguishing between the public elements that are used for encryption and those that are
used only for homomorphic evaluation.

The only security notion we consider in this chapter is semantic security, namely security w.r.t.
passive adversaries. We use its widely known formulation as IND-CPA security, defined as follows.

Definition 3.1 (CPA security). A scheme HE is IND-CPA secure if for any polynomial time
adversary A it holds that

AdvCPA[A] , |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(0)) = 1]| = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ).

In fact, based on the best known about lattices, the schemes we present in this paper will
be secure against even stronger adversaries. In order for our reductions to make sense for such
adversaries as well, we also consider a parameterized version of CPA security. There, we allow the
adversary to run in time t (which is typically super-polynomial) and succeed with probability ε
(which is typically sub-polynomial).

Definition 3.2 ((t, ε)-CPA security). A scheme HE is (t, ε)-IND-CPA secure if for any adversary
A that runs in time t for t = t(κ) it holds that

AdvCPA[A] , |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(0)) = 1]| ≤ ε = ε(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ).

11

38
Approved for Public Release; Distribution Unlimited.

We move on to define the homomorphism property. Note that we do not define the “correctness”
of the scheme as a separate property, but rather (some form of) correctness will follow from our
homomorphism properties.

We start by defining C-homomorphism, which is homomorphism with respect to a specified class
C of functions. This notion is sometimes also referred to as “somewhat homomorphism”.

Definition 3.3 (C-homomorphism). Let C = {Cκ}κ∈N be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic (or, homomorphic for the class C) if
for any sequence of functions fκ ∈ Cκ and respective inputs µ1, . . . , µ` ∈ {0, 1} (where ` = `(κ)), it
holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , c`)) 6= f(µ1, . . . , µ`)] = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ) and ci←HE.Encpk(µi).

We point out two important properties that the above definition does not require. First of
all, we do not require that the ciphertexts ci are decryptable themselves, only that they become
decryptable after homomorphic evaluation.16 Secondly, we do not require that the output of HE.Eval
can undergo additional homomorphic evaluation.17

Before we define full homomorphism, let us define the notion of compactness.

Definition 3.4 (compactness). A homomorphic scheme HE is compact if there exists a polynomial
s = s(κ) such that the output length of HE.Eval(· · ·) is at most s bits long (regardless of f or the
number of inputs).

Note that a C-homomorphic scheme is not necessarily compact.
We give the minimal definition of fully homomorphic encryption, which suffices for most appli-

cations.

Definition 3.5 (fully homomorphic encryption). A scheme HE is fully homomorphic if it is both
compact and homomorphic for the class of all arithmetic circuits over GF (2).

As in the definition of C homomorphism, one can require that the outputs of HE.Eval can again
be used as inputs for homomorphic evaluation (“multi-hop homomorphism”). Indeed, all known
schemes have this additional property. However, due to the complexity of the formal definition in
this case, we refrain from describing a formal definition.

An important relaxation of fully homomorphic encryption is the following.

Definition 3.6 (leveled fully homomorphic encryption). A leveled fully homomorphic encryp-
tion scheme is a homomorphic scheme where the HE.Keygen gets an additional input 1L (now
(pk, evk, sk)←HE.Keygen(1κ, 1L)) and the resulting scheme is homomorphic for all depth-L binary
arithmetic circuits. The bound s(κ) on the ciphertext length must remain independent of L.

In most cases, the only parameter of the scheme that becomes dependent on L is the bit-length
of the evaluation key evk.

16Jumping ahead, while this may seem strange at first, this notion of somewhat homomorphism is all that is really
required in order to bootstrap into full homomorphism and it also makes our schemes easier to describe. Lastly, note
that one can always perform a “blank” homomorphic operation and then decrypt, so functionality is not hurt.

17This is termed “1-hop homomorphism” in [GHV10a].

12

39
Approved for Public Release; Distribution Unlimited.

3.2 Gentry’s Bootstrapping Technique

In this section we formally define the notion of a bootstrappable encryption scheme and present
Gentry’s bootstrapping theorem [Gen09b, Gen09a] which implies that a bootstrappable scheme can
be converted into a fully homomorphic one.

Definition 3.7 (bootstrappable encryption scheme). Let HE be C-homomorphic, and Let fadd and
fmult be the the augmented decryption functions of the scheme defined as

f c1,c2add (s) = HE.Decs(c1) XOR HE.Decs(c2) and f c1,c2mult (s) = HE.Decs(c1) AND HE.Decs(c2) .

Then E is bootstrappable if {
f c1,c2add , f c1,c2mult

}
c1,c2
⊆ C .

Namely, the scheme can homomorphically evaluate fadd and fmult.

We describe two variants of Gentry’s bootstrapping theorem. The first implies leveled fully
homomorphic encryption but requires no additional assumption; where the second makes an ad-
ditional (weak) circular security assumption and achieves the stronger (non-leveled) variant of
Definition 3.5.

The first variant follows.

Theorem 3.1 ([Gen09b, Gen09a]). Let HE be a bootstrappable scheme, then there exists a leveled
fully homomorphic encryption scheme as per Definition 3.6.

Specifically, the leveled homomorphic scheme is such that only the length of the evaluation key
depends on the level L. All other parameters of the scheme are distributed identically regardless
of the value of L.

For the second variant, we need to define circular security.

Definition 3.8 (weak circular security). A public key encryption scheme (Gen,Enc,Dec) is weakly
circular secure if it is IND-CPA secure even for an adversary with auxiliary information containing
encryptions of all secret key bits: {Encpk(sk[i])}i.

Namely, no polynomial time adversary can distinguish an encryption of 0 from an encryption
of 1 even given the additional information.

We can now state the second theorem.

Theorem 3.2 ([Gen09b, Gen09a]). Let HE be a bootstrappable scheme that is also weakly circular
secure. Then there is a fully homomorphic encryption scheme as per Definition 3.5.

Finally, we want to make a statement regarding the ciphertext length of a bootstrapped scheme.
The following is implicit in [Gen09b, Gen09a].

Lemma 3.3. If a scheme FH is obtained from applying either Theorem 3.1 or Theorem 3.2 to a
bootstrappable scheme HE, then both FH.Enc and FH.Eval produce ciphertexts of the same length as
HE.Eval (regardless of the length of the ciphertext produced by HE.Enc).

13

40
Approved for Public Release; Distribution Unlimited.

4 The New Fully Homomorphic Encryption Scheme

In this section, we present our fully homomorphic encryption scheme and analyze its security and
performance. We present our scheme in a gradual manner. First, in Section 4.1 we present an LWE-
based somewhat homomorphic scheme, SH, that will serve as building block for our construction
(that scheme by itself is not sufficient to achieve full homomorphism). The main technique used here
is re-linearization. Our bootstrappable scheme, BTS, which utilizes dimension-modulus reduction,
is presented in Section 4.2. We then turn to analyze the properties of BTS. In Section 4.3 we prove
the security of the scheme based on LWE and discuss the worst case hardness that is implied by
known reductions. In Section 4.4 we analyze the homomorphic properties of SH and BTS which
enables us to prove (in Section 4.5) that the bootstrapping theorem is indeed applicable to BTS, and
obtain a fully homomorphic scheme based on LWE. We then discuss the parameters and efficiency
of our scheme.

4.1 The Scheme SH: A Somewhat Homomorphic Encryption Scheme

We present a somewhat homomorphic public-key encryption scheme, based on our re-linearization
technique, whose message space is GF(2).18 Let κ ∈ N be the security parameter. The scheme is
parameterized by a dimension n ∈ N, a positive integer m ∈ N, an odd modulus q ∈ N (note that
q needs not be prime) and a noise distribution χ over Zq, all of which are inherited from the LWE
assumption we use. An additional parameter of the scheme is a number L ∈ N which is an upper
bound on the maximal multiplicative depth that the scheme can homomorphically evaluate.

During the exposition of the scheme, we invite the reader to keep the following range of pa-
rameters in mind: the dimension n is polynomial in the security parameter κ, m ≥ n log q + 2κ is
a polynomial in n, the modulus is an odd number q ∈ [2n

ε
, 2 · 2nε) is sub-exponential in n (where

ε ∈ (0, 1) is some constant), χ is some noise distribution that produces small samples (say, of
magnitude at most n) in Zq, and the depth bound is L ≈ ε log n.

• Key generation SH.Keygen(1κ): For key generation, sample L+ 1 vectors s0, . . . , sL
$← Znq , and

compute, for all ` ∈ [L], 0 ≤ i ≤ j ≤ n, and τ ∈ {0, . . . , blog qc}, the value

ψ`,i,j,τ :=

(
a`,i,j,τ , b`,i,j,τ :=〈a`,i,j,τ , s`〉+ 2 · e`,i,j,τ + 2τ · s`−1[i] · s`−1[j]

)
∈ Znq × Zq , (1)

where a`,i,j,τ
$← Znq , e`,i,j,τ

$← χ (recall that, according to our notational convention, s`−1[0] , 1).

We define Ψ , {ψ`,i,j,τ}`,i,j,τ to be the set of all these values.19 At this point, it may not yet be
clear what the purpose of the 2τ factors is; indeed, this will be explained later when we explain
homomorphic multiplication.

The key-generation algorithm proceeds to choose a uniformly random matrix A
$← Zm×nq and a

vector e
$← χm, and compute b:=As0 + 2e.

It then outputs the secret key sk = sL, the evaluation key evk = Ψ, and the public key
pk = (A,b).20

18It is quite straightforward to generalize the scheme to work over a message space GF(t), where t is relatively
prime to q. Since we mostly care about the binary case, we choose not to present this generalization.

19A knowledgeable reader may notice that the above is similar to encryptions of 2τ · s`−1[i] · s`−1[j] (mod q) via
an LWE-based scheme, except this “ciphertext” is not decryptable since the “message” is not a single bit value.

20The public key pk is essentially identical to the public key in Regev’s scheme.

14

41
Approved for Public Release; Distribution Unlimited.

• Encryption SH.Encpk(µ): Recall that pk = (A,b). To encrypt a message µ ∈ GF(2), sample a

vector r
$← {0, 1}m and set (just like in Regev’s scheme)

v:=AT r and w:=bT r + µ .

The output ciphertext contains the pair (v, w), in addition to a “level tag” which is used during
homomorphic evaluation and indicates the “multiplicative depth” where the ciphertext has been
generating. For freshly encrypted ciphertext, therefore, the level tag is zero. Formally, the
encryption algorithm outputs c:=((v, w), 0).

• Homomorphic evaluation SH.Evalevk(f, c1, . . . , ct) where f : {0, 1}t → {0, 1}: We require that
f is represented by a binary arithmetic circuit with ’+’ gates of arbitrary fan-in and ’×’ gates
with fan-in 2. We further require that the circuit is layered, namely that it is composed of
homogenous layers of either all ’+’ gates or all ’×’ gates (it is easy to see that any arithmetic
circuit can be converted to this form). Lastly, we require that the multiplicative depth of the
circuit (the total number of ‘×‘ layers) is exactly L. 21

We homomorphically evaluate the circuit f gate by gate. Namely, we will show how to perform
homomorphic addition (of arbitrarily many ciphertexts) and homomorphic multiplication (of
two ciphertexts). Combining the two, we will be able to evaluate any such function f .

Ciphertext structure during evaluation. During the homomorphic evaluation, we will
generate ciphertexts of the form c = ((v, w), `), where the tag ` indicates the multiplicative level
at which the ciphertext has been generated (hence fresh ciphertexts are tagged with 0). The
requirement that f is layered will make sure that throughout the homomorphic evaluation all
inputs to a gate have the same tag. In addition, we will keep the invariant that the output of
each gate evaluation c = ((v, w), `), is such that

w − 〈v, s`〉 = µ+ 2 · e (mod q) , (2)

where µ is the correct plaintext output of the gate, and e is a noise term that depends on
the gate’s input ciphertexts. Note that it always holds that ` ≤ L due to the bound on the
multiplicative depth, and that the output of the homomorphic evaluation of the entire circuit is
expected to have ` = L.

Homomorphic evaluation of gates:

− Addition gates. Homomorphic evaluation of a ’+’ gate on inputs c1, . . . , ct, where ci =
((vi, wi), `), is performed by outputting

cadd = ((vadd, wadd), `):=

((∑
i

vi,
∑
i

wi

)
, `

)
.

Informally, one can see that

wadd − 〈vadd, s`〉 =
∑
i

(wi − 〈vi, s`〉) =
∑
i

(µi + 2ei) =
∑
i

µi + 2
∑
i

ei ,

21Jumping ahead, in the analysis we will only prove correctness for a specific sub-class of these circuits.

15

42
Approved for Public Release; Distribution Unlimited.

where µi is the plaintext corresponding to µi. The output of the homomorphic evaluation,
thus, corresponds to the sum of the inputs, with the noise term being the sum of input noises.

− Multiplication gates. We show how to multiply ciphertexts c, c′ where c = ((v, w), `) and
c′ = ((v′, w′), `) (recall that multiplication gates have fan-in 2), to obtain an output ciphertext
cmult = ((vmult, wmult), `+ 1). Note that the level tag increases by 1.

We first consider an n-variate symbolic polynomial over the unknown vector x:

φ(x) = φ(w,v),(w′,v′)(x) , (w − 〈v,x〉) · (w′ − 〈v′,x〉) . (3)

We symbolically open the parenthesis of this quadratic polynomial, and express it as

φ(x) =
∑

0≤i≤j≤n
hi,j · x[i] · x[j] ,

where hi,j ∈ Zq are known (we can compute them from (v, w), (v′, w′) by opening parenthesis
in Eq. (3)).22

For technical reasons (related to keeping the error growth under control), we want to express
φ(·) as a polynomial with small coefficients. We consider the binary representation of hi,j ,
letting hi,j,τ be the τ th bit in this representation. In other words

hi,j =

blog qc∑
τ=0

hi,j,τ · 2τ ,

for hi,j,τ ∈ {0, 1}.
We can express φ therefore as

φ(x) =
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ ·
(
2τ · x[i] · x[j]

)
.23

We recall that the evaluation key evk = Ψ contains elements of the form ψ`,i,j,τ = (a`,i,j,τ , b`,i,j,τ)
such that

2τs`[i]s`[j] ≈ b`+1,i,j,τ − 〈a`+1,i,j,τ , s`+1〉 .

The homomorphic multiplication algorithm will thus set

vmult:=
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · a`+1,i,j,τ ,

and
wmult =

∑
0≤i≤j≤n

τ∈{0,...,blog qc}

hi,j,τ · b`+1,i,j,τ ,

22We once again remind the reader that because of the notational trick of setting x[0] , 1, this expression captures
the constant term in the product, as well as all the linear terms, thus homogenizing the polynomial φ(x).

23This can be interpreted as a polynomial with small coefficients whose variables are (2τ · x[i] · x[j]).

16

43
Approved for Public Release; Distribution Unlimited.

The final output ciphertext will be

cmult:=((vmult, wmult), `+ 1) .

Note that the level tag is increased by one as expected. Let us now verify that our invariant
as per Eq. 2 still holds for the new ciphertext:

wmult − 〈vmult, s`+1〉 =
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · (b`+1,i,j,τ − 〈a`+1,i,j,τ , s`+1〉)

=
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · 2τ · s`[i] · s`[j] + 2 · hi,j,τ · e`+1,i,j,τ

= φ(s`) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= (w − 〈v, s`〉) · (w′ − 〈v′, s`〉) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= (µ+ 2e)(µ′ + 2e′) +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

2 · hi,j,τ · e`+1,i,j,τ

= µµ′ + 2

µe′ + µ′e+ 2ee′ +
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · e`+1,i,j,τ

 . (4)

Indeed, we get the plaintext output µµ′ in addition to a noise term that is inherited from the
input ciphertexts and from the evaluation key.

• Decryption SH.DecsL(c): To decrypt a ciphertext c = ((v, w), L) (recall that we are only required
to decrypt ciphertexts that are output by SH.Eval(· · ·) and those will always have level tag L),
compute

(w − 〈v, sL〉 (mod q)) (mod 2) . (5)

4.2 The Scheme BTS: A Bootstrappable Scheme

We now utilize the dimension-modulus reduction technique to present the scheme BTS, which uses
SH as building block and inherits its homomorphic properties. However, BTS has much shorter
ciphertexts and lower decryption complexity, which will enable us to apply the bootstrapping
theorem to obtain full homomorphism.

Our bootstrappable scheme is parameterized by (n,m, q, χ, L), which are the parameters for SH,
and additional parameters (k, p, χ̂) which are the “smaller” parameters. n, q ∈ N are referred to as
the “long” dimension and modulus respectively, while k, p are the “short” dimension and modulus.
χ, χ̂ are the long and short noise distributions, over Zq and Zp, respectively. The parameter m ∈ N
is used towards public key generation. The parameter L is an upper bound on the multiplicative
depth of the evaluated function.

17

44
Approved for Public Release; Distribution Unlimited.

While we discuss parameter values below, we encourage the reader to consider the following
(non-optimal, but easier to understand) settings as a running example: k = κ, n = k4, q ≈ 2

√
n,

L = 1/3 logn = 4/3 log k, p = (n2 log q) · poly(k) = poly(k), m = O(n log q). The distributions χ, χ̂
can be thought of as being n- and k-bounded, respectively.

• Key generation BTS.Keygen(1κ): Run SH.Keygen(1κ) to obtain the secret key sL, evaluation
key Ψ and public key (A,b) of SH.

Recall that sL ∈ Znq , (A,b) ∈ Zm×nq × Zmq , and Ψ ∈ (Znq × Zq)(n+1)2·(blog qc+1)·L.

Proceed by sampling the “short” secret key ŝ
$← Zkp and computing additional parameters

for the evaluation key: For all i ∈ [n], τ ∈ {0, . . . , blog qc}, sample âi,τ
$← Zkp, êi,τ

$← χ̂, and
compute

b̂i,τ :=〈âi,τ , ŝ〉+ êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉
(mod p) .

Set ψ̂i,τ :=
(
âi,τ , b̂i,τ

)
∈ Zkp × Zp, and

Ψ̂:={ψ̂i,τ}i∈[n],τ∈{0,...,blog qc} .

This is very similar to the generation of Ψ in the scheme SH, but now ψ̂i,τ “encodes” scaled
linear terms, rather than quadratic terms.

Finally, output the secret key sk = ŝ, evaluation key evk = (Ψ, Ψ̂) and public key pk = (A,b).
Note that the public key is identical to that of SH.

• Encryption BTS.Encpk(µ): Use the same encryption algorithm as SH. To encrypt a bit
µ ∈ {0, 1}, compute c←SH.Enc(A,b)(µ) and output c as the ciphertext.

• Homomorphic evaluation BTS.Evalevk(f, c1, . . . , ct), where f : {0, 1}t → {0, 1}: Recall that
evk = (Ψ, Ψ̂). To perform homomorphic evaluation, we will use the homomorphic evaluation
function of SH. We thus require that f is represented by a binary arithmetic circuit which is
a legal input for SH.Eval.

The first step in the homomorphic evaluation is computing

cf←SH.EvalΨ(f, c1, . . . , ct) .

This results in a ciphertext of the form cf = ((v, w), L) ∈ Znq × Zq × {L}.
Next, we reduce the dimension and modulus of cf to k, p as follows. Consider the following
function from Zn into the rationals modulo p

φ(x) , φv,w(x) ,
p

q
·
(
q + 1

2
· (w − 〈v,x〉)

)
(mod p) .

Rearranging, one can find h0, . . . , hn ∈ Zq such that

φ(x) =
n∑
i=0

hi · (
p

q
· x[i]) (mod p) ,

18

45
Approved for Public Release; Distribution Unlimited.

Let hi,τ be the τ th bit of hi, for all τ ∈ {0, . . . , blog qc}. Then

φ(x) =
n∑
i=0

blog qc∑
τ=0

hi,τ · (
p

q
· 2τ · x[i]) .

Using the parameters in Ψ̂, we create a new ciphertext ĉ = (v̂, ŵ) ∈ Zkp × Zp by setting

v̂ := 2 ·
n∑
i=0

blog qc∑
τ=0

hi,τ · âi,τ (mod p) ∈ Zkp

ŵ := 2 ·
n∑
i=0

blog qc∑
τ=0

hi,τ · b̂i,τ (mod p) ∈ Zp .

The output of BTS.Eval is the new ciphertext ĉ ∈ Zkp × Zp. Note that the bit-length of ĉ is
(k + 1) log p.

Recall the invariant we enforce on the structure of ciphertexts of SH (see Eq. 2). We show
that a similar invariant holds for ĉ: Namely, that if cf is such that w − 〈v, sL〉 = µ + 2e
(mod q), then

ŵ − 〈v̂, ŝ〉 = µ+ 2ê (mod p) ,

where ê is proportional to p
q e (an appropriately scaled version of e) plus some additional noise.

To see the above, recall that (p+ 1)/2 is the inverse of 2 modulo p, and notice that24

p+ 1

2
(ŵ − 〈v̂, ŝ〉) =

n∑
i=0

blog qc∑
τ=0

hi,τ ·
(
b̂i,τ − 〈âi,τ , ŝ〉

)
(mod p)

=

n∑
i=0

blog qc∑
τ=0

hi,τ

(
êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉)
(mod p)

= φ(sL) +

n∑
i=0

blog qc∑
τ=0

hi,τ (êi,τ + ω̂i,τ)︸ ︷︷ ︸
, δ1

(mod p) , (6)

where we define

ω̂i,τ ,

⌊
p

q
·
(
2τ · sL[i]

)⌉
− p

q
·
(
2τ · sL[i]

)
,

and notice that |ω̂i,τ | ≤ 1/2. Since hi,τ ∈ {0, 1} and êi,τ is small, δ1 (defined in Eq. (6)) is
“small” as well.

24While the following sequence of derivations might seem like an indirect way to prove what we need, the way we
choose to do it will be useful later.

19

46
Approved for Public Release; Distribution Unlimited.

Now, letting w = 〈v, sL〉 + 2e + µ (mod q), we wish to examine φ(sL) , φ(v,w)(sL) more
closely, as follows.

φ(sL) ,
p

q
·
(
q + 1

2
· (w − 〈v, sL〉)

)
(mod p)

=
p

q
·
(
q + 1

2
· (2e+ µ+Mq)

)
(mod p) (where M ∈ Z)

=
p

q
·
(
q + 1

2
µ+ e+M ′q

)
(mod p) (where M ′ = M + e ∈ Z)

=
p

q
· q + 1

2
µ+

p

q
· e (mod p)

=
p+ 1

2
· µ+ (

p

q
− 1) · µ

2
+
p

q
· e︸ ︷︷ ︸

,δ2

(mod p)

=
p+ 1

2
· µ+ δ2 (7)

and notice that if p ≤ q (as is the case in our setting), |δ2| ≤ p
q |e|+

1
2 .

Putting together Eq. (6) and (7), we see that

p+ 1

2
(ŵ − 〈v̂, ŝ〉) =

p+ 1

2
· µ+ (δ1 + δ2) . (8)

Multiplying by 2, we have
ŵ − 〈v̂, ŝ〉 = µ+ 2(δ1 + δ2) . (9)

Now defining ê , δ1 + δ2, the invariant follows.

It is important to notice that, while not immediate from its definition, ê = δ1 + δ2 is an
integer. To see this, note that it can be represented as a difference between integers:

δ1 + δ2 =
p+ 1

2
(ŵ − 〈v̂, ŝ〉)− p+ 1

2
· µ .

• Decryption BTS.Decŝ(ĉ): To decrypt ĉ = (v̂, ŵ) ∈ Zkp × Zp (recall, again, that we only need
to decrypt ciphertexts that are output by BTS.Eval), compute

µ∗:= (ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2) .

If indeed ŵ − 〈v̂, ŝ〉 = µ+ 2ê (mod p) then µ∗ = µ so long as ê is small enough.

4.3 Security Analysis

In this section, we analyze the security of BTS based on LWE and then, using known connections,
based on worst case hardness of lattice problems.

The following theorem asserts the security of BTS based on two DLWE problems: One with
modulus q, dimension n and noise χ, and one with modulus p, dimension k and noise χ̂.

20

47
Approved for Public Release; Distribution Unlimited.

Theorem 4.1 (security). Let n = n(κ), k = k(κ), q = q(κ), p = p(κ) and L = L(κ) be functions of
the security parameter. Let χ, χ̂ be some distributions over the integers, and define m , n log q+2κ.

The scheme BTS is CPA secure under the DLWEn,q,χ and the DLWEk,p,χ̂ assumptions. In
particular, if both the DLWEn,q,χ and the DLWEk,p,χ̂ problems are (t, ε)-hard, then the scheme is
(t− poly(κ), 2(L+ 1) · (2−κ + ε))-semantically secure.

Essentially, the view of a CPA adversary for our scheme is very similar to Regev’s scheme, with
the exception that our adversary also gets to see the evaluation key. However, the evaluation key
contains a sequence of LWE instances which, based on our assumption, are indistinguishable from
uniform. Therefore our reduction will perform a sequence of L hybrids to replace the Ψ component
of the evaluation key with a set of completely uniform elements. Then, an additional hybrid will
imply the same for Ψ̂. Once this is done, we will use the known proof techniques from Regev’s
scheme and get the security of our scheme. A formal proof follows.

Proof. As explained above, we prove by a sequence of hybrids. Let A be an IND-CPA adversary
for BTS that runs in time t. We consider a series of hybrids where AdvH [A] denotes the success
probability of A in hybrid H.

• Hybrid ĤL+1: This is the identical to the IND-CPA game, where the adversary gets prop-
erly distributed keys pk, evk, generated by BTS.Keygen, and an encryption of either 0 or 1
computed using BTS.Enc. By definition,

AdvĤL+1
[A] ,

∣∣Pr[A(pk,SH.Encpk(µ0) = 1]− Pr[A(pk,SH.Encpk(µ1) = 1]
∣∣ = δ .

• Hybrid HL+1: This hybrid is identical to ĤL+1 in everything except the generation of Ψ̂.
In this hybrid, Ψ̂ is not generated as prescribed, but is rather sampled uniformly. Namely,

for all i, τ we set ψ̂i,τ
$← Zkp × Zp.

It follows that there exists an adversary B̂ that solves the DLWEk,p,χ̂ problem in time t +
poly(κ) and advantage

DLWEk,p,χ̂Adv[B̂] ≥ 1/2 ·
∣∣∣AdvĤ`+1

[A]−AdvH`+1
[A]
∣∣∣ .

The adversary B̂ will sample all vectors s0, . . . , sL by himself and generate pk,Ψ. Then, he will
use the LWE oracle to obtain either Aŝ,χ̂ samples which will result in properly generated Ψ̂,

or uniform samples which will result in a uniform Ψ̂. B will then sample a uniform b
$← {0, 1}

and return 1 if and only if A(pk, (Ψ, Ψ̂),BTS.Encpk(b)) = b. Using simple algebra, the result
follows.

• Hybrid H`, for ` ∈ [L]: Hybrid H` is identical to H`+1, except for a change in the Ψ
component of the evaluation key. Specifically, we change each of the components ψ`,i,j,τ for
all i, j, τ : Instead of computing ψ`,i,j,τ as prescribed (i.e., (a`,i,j,τ , 〈a`,i,j,τ , s`〉 + 2e`,i,j,τ + 2τ ·
s`−1[i] · s`−1[j])), we sample it uniformly. Namely, we set ψ`,i,j,τ

$← Znq × Zq.
It follows that there exists an adversary B` that solves the DLWEn,q,χ problem in time t +
poly(κ) and advantage

DLWEn,q,χAdv[B`] = 1/2 ·
∣∣AdvH` [A]−AdvH`+1

[A]
∣∣ .

21

48
Approved for Public Release; Distribution Unlimited.

The argument is very similar to the previous hybrid: We note that at this point Ψ̂ and
{ψλ,i,j,τ}λ>`,i,j,τ are completely uniform and can be generated without any knowledge of
s`+1, . . . , sL, ŝ. The adversary B` will sample all vectors s0, . . . , s`−1 himself, and turn to the
LWE oracle for samples in order to generate ψ`,i,j,τ . This will result in Ψ being identical
to H`+1 if the oracle returns As,χ samples, or Ψ being identical to H` if the oracle returns
uniform elements. Once again, sampling a random b and checking whether A’s response is
identical to B completes the argument.

Note that in the hybrid H1, the evaluation key evk = (Ψ, Ψ̂) is completely uniform, and hence
the view of the adversary is like in Regev’s scheme.

• Hybrid H0: Hybrid H0 is identical to H1 except that the vector b in the public key is
chosen uniformly at random from Zmq , rather than being computed as A · s0 + 2e. Under
the DLWEn,q,χ assumption, hybrids H0 and H1 are indistinguishable. Namely, there exists an
adversary B0 that runs in time t+ poly(κ) and whose advantage is

DLWEn,q,χAdv[B0] = 1/2 · |AdvH1 [A]−AdvH0 [A]| .

The adversary B0 gets m samples from the LWE oracle and uses them to generate (A,b). If
the samples come from As,χ, then b is distributed like in H1 and if they are uniform then b
is distributed as in H0. The same testing of A as before implies the argument.

• Hybrid Hrand: Hybrid Hrand is identical to H0 except that the ciphertext is chosen uniformly
at random from Znq × Zq, rather than being computed as (AT · r,bT · r + µ).

We now claim that
|AdvH0 [A]−AdvHrand

[A]| ≤ 2−κ .

This is due to the Leftover hash lemma (Lemma 2.1), since m > (n+ 1) log q + 2κ.

Note that in Hrand, all the elements of both the public key and the ciphertext are uniformly random
and independent of the message. Thus,

AdvHrand
[A] = 0 .

Putting these together, we get that

AdvCPA[A] ≤ 2−κ + 2 ·

(
DLWEk,p,χ̂Adv[B̂] +

L∑
`=0

DLWEn,q,χAdv[B`]

)
,

and the result follows.

Specific Parameters and Worst-Case Hardness. The parameters we require for homomor-
phism (see Theorem 4.2 below) are as follows. We require that q = 2n

ε
for some ε ∈ (0, 1), χ is

n-bounded, p = 16nk log(2q) and χ̂ is k-bounded. In order to achieve the best lattice reduction,
we will choose q as a product of polynomially bounded co-prime numbers. Applying known results
(see Corollary 2.2), DLWEn,q,χ translates into approximating short-vector problems in worst case

22

49
Approved for Public Release; Distribution Unlimited.

n-dimensional lattices to within a factor of Õ
(√
n · 2nε

)
, while DLWEk,p,χ̂ translates to approximat-

ing k-dimensional lattice problems to within Õ
(
n1+ε · k1.5

)
factor.25 These problems are essentially

incomparable as the hardness of the problem increases as the dimension increases on one hand, but
decreases as the approximation factor increases on the other. The best known algorithms solve the

first problem in time (roughly) 2Õ(n1−ε), and the second in time 2Õ(k).
The relation between n and k is determined based on the required homomorphic properties. In

this work, we only prove there there exists a constant C such that setting n = kC/ε implies fully
homomorphic encryption. Given the value of C, setting ε ≈ 1 − 1

C+1 will make the two problems
equally hard (at least based on the current state of the art).

4.4 Homomorphic Properties of SH And BTS

In this section we analyze the homomorphic properties of SH and BTS. Both schemes have es-
sentially the same homomorphic properties but BTS has the additional advantage of having low
decryption complexity (as analyzed in Section 4.5). Thus, BTS would be our main focus, and the
properties of SH will follow as a by-product of our analysis.

We start by formally defining the class of functions for which we prove homomorphism and
proceed by stating the homomorphic properties and proving them.

The Function Class Arith[L, T]. In this section we define the function class for which we prove
somewhat homomorphism of our scheme. Essentially, this is the class of arithmetic circuits over
GF(2) with bounded fan-in and bounded depth, with an additional final “collation”: a high fan-in
addition gate at the last level. We require that the circuit is structured in a canonical “layered”
manner as we describe below.

Definition 4.1. Let L = L(κ), T = T (κ) be functions of the security parameter. The class
Arith[L, T] is the class of arithmetic circuits over GF(2), with {+,×} gates, with the following
structure. Each circuit contains exactly 2L + 1 layers of gates (numbered 1, . . . , 2L + 1 starting
from the input level), gates of layer i + 1 are fed only by gates of layer i. The odd layers contain
only ’+’ gates and the even layers contain only ’×’ gates. The gates at layers 1, . . . , 2L have fan-in
2, while the final addition gate in layer 2L+ 1 is allowed to have fan-in T .

We note that Arith[L, T] conforms with the requirements on the evaluated function imposed by
SH.Eval and BTS.Eval. Indeed, the multiplicative depth of any circuit in Arith[L, T] is exactly L,
and hence, homomorphic evaluation is well defined on any such function.

To motivate the choice of this function class, we first note that any arithmetic circuit of fan-in
2 and depth D can be trivially converted into a circuit in Arith[D, 1].26 This will be useful for
the purpose of bootstrapping. Jumping ahead, the collation gate will be useful for constructing
a private information retrieval protocol, where we will need to evaluate polynomials with a very
large number of monomials and fairly low degree. The collation gate will thus be used for the final
aggregation of monomials.

25We do not mention the specific lattice problem or the specific type of reduction (quantum vs. classical) since, as
one can observe from Corollary 2.2, the approximation factor we get is essentially the same for all problems, and the
state of the art is roughly the same as well.

26One way to do this is to separate each level of the circuit into two levels – an addition level and a multiplication
level – and finally, adding a dummy fan-in-1 addition gate at the top. This gives us a 2D + 1 depth circuit with
alternating addition and multiplication levels, or, in other words, the transformed circuit belongs to Arith[D, 1].

23

50
Approved for Public Release; Distribution Unlimited.

Our goal is now to prove that with the appropriate choice of parameters, SH and BTS are Arith[L, T]-
homomorphic.

Theorem 4.2. Let n = n(κ) ≥ 5 be any polynomial, q ≥ 2n
ε ≥ 3 for some ε ∈ (0, 1) be odd, χ be any

n-bounded distribution, and m = (n+1) log q+2κ. Let k = κ, p = 16nk log(2q) (odd) and χ̂ be any
k-bounded distribution. Then SH and BTS are both Arith[L = Ω(ε log n), T =

√
q]-homomorphic.

Not surprisingly, the homomorphism class depends only on n and not on k. This is because,
recalling the definition of BTS.Eval, the homomorphism property is inherited from SH.Eval. We note
that it is possible to further generalize the class of circuits that we can homomorphically evaluate
(for example, circuits with high multiplicative depth but low multiplicative degree), however since
this is not required for our results, and since the proof will use the exact same tools, we choose not
to further complicate the theorem statement and proof.

To prove the theorem, we introduce a sequence of lemmas as follows. Recall that the encryption
algorithms of both schemes are identical, and that BTS.Eval first calls SH.Eval on all its inputs. We
first analyze the growth of the noise in the execution of SH.Eval in Lemma 4.3 (which will imply
the theorem for SH), and then, in Lemma 4.4, we complete the noise calculation of BTS.Eval, which
will complete the proof of the theorem.

To track the growth of the noise, we define, for any ciphertext c = ((v, w), `) a noise measure
η(c) ∈ Z as follows. We let e ∈ Z be the smallest integer (in absolute value) such that

µ+ 2e = w − 〈v, sd〉 (mod q) ,

and define η(c) , µ+ 2e (note that η(c) is defined over the integers, and not modulo q). We note
that so long as |η(c)| < q/2, the ciphertext is decryptable. We can now bound the error in the
execution by bounding η(cf) of the output ciphertext.

Lemma 4.3. Let n = n(κ) ≥ 5, q = q(κ) ≥ 3, χ be B-bounded and L = L(κ) and let f ∈
Arith[L, T], f : {0, 1}t → {0, 1} (for some t = t(κ)). Then for any input µ1, . . . , µt ∈ {0, 1}, if
we let (pk, evk, sk)←SH.Keygen(1κ), ci←BTS.Encpk(µi) = SH.Encpk(µi) and we further let cf =
((v, w), L)←SH.Evalevk(f, c1, . . . , ct) be the encryption of f(µ1, . . . , µt), it holds that with all but
negligible probability

|η(cf)| ≤ T · (16nB log q)2L .

Proof. We assume that all samples of χ (there are only polynomially many of them) are indeed of
magnitude at most B. This happens with all but exponentially small probability. The remainder
of the analysis is completely deterministic.

We track the growth of noise as the homomorphic evaluation proceeds.

• Fresh ciphertexts. Our starting point is level-0 ciphertexts ((v, w), 0) that are generated
by the encryption algorithm. By definition of the encryption algorithm we have that

w − 〈v, s0〉 = rT · b + µ− rT ·A · s0 = µ+ rT · (b−As0) = µ+ 2rT · e (mod q) .

Since
∣∣µ+ 2rT · e

∣∣ ≤ 1 + 2nB, it follows that

|η(c)| ≤ 2nB + 1 . (10)

24

51
Approved for Public Release; Distribution Unlimited.

• Homomorphic addition gates. When evaluating ’+’ on ciphertexts c1, . . . , ct to obtain
cadd, we just sum their (v, w) values. Therefore

|η(cadd)| ≤
∑
i

|η(ci)| .

• Homomorphic multiplication gates. When evaluating ‘×‘ on c = ((v, w), `), c′ =
((v′, w′), `) to obtain cmult = ((vmult, wmult), `+ 1), we get that by Eq. (4)

wmult − 〈vmult, s`+1〉 = η(c) · η(c′) + 2
∑

0≤i≤j≤n
τ∈{0,...,blog qc}

hi,j,τ · e`+1,i,j,τ (mod q) .

It follows that

|η(cmult)| ≤ |η(c)| ·
∣∣η(c′)

∣∣+ 2 · (n+ 1)(n+ 2)

2
·B(log q + 1) .

If we define
E , max

{
|η(c)| ,

∣∣η(c′)
∣∣ , (n+ 2)

√
B log(2q)

}
,

then |η(cmult)| ≤ 2E2.

Let
E0 = max

{
2nB + 1, (n+ 2)

√
B log(2q)

}
≤ 2nB log q

be an upper bound on |η(c)| of fresh ciphertexts.
Then it holds that a bound E2` on |η(c)| of the outputs of layer 2` (recall that the even layers

contain multiplication gates) is obtained by

E2` ≤ 2(2E2(`−1))
2 .

and therefore, recursively,
E2L ≤ (8E0)2L ≤ (16nB log q)2L .

And after the final collation gate it holds that

|η(cf)| ≤ T · (16nB log q)2L .

We now similarly define η̂(ĉ) for ĉ = (v̂, ŵ) ∈ Zkp × Zp that encrypts µ. We let ê ∈ Z be the
smallest integer (in absolute value) such that

µ+ 2ê = ŵ − 〈v̂, ŝ〉 (mod p) ,

and define η̂(ĉ) , µ + 2ê (note that, as before, η̂ is defined over the integers, and not modulo p).
So long as |η̂(ĉ)| < p/2, BTS.Dec will decrypt ĉ correctly. In the next lemma, we bound |η̂(ĉ)| of
the output of BTS.Eval.

25

52
Approved for Public Release; Distribution Unlimited.

Lemma 4.4. Let n = n(κ) ≥ 5, q = q(κ) ≥ 3, χ be B-bounded and L = L(κ). Let p = p(κ),
k = k(κ) and χ̂ be B̂-bounded. Consider a homomorphic evaluation ĉ←BTS.Evalevk(f, c1, . . . , ct)
and the terms δ1, δ2 defined in Eq. (6) and (7), respectively. Let cf ∈ Znq × Zq × {L} be the
intermediate value returned by the call to SH.Eval. Then with all but negligible probability

|δ1 + δ2| ≤
p

2q
|η(cf)|+ 2nB̂ log(2q) .

Proof. We assume that all samples from χ̂ are indeed of magnitude at most B̂. This happens with
all but exponentially small probability.

By definition (recall that δ1, δ2 have been defined over the rationals), we have that

|δ1| =

∣∣∣∣∣∣
n∑
i=0

blog qc∑
τ=0

hi,τ (êi,τ + ω̂i,τ)

∣∣∣∣∣∣ ≤ (n+ 1) log(2q)(B̂ + 1/2) ,

and

|δ2| =

∣∣∣∣(pq − 1) · µ
2

+
p

q
· e
∣∣∣∣

=

∣∣∣∣pq · µ+ 2e

2
− µ

2

∣∣∣∣
≤ p

2q
|η(cf)|+ 1/2 .

Adding the terms together, the result follows.

We can now finally prove Theorem 4.2.

Proof of Theorem 4.2. Let us consider the homomorphism claim about BTS (the argument for SH
will follow as by-product): A sufficient condition for ciphertext ĉ = (v̂, ŵ) to decrypt correctly is
that ê < p/4. By Lemma 4.4, it is sufficient to prove that

p/4 >
p

2q
|η(cf)|+ 2nB̂ log(2q) ≥ p

2q
|η(cf)|+ p/8 .

Thus it is sufficient to prove that
|η(cf)| < q/4 .

We note that if we prove this, then it also follows that cf is decryptable and hence the claim about
the homomorphism of SH holds as well.

Plugging in the bound from Lemma 4.3, we get

T · (16nB log q)2L < q/4 ,

and plugging in all the parameters and T =
√
q, we need

(16n2+ε)2L < 2n
ε/2/4

which clearly holds for some L = Ω(ε log n).

26

53
Approved for Public Release; Distribution Unlimited.

4.5 Bootstrapping and Full Homomorphism

We now show how to apply Gentry’s bootstrapping theorem (Theorems 3.1, 3.2) to achieve full
homomorphism. In order to do this, we first need to bound the complexity of an augmented
decryption circuit. Since our decryption is essentially a computation of inner product, we bound
the complexity of this operation.

Lemma 4.5. Let (v̂, ŵ) ∈ Zkp × Zp. There exists an arithmetic circuit with fan-in 2 gates and

O(log k + log log p) depth, that on input ŝ ∈ Zkp (in binary representation) computes

(ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2) .

Proof. We let ŝ[i](j) denote the jth bit of the binary representation of ŝ[i] ∈ Zp. We notice that

ŵ − 〈v̂, ŝ〉 = ŵ −
k∑
i=1

ŝ[i]v̂[i] (mod p)

= ŵ −
k∑
i=1

blog pc∑
j=0

ŝ[i](j) · (2j · v̂[i]) (mod p) .

Therefore computing ŵ − 〈v̂, ŝ〉 (mod p) is equivalent to summing up k(1 + blog pc) + 1 numbers
in Zp, and then taking the result modulo p. The summation (over the integers) can be done in
depth O(log k+ log log p). In order to take modulo p, one needs to subtract, in parallel, all possible
multiples of p (there are at most O(k log p) options) and check if the result is in Zp. This requires
depth O(log k + log log p) again. Then a selection tree of depth O(log k + log log p) is used to
choose the correct result. Once this is done, outputting the least significant bit implements the
final modulo 2 operation.

The total depth is thus O(log k + log log p) as required.

We can now apply the bootstrapping theorem to obtain a fully homomorphic scheme.

Lemma 4.6. There exists C ∈ N such that setting n = kC/ε and the rest of the parameters as in
Theorem 4.2, BTS is bootstrappable as per Definition 3.7.

Proof. Lemma 4.5 guarantees that the decryption circuit is in Arith[O(log k), 1] (note that log log p =
o(log k)), since the augmented decryption circuit just adds 1 to the depth, it follows that the aug-
mented decryption circuits are also in Arith[O(log k), 1].

Theorem 4.2, on the other hand, guarantees homomorphism for any Arith[Ω(ε log n),
√
q] func-

tion. Taking a large enough C, it will hold that Arith[O(log k), 1] ⊆ Arith[Ω(ε log n),
√
q] and the

lemma follows.

Finally, we conclude that there exists an LWE based fully homomorphic encryption based on
Theorem 4.1 and Lemma 4.6.

Corollary 4.7. There exists a leveled fully homomorphic encryption based on the DLWEn,q,χ and
DLWEk,p,χ̂ assumptions.

Furthermore, if BTS is weakly circular secure (see Definition 3.8), then there exists a fully
homomorphic encryption based on the same assumptions.

27

54
Approved for Public Release; Distribution Unlimited.

Efficiency of the Scheme. Interestingly, our scheme is comparable to non-homomorphic LWE
based schemes (e.g. Regev’s) in terms of encryption, decryption and ciphertext sizes. Namely, so
long as one doesn’t use the homomorphic properties of the scheme, she does not need to “pay” for it.
To see why this is the case, we observe that our scheme’s secret key has length k log p = O(κ log κ)
and the ciphertext length is (k + 1) log p = O(κ log κ). The decryption algorithm is essentially the
same as Regev’s. As far as encryption is concerned, it may seem more costly. The public key as
we describe it contains (n + 1)((n + 1) log q + 2κ) log q bits, and encryption requires performing
operations over Zq. However, we note that one can think of sampling a public key (Â, b̂) where

Â
$← Zm×kp , b̂ = Âŝ + 2ê ∈ Zmp (where m = ((k + 1) log p + 2κ)). This will enable generating

short ciphertexts that will be “bootstrapped up” during the homomorphic evaluation. If such short
public key is used, then encryption also becomes comparable to Regev’s scheme.

Homomorphic evaluation is where the high price is paid. the evaluation key has sizeO(Ln2 log2 q+
n log q log p) = Õ(n2+2ε). Considering the fact that n = κC/ε, this accumulates to a fairly long eval-
uation key, especially considering that in a leveled scheme, this size increases linearly with the
depth of the circuit to be evaluated. The bright side, as we mention above, is that evk only needs
to be known to the homomorphic evaluator and is not needed for encryption or decryption.

Circuit Privacy. A property that is sometimes desired in the context of fully homomorphic
encryption is circuit privacy. A scheme is circuit private if the output of a homomorphic evaluation,
reveals no information on the evaluated function (other than the output of the function on the
encrypted message). Circuit privacy for our scheme can be achieved by adding additional noise
to the ciphertext cf , right before applying dimension-modulus reduction. Similar techniques were
used in previous schemes and thus we feel that a more elaborate discussion is unnecessary here.

5 LWE-Based Private Information Retrieval

In this section, we present a single-server private information retrieval (PIR) protocol with nearly
optimal communication complexity. First, we present the definitions of PIR in Section 5.1. Then,
in Section 5.2, we show a generic construction of PIR from somewhat homomorphic encryption.
Finally, in Section 5.3, we instantiate the generic construction using our own scheme from Section 4
and analyze its parameters.

5.1 Definitions of Single Server PIR

We define single server private information retrieval in the public-key setting. In this setting, there
is a public key associated with the receiver (who holds the respective secret key). This public
key is independent of the query and of the database, and can be generated and sent (or posted)
before the interaction begins, and may be used many times. Thus, the size of the public key is not
counted towards communication complexity of the scheme. We formalize this by an efficient setup
procedure that runs before the protocol starts and generate this public key.

Letting κ be the security parameter and let N ∈ N be the database size, a PIR protocol
PIR in the public-key setting is defined by a tuple of polynomial-time computable algorithms
(PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) as follows:

0. Setup. The protocol begins in an off-line setup phase that does not depend on the index to
be queried nor on the contents of the database.

28

55
Approved for Public Release; Distribution Unlimited.

The receiver runs the setup algorithm

(params, setupstate)←PIR.Setup(1κ) .

It thus obtains a public set of parameters params (the public key) that is sent to the sender,
and a secret state setupstate that is kept private.

Once the setup phase is complete, the receiver and sender can run the remainder of the
protocol an unbounded number of times.

1. Query. When the receiver wishes to receive the ith element in the database DB[i], it runs

(query, qstate)←PIR.Query(1κ, setupstate, i) .

The query message query is then sent to the sender and qstate is a query-specific secret
information that is kept private.

2. Answer. The sender has access to a database DB ∈ {0, 1}N . Upon receiving the query
message query from the receiver, it runs the “answering” algorithm

resp←PIR.Response(1κ, DB, params, query) .

The response resp is then sent back to the receiver.

3. Decode. Upon receiving resp, the receiver decodes the response by running

x←PIR.Decode(1κ, setupstate, qstate, resp) .

The output x ∈ {0, 1} is the output of the protocol.

We note that while in general a multi-round interactive protocol is required for each database
query, the protocols we present are of the simple form of a query message followed by a response
message. Hence, we chose to present the simple syntax above.

The communication complexity of the protocol is defined to be |query| + |resp|. Namely, the
number of bits being exchanged to transfer a single database element (excluding the setup phase).
We sometime analyze the query length and the response length separately.

Correctness and security are defined as follows.

• Correctness. For all κ ∈ N, DB ∈ {0, 1}∗ where N , |DB|, and i ∈ [N], it holds that

Pr[PIR.Decode(1κ, setupstate, qstate, resp) 6= DB[i]] = negl(κ) ,

where (params, setupstate)←PIR.Setup(1κ), (query, qstate)←PIR.Query(1κ, setupstate, i) and
resp←PIR.Response(1κ, DB, params, query).

• (t, ε)-Privacy. For all κ ∈ N, N ∈ N and for any adversary A running in time t = tκ,N it
holds that

max
i=(i1,...,it),

j=(j1,...,jt)∈[N]t

∣∣Pr[A(params, i, queryi) = 1]− Pr[A(params, j, queryj) = 1]
∣∣ ≤ ε (= εκ,N

)
,

where (params, setupstate)←PIR.Setup(1κ), (queryi` , qstatei`)←PIR.Query(1κ, setupstate, i`)
and (queryj` , qstatej`)←PIR.Query(1κ, setupstate, j`), for all ` ∈ [t].

29

56
Approved for Public Release; Distribution Unlimited.

We note that the definition of privacy above differs from the one usually found in literature. The
standard definition refers to vectors i, j of dimension 1. That is, only allow the adversary to see one
query to the database. A hybrid argument can show that with proper degradation in parameters,
this guarantees some security also for the case of many queries. However in the public-key setting,
where the same public key is used for all queries, this hybrid argument no longer works. Thus,
we must require that the adversary is allowed to view many query strings.27 In fact, one could
consider even stronger attacks in the public-key setting, which is outside the scope of this work.

The definition of privacy deserves some further discussion. We note that we did not define
the ranges of parameters for (t, ε) for which the protocol is considered “private”. Indeed there are
several meaningful ways to define what it means for a protocol to be private. Let us discuss two
options and provide corresponding definitions.

i. The first approach is to argue that the resources of the adversary are similar to those of an
honest server (we can think of an adversary as a “server gone bad”). Thus, in this approach the
adversary can run in polynomial time in N,κ and must still not succeed with non-negligible
probability in N,κ. We say that a scheme is (i)-private if it is (p(κ,N), 1/p(κ,N))-private
for any polynomial p(·, ·).

ii. The second approach argues that the security parameter is the “real” measure for privacy.
Thus the protocol needs to be exponentially secure in the security parameter. Thus a scheme
is (ii)-private if it is (2Ω(κ), 2−Ω(κ))-private.

5.2 PIR via Somewhat Homomorphic and Symmetric Encryption

In this section we describe a generic PIR protocol that uses a somewhat homomorphic encryption
and an arbitrary symmetric encryption as building blocks. This protocol has the useful property
that the somewhat homomorphic scheme is not used to encrypt the index to the database. Rather,
we use the symmetric scheme to encrypt the index, and have the server homomorphically decrypt
it during query evaluation. Thus, the receiver’s query can be rather short.

Our PIR protocol relies on two building blocks – a semantically secure symmetric encryption
scheme SYM = (SYM.Keygen, SYM.Enc,SYM.Dec) over the message space [N], and a somewhat ho-
momorphic encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval). The level of somewhat
homomorphism required for the protocol depends on the symmetric scheme being used (in partic-
ular, the decryption complexity of the symmetric scheme). We recall that in Section 4, we get a
leveled fully homomorphic scheme without relying on any circular security assumptions, this means
that it can be used together with any symmetric scheme. However, a clever selection of the sym-
metric scheme to be used can make our methodology applicable also for somewhat homomorphic
schemes, such as the scheme BTS from Section 4, even without bootstrapping.

We present a protocol PIR = (PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) (as defined in
Section 5.1).

• PIR.Setup(1κ): In the setup procedure, we generate a symmetric key symsk←SYM.Keygen(1κ)
and keys for the somewhat homomorphic scheme (hpk, hevk, hsk)←HE.Keygen(1κ).

27We feel that our definition captures the essence of an attack on a PIR protocol more than the standard one-time
definition, even in the usual setting. As we mention above, converting between the definitions incurs a linear blowup
in the adversary’s advantage so a (t, ε)-private scheme according to the old definition is only (t, tε)-private according
to ours.

30

57
Approved for Public Release; Distribution Unlimited.

The symmetric key is then encrypted using the homomorphic public key to create a ciphertext

csymsk←HE.Enchpk(symsk) .

We note that if HE is bit encryption scheme, then symsk is encrypted bit by bit.

The setup procedure then outputs the public parameters

params:=(hevk, csymsk) ,

and the secret state
setupstate:=(hpk, hsk, symsk) .

• PIR.Query(1κ, setupstate, i): To generate a query string, we just encrypt i using the symmetric
scheme. Recall that setupstate = (hpk, hsk, symsk), then

query←SYM.Encsymsk(i) .

In our scheme, no additional information needs to be saved per query: qstate:=φ.

• PIR.Response(1κ, DB, params, query): Upon receiving a query, a response is computed as fol-
lows. Recall that params = (hevk, csymsk) and consider the function h defined as follows:

h(x) , DB[SYM.Dec(x, query)] ,

namely the function h uses its input as a symmetric key to decrypt the query, and then uses
the plaintext to index the database and retrieve the appropriate value. Note that h(symsk) =
DB[i], where i is the index embedded in query.

While PIR.Response does not know symsk, it does know csymsk and thus can homomorphically
evaluate h(symsk) and set

resp←HE.Evalhevk(h, csymsk) .

Note that resp should correspond to a decryptable ciphertext of DB[i].

• PIR.Decode(1κ, setupstate, qstate, resp): We recall that setupstate = (hpk, hsk, symsk) and
that qstate is null. To decode the answer to the query, we decrypt the ciphertext associated
with resp, outputting

b←HE.Dechsk(resp) .

Correctness and privacy are easily reduced to those of the underlying primitives in the following
lemmas.

Lemma 5.1 (correctness). If our symmetric scheme SYM, and our somewhat homomorphic scheme
HE are correct and if the somewhat homomorphic scheme can evaluate the function h defined above,
then our PIR protocol is correct.

Proof. Since HE is correct with regards to homomorphic evaluation, then with all but negligible
probability b = h(symsk). Since SYM is correct, it follows that h(symsk) = DB[i] with all but
negligible probability.

31

58
Approved for Public Release; Distribution Unlimited.

Lemma 5.2 (privacy). If our somewhat homomorphic scheme is (t · poly(κ), ε1)-CPA secure and
our symmetric scheme is (t+poly(κ), ε2)-CPA secure, then our PIR protocol is (t, 2(ε1+ε2))-private.

Proof. We prove this by a series of hybrids (or experiments). Let A be an adversary that runs in
time t against the privacy of our protocol and has advantage ε. We consider the behavior of A in
a number of hybrids H0, H1, H2 as defined below. We let AdvHi [A] denote the advantage of A in
hybrid Hi.

• Hybrid H0. This is identical to the original privacy game of the scheme. By definition

AdvH0 [A] = ε .

• Hybrid H1. We now change the game so that instead of computing csymsk←HE.Enchpk(symsk)
in PIR.Setup, we will set csymsk←HE.Enchpk(0).

There exists an adversary B for the CPA-security of the somewhat homomorphic scheme that
runs in time t · poly(κ) and whose advantage is

CPAAdv[B] = (1/2) · |AdvH0 [A]−AdvH1 [A]| .

It follows that
|AdvH0 [A]−AdvH1 [A]| ≤ 2ε1 .

• Hybrid H2. We now change the game so that instead of setting query`←SYM.Encsymsk(i`)
in PIR.Query, we will set query`←SYM.Encsymsk(0) for all ` ∈ [1 . . . t].

There exists an adversary C for the CPA-security of the symmetric scheme that runs in time
t+ poly(κ) and whose advantage is

CPAAdv[C] = (1/2) · |AdvH1 [A]−AdvH2 [A]| .

It follows that
|AdvH1 [A]−AdvH2 [A]| ≤ 2ε2 .

However, in H2, the view of the adversary is independent of the queried indices. Therefore

AdvH2 [A] = 0 .

It follows that ε ≤ 2(ε1 + ε2) as required.

Lastly, let us analyze the communication complexity of our protocol. It follows by definition
that the query size is the length of an encryption of {0, 1}dlogNe bits using our symmetric scheme,
and the response is the encryption of a single bit using our somewhat homomorphic scheme.

5.3 Instantiating the Components: The PIR Protocol

We show how to implement the primitives required in Section 5.2 in two different ways.

32

59
Approved for Public Release; Distribution Unlimited.

An Explicit LWE-Based Solution. The first idea is to use an optimized, symmetric-key LWE-
based encryption as the symmetric encryption scheme in the PIR protocol, together with our
scheme BTS as the homomorphic scheme. Specifically, using the same parameters k, p as in our
bootstrappable scheme, we get a symmetric scheme whose decryption is almost identical to that of
our bootstrappable scheme.

In particular, we apply an optimization of [PVW08, ACPS09] to get ciphertexts of length
O(logN) + O(k log k) to encrypt logN bits of the index. Roughly speaking, the optimization is
based on two observations: first, rather than encrypting a single bit using an element of Zp, we can
“pack in” O(log p) bits, if we set the error in the LWE instances to be correspondingly smaller (but
still a 1/poly(k) fraction of p). Secondly, observe that in a symmetric ciphertext (v, w) ∈ Zkp ×Zp,
most of the space is consumed by the vector v. The observation of [PVW08, ACPS09] is that
v can be re-used to encrypt multiple messages using different secret keys s1, . . . , s`. Using these
optimizations, the resulting PIR protocol has query length of O(k log k + logN) bits and response
length O(k log k) for k = poly(κ). The following corollary summarizes the properties of this scheme.

Corollary 5.3 ([PVW08, ACPS09]). Let p, k, χ̂ be as in Theorem 4.2. Then there exists a
DLWEk,p,χ̂-secure symmetric encryption scheme whose ciphertext length is O(k log k + `) for `-bit
messages, and whose decryption circuit has the same depth as that of BTS.Dec.

Recall the analysis of BTS from Section 4. We can prove that the function h can be evaluated
homomorphically.

Lemma 5.4. Let SYM be the scheme from Corollary 5.3, then h(x) , DB[SYM.Decx(query)] is
such that h ∈ Arith[O(log k) + log logN,N].

Proof. We implement h as follows. First, we decrypt the value of query to obtain an index i. Then,
we compute the function

∑
j∈[N] DB[j]·1i=j . The decryption circuit is implemented in depth O(log k)

as in Lemma 4.5. The function 1i=j is implemented using a comparison tree of depth log logN .
Finally, a collation gate of fan-in N is used to compute the final sum. The result follows.

This means that we can choose n to be large enough such that h can be evaluated by BTS.

Theorem 5.5. There exists a PIR protocol with communication complexity O(k log k+logN) based
on the DLWEn,q,χ and DLWEk,p,χ̂ assumptions, for n = poly(k) and the remainder of the parameters
as in Theorem 4.2.

Proof. We choose n such that L = Ω(ε log n) > O(log k)+ log logN and such that
√
q = 2n

ε/2 ≥ N .
This will result in n = poly(k, logN) (recall that the communication complexity depends only on
k). The result follows from Theorem 4.2 and Theorem 4.3.

For the best currently known attacks on LWE (see [MR09, LP11, RS10]), this protocol is
(2Ω(k/polylogk), 2−Ω(k/polylogk))-private. Thus, going back to our definitions in Section 5.1, and setting
k = κ · polylog(κ), we get a (ii)-private PIR scheme with a total communication complexity of
O(logN) + O(κ · polylog(κ)); and a (i)-private scheme with communication complexity logN ·
polyloglog(N) by setting κ = logN · polyloglog(N) = ω(logN).

33

60
Approved for Public Release; Distribution Unlimited.

An Almost Optimal Solution Using Pseudorandom Functions. A second instantiation
aims to bring the (ii)-private communication complexity down to logN + κ · polylog(κ). This can
be done by instantiating the symmetric encryption scheme above with an optimal symmetric en-
cryption scheme with ciphertexts of length logN+κ·polylog(κ). Such a scheme follows immediately
given any pseudo-random function (PRF).

If we want to base security solely on LWE, we can use the LWE-based PRF that is obtained
by applying the GGM transformation [GGM86] to an LWE based pseudorandom generator. Note
that using such instantiation, we cannot argue that h ∈ Arith[L, T] for reasonable L, T (since
the complexity of evaluating the PRF might be high). However, we can use our leveled fully
homomorphic scheme to support the required circuit depth of any function, and in particular the
aforementioned PRF.

The Complexity of Transmitting the Public Parameters. Finally, we note that the pa-
rameters produced in the setup phase of our protocol are of length poly(κ). Thus our proto-
col can be trivially modified to work in a setting without setup, with communication complexity
logN + poly(κ) (under the (ii)-private notion) and polylog(N) (under the (i)-private notion).

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Omer Reingold, editor, TCC, volume
5444 of Lecture Notes in Computer Science, pages 474–495. Springer, 2009.

[Ajt98] Miklós Ajtai. The shortest vector problem in 2 is p-hard for randomized reductions
(extended abstract). In STOC, pages 10–19, 1998.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601–610, 2001.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Theory of Cryptography - TCC’05, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer, 2005.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, 2011. To appear.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

34

61
Approved for Public Release; Distribution Unlimited.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414,
1999.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24–43, 2010. Full
Version in http://eprint.iacr.org/2009/616.pdf.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116–137, 2010.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279, 2011. http:
//eprint.iacr.org/2011/279.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011.

[GHV10a] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryption
and rerandomizable Yao circuits. In CRYPTO, pages 155–172, 2010.

[GHV10b] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryptosys-
tem from LWE. In EUROCRYPT, pages 506–522, 2010.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes
in Computer Science, pages 803–815. Springer, 2005.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In STOC, pages 12–24. ACM, 1989.

35

62
Approved for Public Release; Distribution Unlimited.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
575–594. Springer, 2007.

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982. 10.1007/BF01457454.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in
Computer Science, pages 319–339. Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1–23, 2010. Draft of full version was
provided by the authors.

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic
encryption with d-operand multiplications. In CRYPTO, pages 138–154, 2010.

[Mic00] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput., 30(6):2008–2035, 2000.

[Mic10] Daniele Micciancio. A first glimpse of cryptography’s holy grail. Commun. ACM,
53:96–96, March 2010.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum
Cryptography. Springer, 2009.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.
Schulman, editor, STOC, pages 351–358. ACM, 2010.

[OS07] Rafail Ostrovsky and William E. Skeith III. A survey of single-database private in-
formation retrieval: Techniques and applications. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, Public Key Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 393–411. Springer, 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pages 223–238, 1999.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157
of Lecture Notes in Computer Science, pages 554–571. Springer, 2008.

36

63
Approved for Public Release; Distribution Unlimited.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryp-
tosystems. Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.
org/.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages
377–394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer, 2010.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

NC1. In FOCS, pages 554–567, 1999.

37

64
Approved for Public Release; Distribution Unlimited.

Fully Homomorphic Encryption without Bootstrapping

Zvika Brakerski
Weizmann Institute of Science

Craig Gentry∗

IBM T.J. Watson Research Center

Vinod Vaikuntanathan†

University of Toronto

Abstract

We present a radically new approach to fully homomorphic encryption (FHE) that dramatically im-
proves performance and bases security on weaker assumptions. A central conceptual contribution in our
work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating
arbitrary polynomial-size circuits), without Gentry’s bootstrapping procedure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-LWE
(RLWE) problems that have 2λ security against known attacks. For RLWE, we have:

• A leveled FHE scheme that can evaluate L-level arithmetic circuits with Õ(λ · L3) per-gate com-
putation – i.e., computation quasi-linear in the security parameter. Security is based on RLWE
for an approximation factor exponential in L. This construction does not use the bootstrapping
procedure.

• A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate computation
(which includes the bootstrapping procedure) is Õ(λ2), independent of L. Security is based on the
hardness of RLWE for quasi-polynomial factors (as opposed to the sub-exponential factors needed
in previous schemes).

We obtain similar results for LWE, but with worse performance. We introduce a number of further
optimizations to our schemes. As an example, for circuits of large width – e.g., where a constant fraction
of levels have width at least λ – we can reduce the per-gate computation of the bootstrapped version to
Õ(λ), independent of L, by batching the bootstrapping operation. Previous FHE schemes all required
Ω̃(λ3.5) computation per gate.

At the core of our construction is a much more effective approach for managing the noise level of
lattice-based ciphertexts as homomorphic operations are performed, using some new techniques recently
introduced by Brakerski and Vaikuntanathan (FOCS 2011).

∗Sponsored by the Air Force Research Laboratory (AFRL). Disclaimer: This material is based on research sponsored by DARPA
under agreement number FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Approved for Public Release, Distribution Unlimited.
†This material is based on research sponsored by DARPA under Agreement number FA8750-11-2-0225. All disclaimers as

above apply.

65
Approved for Public Release; Distribution Unlimited.

1 Introduction
Ancient History. Fully homomorphic encryption (FHE) [19, 8] allows a worker to receive encrypted data
and perform arbitrarily-complex dynamically-chosen computations on that data while it remains encrypted,
despite not having the secret decryption key. Until recently, all FHE schemes [8, 6, 20, 10, 5, 4] followed
the same blueprint, namely the one laid out in Gentry’s original construction [8, 7].

The first step in Gentry’s blueprint is to construct a somewhat homomorphic encryption (SWHE) scheme,
namely an encryption scheme capable of evaluating “low-degree” polynomials homomorphically. Starting
with Gentry’s original construction based on ideal lattices [8], there are by now a number of such schemes
in the literature [6, 20, 10, 5, 4, 13], all of which are based on lattices (either directly or implicitly). The
ciphertexts in all these schemes are “noisy”, with a noise that grows slightly during homomorphic addition,
and explosively during homomorphic multiplication, and hence, the limitation of low-degree polynomials.

To obtain FHE, Gentry provided a remarkable bootstrapping theorem which states that given a SWHE
scheme that can evaluate its own decryption function (plus an additional operation), one can transform it
into a “leveled”1 FHE scheme. Bootstrapping “refreshes” a ciphertext by running the decryption function
on it homomorphically, using an encrypted secret key (given in the public key), resulting in a reduced noise.

As if by a strange law of nature, SWHE schemes tend to be incapable of evaluating their own decryption
circuits (plus some) without significant modifications. (We discuss recent exceptions [9, 3] below.) Thus,
the final step is to squash the decryption circuit of the SWHE scheme, namely transform the scheme into one
with the same homomorphic capacity but a decryption circuit that is simple enough to allow bootstrapping.
Gentry [8] showed how to do this by adding a “hint” – namely, a large set with a secret sparse subset that
sums to the original secret key – to the public key and relying on a “sparse subset sum” assumption.

1.1 Efficiency of Fully Homomorphic Encryption
The efficiency of fully homomorphic encryption has been a (perhaps, the) big question following its inven-
tion. In this paper, we are concerned with the per-gate computation overhead of the FHE scheme, defined
as the ratio between the time it takes to compute a circuit homomorphically to the time it takes to compute
it in the clear.2 Unfortunately, FHE schemes that follow Gentry’s blueprint (some of which have actually
been implemented [10, 5]) have fairly poor performance – their per-gate computation overhead is p(λ), a
large polynomial in the security parameter. In fact, we would like to argue that this penalty in performance
is somewhat inherent for schemes that follow this blueprint.

First, the complexity of (known approaches to) bootstrapping is inherently at least the complexity of
decryption times the bit-length of the individual ciphertexts that are used to encrypt the bits of the secret
key. The reason is that bootstrapping involves evaluating the decryption circuit homomorphically – that is,
in the decryption circuit, each secret-key bit is replaced by a (large) ciphertext that encrypts that bit – and
both the complexity of decryption and the ciphertext lengths must each be Ω(λ).

Second, the undesirable properties of known SWHE schemes conspire to ensure that the real cost of
bootstrapping for FHE schemes that follow this blueprint is actually much worse than quadratic. Known
FHE schemes start with a SWHE scheme that can evaluate polynomials of degree D (multiplicative depth
logD) securely only if the underlying lattice problem is hard to 2D-approximate in 2λ time. For this to
be hard, the lattice must have dimension Ω(D · λ).3 Moreover, the coefficients of the vectors used in the

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits that the scheme can evaluate. One
can obtain a “pure” FHE scheme (with a constant-size public key) from a leveled FHE scheme by assuming “circular security” –
namely, that it is safe to encrypt the leveled FHE secret key under its own public key. We will omit the term “leveled” in this work.

2Other measures of efficiency, such ciphertext/key size and encryption/decryption time, are also important. In fact, the schemes
we present in this paper are very efficient in these aspects (as are the schemes in [9, 3]).

3This is because we have lattice algorithms in n dimensions that compute 2n/λ-approximations of short vectors in time 2Õ(λ).

1

66
Approved for Public Release; Distribution Unlimited.

scheme have bit length Ω(D) to allow the ciphertext noise room to expand to 2D. Therefore, the size of
“fresh” ciphertexts (e.g., those that encrypt the bits of the secret key) is Ω̃(D2 ·λ). Since the SWHE scheme
must be “bootstrappable” – i.e., capable of evaluating its own decryption function – D must exceed the
degree of the decryption function. Typically, the degree of the decryption function is Ω(λ). Thus, overall,
“fresh” ciphertexts have size Ω̃(λ3). So, the real cost of bootstrapping – even if we optimistically assume
that the “stale” ciphertext that needs to be refreshed can be decrypted in only Θ(λ)-time – is Ω̃(λ4).

The analysis above ignores a nice optimization by Stehlé and Steinfeld [22], which so far has not been
useful in practice, that uses Chernoff bounds to asymptotically reduce the decryption degree down toO(

√
λ).

With this optimization, the per-gate computation of FHE schemes that follow the blueprint is Ω̃(λ3).4

Recent Deviations from Gentry’s Blueprint, and the Hope for Better Efficiency. Recently, Gentry and
Halevi [9], and Brakerski and Vaikuntanathan [3], independently found very different ways to construct FHE
without using the squashing step, and thus without the sparse subset sum assumption. These schemes are the
first major deviations from Gentry’s blueprint for FHE. Brakerski and Vaikuntanathan [3] manage to base
security entirely on LWE (for sub-exponential approximation factors), avoiding reliance on ideal lattices.

From an efficiency perspective, however, these results are not a clear win over previous schemes. Both of
the schemes still rely on the problematic aspects of Gentry’s blueprint – namely, bootstrapping and an SWHE
scheme with the undesirable properties discussed above. Thus, their per-gate computation is still Ω̃(λ4) (in
fact, that is an optimistic evaluation of their performance). Nevertheless, the techniques introduced in these
recent constructions are very interesting and useful to us. In particular, we use the tools and techniques
introduced by Brakerski and Vaikuntanathan [3] in an essential way to achieve remarkable efficiency gains.

An important, somewhat orthogonal question is the strength of assumptions underlying FHE schemes.
All the schemes so far rely on the hardness of short vector problems on lattices with a subexponential
approximation factor. Can we base FHE on polynomial hardness assumptions?

1.2 Our Results and Techniques
We leverage Brakerski and Vaikuntanathan’s techniques [3] to achieve asymptotically very efficient FHE
schemes. Also, we base security on lattice problems with quasi-polynomial approximation factors. (Previ-
ous schemes all used sub-exponential factors.) In particular, we have the following theorem (informal):

• Assuming Ring LWE for an approximation factor exponential in L, we have a leveled FHE scheme
that can evaluate L-level arithmetic circuits without using bootstrapping. The scheme has Õ(λ · L3)
per-gate computation (namely, quasi-linear in the security parameter).

• Alternatively, assuming Ring LWE is hard for quasi-polynomial factors, we have a leveled FHE
scheme that uses bootstrapping as an optimization, where the per-gate computation (which includes
the bootstrapping procedure) is Õ(λ2), independent of L.

We can alternatively base security on LWE, albeit with worse performance. We now sketch our main idea
for boosting efficiency.

In the BV scheme [3], like ours, a ciphertext vector c ∈ Rn (where R is a ring, and n is the “dimension”
of the vector) that encrypts a message m satisfies the decryption formula m =

[
[〈c, s〉]q

]
2
, where s ∈ Rn is

the secret key vector, q is an odd modulus, and [·]q denotes reduction into the range (−q/2, q/2). This is an
abstract scheme that can be instantiated with either LWE or Ring LWE – in the LWE instantiation, R is the
ring of integers mod q and n is a large dimension, whereas in the Ring LWE instantiation, R is the ring of
polynomials over integers mod q and an irreducible f(x), and the dimension n = 1.

4We note that bootstrapping lazily – i.e., applying the refresh procedure only at a 1/k fraction of the circuit levels for k > 1 –
cannot reduce the per-gate computation further by more than a logarithmic factor for schemes that follow this blueprint, since these
SWHE schemes can evaluate only log multiplicative depth before it becomes absolutely necessary to refresh – i.e., k = O(log λ).

2

67
Approved for Public Release; Distribution Unlimited.

We will call [〈c, s〉]q the noise associated to ciphertext c under key s. Decryption succeeds as long as
the magnitude of the noise stays smaller than q/2. Homomorphic addition and multiplication increase the
noise in the ciphertext. Addition of two ciphertexts with noise at most B results in a ciphertext with noise at
most 2B, whereas multiplication results in a noise as large as B2. 5 We will describe a noise-management
technique that keeps the noise in check by reducing it after homomorphic operations, without bootstrapping.

The key technical tool we use for noise management is the “modulus switching” technique developed by
Brakerski and Vaikuntanathan [3]. Jumping ahead, we note that while they use modulus switching in “one
shot” to obtain a small ciphertext (to which they then apply Gentry’s bootstrapping procedure), we will use
it (iteratively, gradually) to keep the noise level essentially constant, while stingily sacrificing modulus size
and gradually sacrificing the remaining homomorphic capacity of the scheme.

Modulus Switching. The essence of the modulus-switching technique is captured in the following lemma.
In words, the lemma says that an evaluator, who does not know the secret key s but instead only knows a
bound on its length, can transform a ciphertext c modulo q into a different ciphertext modulo p while
preserving correctness – namely, [〈c′, s〉]p = [〈c, s〉]q mod 2. The transformation from c to c′ involves
simply scaling by (p/q) and rounding appropriately! Most interestingly, if s is short and p is sufficiently
smaller than q, the “noise” in the ciphertext actually decreases – namely, |[〈c′, s〉]p| < |[〈c, s〉]q|.

Lemma 1. Let p and q be two odd moduli, and let c be an integer vector. Define c′ to be the integer vector
closest to (p/q) · c such that c′ = c mod 2. Then, for any s with |[〈c, s〉]q| < q/2− (q/p) · `1(s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod 2 and |[

〈
c′, s

〉
]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

where `1(s) is the `1-norm of s.

Proof. For some integer k, we have [〈c, s〉]q = 〈c, s〉−kq. For the same k, let ep = 〈c′, s〉−kp ∈ Z. Since
c′ = c and p = q modulo 2, we have ep = [〈c, s〉]q mod 2. Therefore, to prove the lemma, it suffices to
prove that ep = [〈c′, s〉]p and that it has small enough norm. We have ep = (p/q)[〈c, s〉]q+〈c′ − (p/q)c, s〉,
and therefore |ep| ≤ (p/q)[〈c, s〉]q + `1(s) < p/2. The latter inequality implies ep = [〈c′, s〉]p.

Amazingly, this trick permits the evaluator to reduce the magnitude of the noise without knowing the
secret key, and without bootstrapping. In other words, modulus switching gives us a very powerful and
lightweight way to manage the noise in FHE schemes! In [3], the modulus switching technique is bundled
into a “dimension reduction” procedure, and we believe it deserves a separate name and close scrutiny. It is
also worth noting that our use of modulus switching does not require an “evaluation key”, in contrast to [3].

Our New Noise Management Technique. At first, it may look like modulus switching is not a very
effective noise management tool. If p is smaller than q, then of course modulus switching may reduce
the magnitude of the noise, but it reduces the modulus size by essentially the same amount. In short, the
ratio of the noise to the “noise ceiling” (the modulus size) does not decrease at all. Isn’t this ratio what
dictates the remaining homomorphic capacity of the scheme, and how can potentially worsening (certainly
not improving) this ratio do anything useful?

In fact, it’s not just the ratio of the noise to the “noise ceiling” that’s important. The absolute magnitude
of the noise is also important, especially in multiplications. Suppose that q ≈ xk, and that you have two
mod-q SWHE ciphertexts with noise of magnitude x. If you multiply them, the noise becomes x2. After
4 levels of multiplication, the noise is x16. If you do another multiplication at this point, you reduce the
ratio of the noise ceiling (i.e. q) to the noise level by a huge factor of x16 – i.e., you reduce this gap very

5The noise after multiplication is in fact a bit larger than B2 due to the additional noise from the BV “re-linearization” process.
For the purposes of this exposition, it is best to ignore this minor detail.

3

68
Approved for Public Release; Distribution Unlimited.

fast. Thus, the actual magnitude of the noise impacts how fast this gap is reduced. After only log k levels of
multiplication, the noise level reaches the ceiling.

Now, consider the following alternative approach. Choose a ladder of gradually decreasing moduli
{qi ≈ q/xi} for i < k. After you multiply the two mod-q ciphertexts, switch the ciphertext to the smaller
modulus q1 = q/x. As the lemma above shows, the noise level of the new ciphertext (now with respect to
the modulus q1) goes from x2 back down to x. (Let’s suppose for now that `1(s) is small in comparison to x
so that we can ignore it.) Now, when we multiply two ciphertexts (wrt modulus q1) that have noise level x,
the noise again becomes x2, but then we switch to modulus q2 to reduce the noise back to x. In short, each
level of multiplication only reduces the ratio (noise ceiling)/(noise level) by a factor of x (not something like
x16). With this new approach, we can perform about k (not just log k) levels of multiplication before we
reach the noise ceiling. We have just increased (without bootstrapping) the number of multiplicative levels
that we can evaluate by an exponential factor!

This exponential improvement is enough to achieve leveled FHE without bootstrapping. For any poly-
nomial k, we can evaluate circuits of depth k. The performance of the scheme degrades with k – e.g., we
need to set q = q0 to have bit length proportional to k – but it degrades only polynomially with k.

Our main observation – the key to obtaining FHE without bootstrapping – is so simple that it is easy
to miss and bears repeating: We get noise reduction automatically via modulus switching, and by carefully
calibrating our ladder of moduli {qi}, one modulus for each circuit level, to be decreasing gradually, we
can keep the noise level very small and essentially constant from one level to the next while only gradually
sacrificing the size of our modulus until the ladder is used up. With this approach, we can efficiently evaluate
arbitrary polynomial-size arithmetic circuits without resorting to bootstrapping.

Performance-wise, this scheme trounces previous (bootstrapping-based) FHE schemes (at least asymp-
totically; the concrete performance remains to be seen). Instantiated with ring-LWE, it can evaluate L-level
arithmetic circuits with per-gate computation Õ(λ · L3) – i.e., computation quasi-linear in the security pa-
rameter. Since the ratio of the largest modulus (namely, q ≈ xL) to the noise (namely, x) is exponential in
L, the scheme relies on the hardness of approximating short vectors to within an exponential in L factor.

Bootstrapping for Better Efficiency and Better Assumptions. The per-gate computation of our FHE-
without-bootstrapping scheme depends polynomially on the number of levels in the circuit that is being
evaluated. While this approach is efficient (in the sense of “polynomial time”) for polynomial-size circuits,
the per-gate computation may become undesirably high for very deep circuits. So, we re-introduce boot-
strapping as an optimization6 that makes the per-gate computation independent of the circuit depth, and that
(if one is willing to assume circular security) allows homomorphic operations to be performed indefinitely
without needing to specify in advance a bound on the number of circuit levels. The main idea is that to
compute arbitrary polynomial-depth circuits, it is enough to compute the decryption circuit of the scheme
homomorphically. Since the decryption circuit has depth ≈ log λ, the largest modulus we need has only
Õ(λ) bits, and therefore we can base security on the hardness of lattice problems with quasi-polynomial
factors. Since the decryption circuit has size Õ(λ) for the RLWE-based instantiation, the per-gate computa-
tion becomes Õ(λ2) (independent of L). See Section 5 for details.

Other Optimizations. We also consider batching as an optimization. The idea behind batching is to pack
multiple plaintexts into each ciphertext so that a function can be homomorphically evaluated on multiple
inputs with approximately the same efficiency as homomorphically evaluating it on one input.

6We are aware of the seeming irony of trumpeting “FHE without bootstrapping” and then proposing bootstrapping “as an opti-
mization”. First, FHE without bootstrapping is exciting theoretically, independent of performance. Second, whether bootstrapping
actually improves performance depends crucially on the number of levels in the circuit one is evaluating. For example. for circuits
of depth sub-polynomial in the security parameter, this “optimization” will not improve performance asymptotically.

4

69
Approved for Public Release; Distribution Unlimited.

An especially interesting case is batching the decryption function so that multiple ciphertexts – e.g., all
of the ciphertexts associated to gates at some level in the circuit – can be bootstrapped simultaneously very
efficiently. For circuits of large width (say, width λ), batched bootstrapping reduces the per-gate computation
in the RLWE-based instantiation to Õ(λ), independent of L. We give the details in Section 5.

1.3 Other Related Work
We note that prior to Gentry’s construction, there were already a few interesting homomorphic encryp-
tions schemes that could be called “somewhat homomorphic”, including Boneh-Goh-Nissim [2] (evaluates
quadratic formulas using bilinear maps), (Aguilar Melchor)-Gaborit-Herranz [15] (evaluates constant degree
polynomials using lattices) and Ishai-Paskin [12] (evaluates branching programs).

2 Preliminaries
Basic Notation. In our construction, we will use a ring R. In our concrete instantiations, we prefer to use
either R = Z (the integers) or the polynomial ring R = Z[x]/(xd + 1), where d is a power of 2.

We write elements ofR in lowercase – e.g., r ∈ R. We write vectors in bold – e.g., v ∈ Rn. The notation
v[i] refers to the i-th coefficient of v. We write the dot product of u,v ∈ Rn as 〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈

R. When R is a polynomial ring, ‖r‖ for r ∈ R refers to the Euclidean norm of r’s coefficient vector. We
say γR = max{‖a · b‖/‖a‖‖b‖ : a, b ∈ R} is the expansion factor of R. For R = Z[x]/(xd + 1), the value
of γR is at most

√
d by Cauchy-Schwarz.

For integer q, we use Rq to denote R/qR. Sometimes we will use abuse notation and use R2 to denote
the set of R-elements with binary coefficients – e.g., when R = Z, R2 may denote {0, 1}, and when R is a
polynomial ring, R2 may denote those polynomials that have 0/1 coefficients. When it is obvious that q is
not a power of two, we will use dlog qe to denote 1 + blog qc. For a ∈ R, we use the notation [a]q to refer
to a mod q, with coefficients reduced into the range (−q/2, q/2].

Leveled Fully Homomorphic Encryption. Most of this paper will focus on the construction of a leveled
fully homomorphic scheme, in the sense that the parameters of the scheme depend (polynomially) on the
depth of the circuits that the scheme is capable of evaluating.

Definition 1 (Leveled Fully Homomorphic Encryption [7]). We say that a family of homomorphic encryption
schemes {E(L) : L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same decryption
circuit, E(L) compactly evaluates all circuits of depth at most L (that use some specified complete set of
gates), and the computational complexity of E(L)’s algorithms is polynomial (the same polynomial for all
L) in the security parameter, L, and (in the case of the evaluation algorithm) the size of the circuit.

2.1 The Learning with Errors (LWE) Problem
The learning with errors (LWE) problem was introduced by Regev [17]. It is defined as follows.

Definition 2 (LWE). For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2 be an
integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Zn+1

q . In the second distribution,
one first draws s ← Znq uniformly and then samples (ai, bi) ∈ Zn+1

q by sampling ai ← Znq uniformly,
ei ← χ, and setting bi = 〈a, s〉+ ei. The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Regev [17] proved that for certain moduli q and Gaussian error distributions χ, the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a quantum algorithm. We state
this result using the terminology of B-bounded distributions, which is a distribution over the integers where
the magnitude of a sample is bounded with high probability. A definition follows.

5

70
Approved for Public Release; Distribution Unlimited.

Definition 3 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the integers, is
called B-bounded if

Pr
e←χn

[|e| > B] = negl(n) .

We can now state Regev’s worst-case to average-case reduction for LWE.

Theorem 1 (Regev [17]). For any integer dimension n, prime integer q = q(n), andB = B(n) ≥ 2n, there
is an efficiently samplable B-bounded distribution χ such that if there exists an efficient (possibly quan-
tum) algorithm that solves LWEn,q,χ, then there is an efficient quantum algorithm for solving Õ(qn1.5/B)-
approximate worst-case SIVP and gapSVP.

Peikert [16] de-quantized Regev’s results to some extent – that is, he showed the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a classical algorithm. (See [16]
for a precise statement of these results.)

Applebaum et al. [1] showed that if LWE is hard for the above distribution of s, then it is also hard when
s’s coefficients are sampled according to the noise distribution χ.

2.2 The Ring Learning with Errors (RLWE) Problem
The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev [14].
We will use an simplified special-case version of the problem that is easier to work with [18, 4].

Definition 4 (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of 2. Let
q = q(λ) ≥ 2 be an integer. LetR = Z[x]/(f(x)) and letRq = R/qR. Let χ = χ(λ) be a distribution over
R. The RLWEd,q,χ problem is to distinguish the following two distributions: In the first distribution, one
samples (ai, bi) uniformly from R2

q . In the second distribution, one first draws s ← Rquniformly and then
samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting bi = ai · s+ ei. The RLWEd,q,χ
assumption is that the RLWEd,q,χ problem is infeasible.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over ideal
lattices can be reduced to it, specifically:

Theorem 2 (Lyubashevsky-Peikert-Regev [14]). For any d that is a power of 2, ring R = Z[x]/(xd + 1),
prime integer q = q(d) = 1 mod d, and B = ω(

√
d log d), there is an efficiently samplable distribution χ

that outputs elements of R of length at most B with overwhelming probability, such that if there exists an
efficient algorithm that solves RLWEd,q,χ, then there is an efficient quantum algorithm for solving dω(1) ·
(q/B)-approximate worst-case SVP for ideal lattices over R.

Typically, to use RLWE with a cryptosystem, one chooses the noise distribution χ according to a Gaus-
sian distribution, where vectors sampled according to this distribution have length only poly(d) with over-
whelming probability. This Gaussian distribution may need to be “ellipsoidal” for certain reductions to go
through [14]. It has been shown for RLWE that one can equivalently assume that s is alternatively sampled
from the noise distribution χ [14].

2.3 The General Learning with Errors (GLWE) Problem
The learning with errors (LWE) problem and the ring learning with errors problem RLWE are syntactically
identical, aside from using different rings (Z versus a polynomial ring) and different vector dimensions over
those rings (n = poly(λ) for LWE, but n is constant – namely, 1 – in the RLWE case). To simplify our
presentation, we define a “General Learning with Errors (GLWE)” Problem, and describe a single “GLWE-
based” FHE scheme, rather than presenting essentially the same scheme twice, once for each of our two
concrete instantiations.

6

71
Approved for Public Release; Distribution Unlimited.

Definition 5 (GLWE). For security parameter λ, let n = n(λ) be an integer dimension, let f(x) = xd + 1
where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime integer, letR = Z[x]/(f(x)) andRq = R/qR,
and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Rn+1

q . In the second distribution,
one first draws s ← Rnq uniformly and then samples (ai, bi) ∈ Rn+1

q by sampling ai ← Rnq uniformly,
ei ← χ, and setting bi = 〈ai, s〉 + ei. The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is
infeasible.

LWE is simply GLWE instantiated with d = 1. RLWE is GLWE instantiated with n = 1. Interestingly, as
far as we know, instances of GLWE between these extremes have not been explored. One would suspect
that GLWE is hard for any (n, d) such that n · d = Ω(λ log(q/B)), where B is a bound (with overwhelming
probability) on the length of elements output by χ. For fixed n ·d, perhaps GLWE gradually becomes harder
as n increases (if it is true that general lattice problems are harder than ideal lattice problems), whereas
increasing d is probably often preferable for efficiency.

If q is much larger than B, the associated GLWE problem is believed to be easier (i.e., there is less
security). Previous FHE schemes required q/B to be sub-exponential in n or d to give room for the noise
to grow as homomorphic operations (especially multiplication) are performed. In our FHE scheme without
bootstrapping, q/B will be exponential in the number of circuit levels to be evaluated. However, since
the decryption circuit can be evaluated in logarithmic depth, the bootstrapped version of our scheme will
only need q/B to be quasi-polynomial, and we thus base security on lattice problems for quasi-polynomial
approximation factors.

The GLWE assumption implies that the distribution {(ai, 〈ai, s〉+t ·ei)} is computational indistinguish-
able from uniform for any t relatively prime to q. This fact will be convenient for encryption, where, for
example, a message m may be encrypted as (a, 〈a, s〉+ 2e+m), and this fact can be used to argue that the
second component of this message is indistinguishable from random.

3 (Leveled) FHE without Bootstrapping: Our Construction
The plan of this section is to present our leveled FHE-without-bootstrapping construction in modular steps.
First, we describe a plain GLWE-based encryption scheme with no homomorphic operations. Next, we
describe variants of the “relinearization” and “dimension reduction” techniques of [3]. Finally, in Section
3.4, we lay out our construction of FHE without bootstrapping.

3.1 Basic Encryption Scheme
We begin by presenting a basic GLWE-based encryption scheme with no homomorphic operations. Let λ be
the security parameter, representing 2λ security against known attacks. (λ = 100 is a reasonable value.)

Let R = R(λ) be a ring. For example, one may use R = Z if one wants a scheme based on (standard)
LWE, or one may useR = Z[x]/f(x) where (e.g.) f(x) = xd+1 and d = d(λ) is a power of 2 if one wants
a scheme based on RLWE. Let the “dimension” n = n(λ), an odd modulus q = q(λ), a “noise” distribution
χ = χ(λ) over R, and an integer N = N(λ) be additional parameters of the system. These parameters
come from the GLWE assumption, except for N , which is set to be larger than (2n + 1) log q. Note that
n = 1 in the RLWE instantiation. For simplicity, assume for now that the plaintext space is R2 = R/2R,
though larger plaintext spaces are certainly possible.

We go ahead and stipulate here – even though it only becomes important when we introduce homomor-
phic operations – that the noise distribution χ is set to be as small as possible. Specifically, to base security
on LWE or GLWE, one must use (typically Gaussian) noise distributions with deviation at least some sub-
linear function of d or n, and we will let χ be a noise distribution that barely satisfies that requirement. To

7

72
Approved for Public Release; Distribution Unlimited.

achieve 2λ security against known lattice attacks, one must have n ·d = Ω(λ · log(q/B)) whereB is a bound
on the length of the noise. Since n or d depends logarithmically on q, and since the distribution χ (and hence
B) depends sub-linearly on n or d, the distribution χ (and hence B) depends sub-logarithmically on q. This
dependence is weak, and one should think of the noise distribution as being essentially independent of q.

Here is a basic GLWE-based encryption scheme with no homomorphic operations:

Basic GLWE-Based Encryption Scheme:

• E.Setup(1λ, 1µ, b): Use the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-
based scheme (where d = 1) or a RLWE-based scheme (where n = 1). Choose a µ-bit modulus q and
choose the other parameters (d = d(λ, µ, b), n = n(λ, µ, b), N = d(2n + 1) log qe, χ = χ(λ, µ, b))
appropriately to ensure that the scheme is based on a GLWE instance that achieves 2λ security against
known attacks. Let R = Z[x]/(xd + 1) and let params = (q, d, n,N, χ).

• E.SecretKeyGen(params): Draw s′ ← χn. Set sk = s← (1, s′[1], . . . , s′[n]) ∈ Rn+1
q .

• E.PublicKeyGen(params, sk): Takes as input a secret key sk = s = (1, s′) with s[0] = 1 and
s′ ∈ Rnq and the params. Generate matrix A′ ← RN×nq uniformly and a vector e ← χN and set
b← A′s′+ 2e. Set A to be the (n+ 1)-column matrix consisting of b followed by the n columns of
−A′. (Observe: A · s = 2e.) Set the public key pk = A.

• E.Enc(params, pk,m): To encrypt a message m ∈ R2, set m ← (m, 0, . . . , 0) ∈ Rn+1
q , sample

r← RN2 and output the ciphertext c←m + AT r ∈ Rn+1
q .

• E.Dec(params, sk, c): Output m← [[〈c, s〉]q]2.

Correctness is easy to see, and it is straightforward to base security on special cases (depending on the
parameters) of the GLWE assumption (and one can find such proofs of special cases in prior work).

3.2 Key Switching (Dimension Reduction)
We start by reminding the reader that in the basic GLWE-based encryption scheme above, the decryption
equation for a ciphertext c that encrypts m under key s can be written as m = [[Lc(s)]q]2 where Lc(x) is a
ciphertext-dependent linear equation over the coefficients of x given by Lc(x) = 〈c,x〉.

Suppose now that we have two ciphertexts c1 and c2, encrypting m1 and m2 respectively under the
same secret key s. The way homomorphic multiplication is accomplished in [3] is to consider the quadratic
equation Qc1,c2(x)← Lc1(x) ·Lc2(x). Assuming the noises of the initial ciphertexts are small enough, we
obtain m1 · m2 = [Qc1,c2(s)]q]2, as desired. If one wishes, one can view Qc1,c2(x) as a linear equation
Llongc1,c2(x⊗x) over the coefficients of x⊗x – that is, the tensoring of x with itself – where x⊗x’s dimension
is roughly the square of x’s. Using this interpretation, the ciphertext represented by the coefficients of the
linear equation Llong is decryptable by the long secret key s1 ⊗ s1 via the usual dot product. Of course, we
cannot continue increasing the dimension like this indefinitely and preserve efficiency.

Thus, Brakerski and Vaikuntanathan convert the long ciphertext represented by the linear equation Llong

and decryptable by the long tensored secret key s1 ⊗ s1 into a shorter ciphertext c2 that is decryptable by a
different secret key s2. (The secret keys need to be different to avoid a “circular security” issue). Encryptions
of s1 ⊗ s1 under s2 are provided in the public key as a “hint” to facilitate this conversion.

We observe that Brakerski and Vaikuntanathan’s relinearization / dimension reduction procedures are
actually quite a bit more general. They can be used to not only reduce the dimension of the ciphertext, but
more generally, can be used to transform a ciphertext c1 that is decryptable under one secret key vector s1 to

8

73
Approved for Public Release; Distribution Unlimited.

a different ciphertext c2 that encrypts the same message, but is now decryptable under a second secret key
vector s2. The vectors c2, s2 may not necessarily be of lower degree or dimension than c1, s1.

Below, we review the concrete details of Brakerski and Vaikuntanathan’s key switching procedures. The
procedures will use some subroutines that, given two vectors c and s, “expand” these vectors to get longer
(higher-dimensional) vectors c′ and s′ such that 〈c′, s′〉 = 〈c, s〉 mod q. We describe these subroutines first.

• BitDecomp(x ∈ Rnq , q) decomposes x into its bit representation. Namely, write x =
∑blog qc

j=0 2j · uj ,
where all of the vectors uj are in Rn2 , and output (u0,u1, . . . ,ublog qc) ∈ R

n·dlog qe
2 .

• Powersof2(x ∈ Rnq , q) outputs the vector (x, 2 · x, . . . , 2blog qc · x) ∈ Rn·dlog qeq .

If one knows a priori that x has coefficients in [0, B] for B � q, then BitDecomp can be optimized in
the obvious way to output a shorter decomposition in Rn·dlogBe2 . Observe that:

Lemma 2. For vectors c, s of equal length, we have 〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 mod q.

Proof.

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
j=0

〈
uj , 2

j · s
〉

=

blog qc∑
j=0

〈
2j · uj , s

〉
=

〈blog qc∑
j=0

2j · uj , s

〉
= 〈c, s〉 .

We remark that this obviously generalizes to decompositions wrt bases other than the powers of 2.
Now, key switching consists of two procedures: first, a procedure SwitchKeyGen(s1, s2, n1, n2, q),

which takes as input the two secret key vectors as input, the respective dimensions of these vectors, and
the modulus q, and outputs some auxiliary information τs1→s2 that enables the switching; and second, a
procedure SwitchKey(τs1→s2 , c1, n1, n2, q), that takes this auxiliary information and a ciphertext encrypted
under s1 and outputs a new ciphertext c2 that encrypts the same message under the secret key s2. (Below,
we often suppress the additional arguments n1, n2, q.)

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q):

1. Run A← E.PublicKeyGen(s2, N) for N = n1 · dlog qe.

2. Set B← A + Powersof2(s1) (Add Powersof2(s1) ∈ RNq to A’s first column.) Output τs1→s2 = B.

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)
T ·B ∈ Rn2

q .

Note that, in SwitchKeyGen, the matrix A basically consists of encryptions of 0 under the key s2. Then,
pieces of the key s1 are added to these encryptions of 0. Thus, in some sense, the matrix B consists of
encryptions of pieces of s1 (in a certain format) under the key s2. We now establish that the key switching
procedures are meaningful, in the sense that they preserve the correctness of decryption under the new key.

Lemma 3. [Correctness] Let s1, s2, q, n1, n2,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let
A · s2 = 2e2 ∈ RNq . Let c1 ∈ Rn1

q and c2 ← SwitchKey(τs1→s2 , c1). Then,

〈c2, s2〉 = 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q

9

74
Approved for Public Release; Distribution Unlimited.

Proof.

〈c2, s2〉 = BitDecomp(c1)
T ·B · s2

= BitDecomp(c1)
T · (2e2 + Powersof2(s1))

= 2 〈BitDecomp(c1), e2〉+ 〈BitDecomp(c1),Powersof2(s1)〉
= 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉

Note that the dot product of BitDecomp(c1) and e2 is small, since BitDecomp(c1) is in RN2 . Overall, we
have that c2 is a valid encryption of m under key s2, with noise that is larger by a small additive factor.

3.3 Modulus Switching
Suppose c is a valid encryption of m under s modulo q (i.e., m = [[〈c, s〉]q]2), and that s is a short vector.
Suppose also that c′ is basically a simple scaling of c – in particular, c′ is the R-vector closest to (p/q) · c
such that c′ = c mod 2. Then, it turns out (subject to some qualifications) that c′ is a valid encryption of
m under s modulo p using the usual decryption equation – that is, m = [[〈c′, s〉]p]2! In other words, we
can change the inner modulus in the decryption equation – e.g., to a smaller number – while preserving the
correctness of decryption under the same secret key! The essence of this modulus switching idea, a variant
of Brakerski and Vaikuntanathan’s modulus reduction technique, is formally captured in Lemma 4 below.

Definition 6 (Scale). For integer vector x and integers q > p > m, we define x′ ← Scale(x, q, p, r) to be
the R-vector closest to (p/q) · x that satisfies x′ = x mod r.

Definition 7 (`(R)
1 norm). The (usual) norm `1(s) over the reals equals

∑
i ‖s[i]‖. We extend this to our

ring R as follows: `(R)
1 (s) for s ∈ Rn is defined as

∑
i ‖s[i]‖.

Lemma 4. Let d be the degree of the ring (e.g., d = 1 when R = Z). Let q > p > r be positive
integers satisfying q = p = 1 mod r. Let c ∈ Rn and c′ ← Scale(c, q, p, r). Then, for any s ∈ Rn with
‖[〈c, s〉]q‖ < q/2− (q/p) · (r/2) ·

√
d · γ(R) · `(R)

1 (s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod r and ‖[

〈
c′, s

〉
]p‖ < (p/q) · ‖[〈c, s〉]q‖+ (r/2) ·

√
d · γ(R) · `(R)

1 (s)

Proof. (Lemma 4) We have

[〈c, s〉]q = 〈c, s〉 − kq

for some k ∈ R. For the same k, let

ep =
〈
c′, s

〉
− kp ∈ R

Note that ep = [〈c′, s〉]p mod p. We claim that ‖ep‖ is so small that ep = [〈c′, s〉]p. We have:

‖ep‖ = ‖ − kp+ 〈(p/q) · c, s〉+
〈
c′ − (p/q) · c, s

〉
‖

≤ ‖ − kp+ 〈(p/q) · c, s〉 ‖+ ‖
〈
c′ − (p/q) · c, s

〉
‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) ·
n∑
j=1

‖c′[j]− (p/q) · c[j]‖ · ‖s[j]‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·
√
d · `(R)

1 (s)

< p/2

Furthermore, modulo r, we have [〈c′, s〉]p = ep = 〈c′, s〉 − kp = 〈c, s〉 − kq = [〈c, s〉]q.

10

75
Approved for Public Release; Distribution Unlimited.

The lemma implies that an evaluator, who does not know the secret key but instead only knows a bound
on its length, can potentially transform a ciphertext c that encrypts m under key s for modulus q – i.e., m =
[[〈c, s〉]q]r – into a ciphertext c that encrypts m under the same key s for modulus p – i.e., m = [[〈c, s〉]p]r.
Specifically, the following corollary follows immediately from Lemma 4.

Corollary 1. Let p and q be two odd moduli. Suppose c is an encryption of bitm under key s for modulus q –
i.e., m = [[〈c, s〉]q]r. Moreover, suppose that s is a fairly short key and the “noise” eq ← [〈c, s〉]q has small
magnitude – precisely, assume that ‖eq‖ < q/2−(q/p)·(r/2)·

√
d·γ(R)·`(R)

1 (s). Then c′ ← Scale(c, q, p, r)
is an encryption of of bit m under key s for modulus p – i.e., m = [[〈c, s〉]p]r. The noise ep = [〈c′, s〉]p of
the new ciphertext has magnitude at most (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·

√
d · `(R)

1 (s).

Amazingly, assuming p is smaller than q and s has coefficients that are small in relation to q, this trick
permits the evaluator to reduce the magnitude of the noise without knowing the secret key! (Of course, this
is also what Gentry’s bootstrapping transformation accomplishes, but in a much more complicated way.)

3.4 (Leveled) FHE Based on GLWE without Bootstrapping
We now present our FHE scheme. Given the machinery that we have described in the previous subsections,
the scheme itself is remarkably simple.

In our scheme, we will use a parameter L indicating the number of levels of arithmetic circuit that we
want our FHE scheme to be capable of evaluating. Note that this is an exponential improvement over prior
schemes, that would typically use a parameter d indicating the degree of the polynomials to be evaluated.

(Note: the linear polynomial Llong, used below, is defined in Section 3.2.)

Our FHE Scheme without Bootstrapping:

• FHE.Setup(1λ, 1L, b): Takes as input the security parameter, a number of levels L, and a bit b. Use
the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-based scheme (where
d = 1) or a RLWE-based scheme (where n = 1). Let µ = µ(λ, L, b) = θ(log λ + logL) be a
parameter that we will specify in detail later. For j = L (input level of circuit) to 0 (output level), run
paramsj ← E.Setup(1λ, 1(j+1)·µ, b) to obtain a ladder of decreasing moduli from qL ((L + 1) · µ
bits) down to q0 (µ bits). For j = L− 1 to 0, replace the value of dj in paramsj with d = dL and the
distribution χj with χ = χL. (That is, the ring dimension and noise distribution do not depend on the
circuit level, but the vector dimension nj still might.)

• FHE.KeyGen({paramsj}): For j = L down to 0, do the following:

1. Run sj ← E.SecretKeyGen(paramsj) and Aj ← E.PublicKeyGen(paramsj , sj).

2. Set s′j ← sj ⊗ sj ∈ R
(nj+1

2
)

qj . That is, s′j is a tensoring of sj with itself whose coefficients are
each the product of two coefficients of sj in Rqj .

3. Set s′′j ← BitDecomp(s′j , qj).
4. Run τs′′j+1→sj ← SwitchKeyGen(s′′j , sj−1). (Omit this step when j = L.)

The secret key sk consists of the sj’s and the public key pk consists of the Aj’s and τs′′j+1→sj ’s.

• FHE.Enc(params, pk,m): Take a message in R2. Run E.Enc(AL,m).

• FHE.Dec(params, sk, c): Suppose the ciphertext is under key sj . Run E.Dec(sj , c). (The ciphertext
could be augmented with an index indicating which level it belongs to.)

11

76
Approved for Public Release; Distribution Unlimited.

• FHE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . (If they are not initially,
use FHE.Refresh (below) to make it so.) Set c3 ← c1 + c2 mod qj . Interpret c3 as a ciphertext under
s′j (s′j’s coefficients include all of sj’s since s′j = sj ⊗ sj and sj’s first coefficient is 1) and output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . If they are not initially,
use FHE.Refresh (below) to make it so.) First, multiply: the new ciphertext, under the secret key
s′j = sj ⊗ sj , is the coefficient vector c3 of the linear equation Llongc1,c2(x⊗ x). Then, output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Refresh(c, τs′′j→sj−1
, qj , qj−1): Takes a ciphertext encrypted under s′j , the auxiliary information

τs′′j→sj−1
to facilitate key switching, and the current and next moduli qj and qj−1. Do the following:

1. Expand: Set c1 ← Powersof2(c, qj). (Observe:
〈
c1, s

′′
j

〉
=
〈
c, s′j

〉
mod qj by Lemma 2.)

2. Switch Moduli: Set c2 ← Scale(c1, qj , qj−1, 2), a ciphertext under the key s′′j for modulus qj−1.

3. Switch Keys: Output c3 ← SwitchKey(τs′′j→sj−1
, c2, qj−1), a ciphertext under the key sj−1 for

modulus qj−1.

Remark 1. We mention the obvious fact that, since addition increases the noise much more slowly than
multiplication, one does not necessarily need to refresh after additions, even high fan-in ones.

The key step of our new FHE scheme is the Refresh procedure. If the modulus qj−1 is chosen to be
smaller than qj by a sufficient multiplicative factor, then Corollary 1 implies that the noise of the ciphertext
output by Refresh is smaller than that of the input ciphertext – that is, the ciphertext will indeed be a
“refreshed” encryption of the same value. We elaborate on this analysis in the next section.

One can reasonably argue that this scheme is not “FHE without bootstrapping” since τs′′j→sj−1
can be

viewed as an encrypted secret key, and the SwitchKey step can viewed as a homomorphic evaluation of the
decryption function. We prefer not to view the SwitchKey step this way. While there is some high-level
resemblance, the low-level details are very different, a difference that becomes tangible in the much better
asymptotic performance. To the extent that it performs decryption, SwitchKey does so very efficiently using
an efficient (not bit-wise) representation of the secret key that allows this step to be computed in quasi-linear
time for the RLWE instantiation, below the quadratic lower bound for bootstrapping. Certainly SwitchKey
does not use the usual ponderous approach of representing the decryption function as a boolean circuit to
be traversed homomorphically. Another difference is that the SwitchKey step does not actually reduce the
noise level (as bootstrapping does); rather, the noise is reduced by the Scale step.

4 Correctness, Setting the Parameters, Performance, and Security
Here, we will show how to set the parameters of the scheme so that the scheme is correct. Mostly, this
involves analyzing each of the steps within FHE.Add and FHE.Mult – namely, the addition or multiplication
itself, and then the Powersof2, Scale and SwitchKey steps that make up FHE.Refresh – to establish that the
output of each step is a decryptable ciphertext with bounded noise. This analysis will lead to concrete
suggestions for how to set the ladder of moduli and to asymptotic bounds on the performance of the scheme.

Let us begin by considering how much noise FHE.Enc introduces initially.

12

77
Approved for Public Release; Distribution Unlimited.

4.1 The Initial Noise from FHE.Enc

Recall that FHE.Enc simply invokes E.Enc for suitable parameters (paramsL) that depend on λ and L. In
turn, the noise of ciphertexts output by E.Enc depends on the noise of the initial “ciphertexts” (the encryp-
tions of 0) implicit in the matrix A output by E.PublicKeyGen, whose noise distribution is dictated by the
distribution χ.

Lemma 5. Let nL and qL be the parameters associated to FHE.Enc. Let d be the dimension of the ring
R, and let γR be the expansion factor associated to R. (Both of these quantities are 1 when R = Z.)
Let Bχ be a bound such that R-elements sampled from the the noise distribution χ have length at most
Bχ with overwhelming probability. The length of the noise in ciphertexts output by FHE.Enc is at most
1 + 2 · γR ·

√
d · ((2nL + 1) log qL) ·Bχ.

Proof. Recall that s ← E.SecretKeyGen and A ← E.PublicKeyGen(s, N) for N = (2nL + 1) log qL,
where A · s = 2e for e ← χ. Recall that encryption works as follows: c ← m + AT r mod q where
r ∈ RN2 . We have that the noise of this ciphertext is [〈c, s〉]q = [m+ 2〈r, e〉]q, whose magnitude is at most
1 + 2 · γR ·

∑N
j=1 ‖r[j]‖ · ‖e[j]‖ ≤ 1 + 2 · γR ·

√
d ·N ·Bχ.

Notice that we are using very loose (i.e., conservative) upper bounds for the noise. These bounds
could be tightened up with a more careful analysis. The correctness of decryption for ciphertexts output
by FHE.Enc, assuming the noise bound above is less than q/2, follows directly from the correctness of the
basic encryption and decryption algorithms E.Enc and E.Dec.

4.2 Correctness and Performance of FHE.Add and FHE.Mult (before FHE.Refresh)
Consider FHE.Mult. One begins FHE.Mult(pk, c1, c2) with two ciphertexts under key sj for modulus qj
that have noises ei = [Lci(sj)]qj , where Lci(x) is simply the dot product 〈ci,x〉. To multiply together two
ciphertexts, one multiplies together these two linear equations to obtain a quadratic equation Qc1,c2(x) ←
Lc1(x) ·Lc2(x), and then interprets this quadratic equation as a linear equation Llongc1,c2(x⊗ x) = Qc1,c2(x)
over the tensored vector x ⊗ x. The coefficients of this long linear equation compose the new ciphertext
vector c3. Clearly, [〈c3, sj ⊗ sj〉]qj = [Llongc1,c2(sj ⊗ sj)]qj = [e1 · e2]qj . Thus, if the noises of c1 and c2 have
length at most B, then the noise of c3 has length at most γR ·B2, where γR is the expansion factor of R. If
this length is less than qj/2, then decryption works correctly. In particular, if mi = [〈ci, sj〉]qj]2 = [ei]2 for
i ∈ {1, 2}, then over R2 we have [〈c3, sj ⊗ sj〉]qj]2 = [[e1 · e2]qj]2 = [e1 · e2]2 = [e1]2 · [e2]2 = m1 ·m2.
That is, correctness is preserved as long as this noise does not wrap modulo qj .

The correctness of FHE.Add and FHE.Mult (before FHE.Refresh) is formally captured in the following
lemmas.

Lemma 6. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let s′j = sj ⊗ sj , where the “non-quadratic coefficients” of s′j (namely, the ‘1’ and
the coefficients of sj) are placed first. Let c′ = c1 + c2, and pad c′ with zeros to get a vector c3 such that
〈c3, s′j〉 = 〈c′, sj〉. The noise [〈c3, s′j〉]qj has length at most 2B. If 2B < qj/2, c3 is an encryption of
m1 +m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

Lemma 7. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let the linear equation Llongc1,c2(x ⊗ x) be as defined above, let c3 be the coefficient
vector of this linear equation, and let s′j = sj ⊗ sj . The noise [〈c3, s′j〉]qj has length at most γR · B2. If
γR ·B2 < qj/2, c3 is an encryption of m1 ·m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

13

78
Approved for Public Release; Distribution Unlimited.

The computation needed to compute the tensored ciphertext c3 is Õ(dn2j log qj). For the RLWE instan-
tiation, since nj = 1 and since (as we will see) log qj depends logarithmically on the security parameter and
linearly on L, the computation here is only quasi-linear in the security parameter. For the LWE instantiation,
the computation is quasi-quadratic.

4.3 Correctness and Performance of FHE.Refresh
FHE.Refresh consists of three steps: Expand, Switch Moduli, and Switch Keys. We address each of these
steps in turn.

Correctness and Performance of the Expand Step. The Expand step of FHE.Refresh takes as input a long
ciphertext c under the long tensored key s′j = sj ⊗ sj for modulus qj . It simply applies the Powersof2
transformation to c to obtain c1. By Lemma 2, we know that〈

Powersof2(c, qj),BitDecomp(s′j , qj)
〉

=
〈
c, s′j

〉
mod qj

i.e., we know that if s′j decrypts c correctly, then s′′j decrypts c1 correctly. The noise has not been affected
at all.

If implemented naively, the computation in the Expand step is Õ(dn2j log2 qj). The somewhat high
computation is due to the fact that the expanded ciphertext is a (

(nj+1
2

)
· dlog qje)-dimensional vector over

Rq.
However, recall that sj is drawn using the distribution χ – i.e., it has small coefficients of size basically

independent of qj . Consequently, s′j also has small coefficients, and we can use this a priori knowledge
in combination with an optimized version of BitDecomp to output a shorter bit decomposition of s′j – in
particular, a (

(nj+1
2

)
· dlog q′je)-dimensional vector over Rq where q′j � qj is a bound (with overwhelming

probability) on the coefficients of elements output by χ. Similarly, we can use an abbreviated version of
Powersof2(c, qj). In this case, the computation is Õ(dn2j log qj).

Correctness and Performance of the Switch-Moduli Step. The Switch Moduli step takes as input a cipher-
text c1 under the secret bit-vector s′′j for the modulus qj , and outputs the ciphertext c2 ← Scale(c1, qj , qj−1, 2),
which we claim to be a ciphertext under key s′′j for modulus qj−1. Note that s′′j is a short secret key, since it

is a bit vector in Rtj2 for tj ≤
(nj+1

2

)
· dlog qje. By Corollary 1, and using the fact that `1(s′′j) ≤

√
d · tj , the

following is true: if the noise of c1 has length at most B < qj/2 − (qj/qj−1) · d · γR · tj , then correctness
is preserved and the noise of c2 is bounded by (qj−1/qj) ·B + d · γR · tj . Of course, the key feature of this
step for our purposes is that switching moduli may reduce the length of the moduli when qj−1 < qj .

We capture the correctness of the Switch-Moduli step in the following lemma.

Lemma 8. Let c1 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) such that ej ← [〈c1, s′′j 〉]qj
has length at most B and m = [ej]2. Let c2 ← Scale(c1, qj , qj−1, 2), and let ej−1 = [〈c2, s′′j 〉]qj−1 . Then,
ej−1 (the new noise) has length at most (qj−1/qj) ·B + d · γR ·

(nj+1
2

)
· dlog qje, and (assuming this noise

length is less than qj−1/2) we have m = [ej−1]2.

The computation in the Switch-Moduli step is Õ(dn2j log qj), using the optimized versions of BitDecomp
and Powersof2 mentioned above.

Correctness and Performance of the Switch-Key Step. Finally, in the Switch Keys step, we take as input a
ciphertext c2 under key s′′j for modulus qj−1 and set c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), a ciphertext un-
der the key sj−1 for modulus qj−1. In Lemma 3, we proved the correctness of key switching and established
that the noise grows only by the additive factor 2 〈BitDecomp(c2, qj−1), e〉, where BitDecomp(c2, qj−1) is

14

79
Approved for Public Release; Distribution Unlimited.

a (short) bit-vector and e is a (short and fresh) noise vector. In particular, if the noise originally had length
B, then after the Switch Keys step is has length at most B+ 2 ·γR ·

∑uj
i=1 ‖BitDecomp(c2, qj−1)[i]‖ ·Bχ ≤

B + 2 · γR · uj ·
√
d ·Bχ, where uj ≤

(nj+1
2

)
· dlog qje · dlog qj−1e is the dimension of BitDecomp(c2).

We capture the correctness of the Switch-Key step in the following lemma.

Lemma 9. Let c2 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) for modulus qj−1 such that
e1 ← [〈c2, s′′j 〉]qj−1 has length at most B and m = [e1]2. Let c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), and let

e2 = [〈c3, sj−1〉]qj−1 . Then, e2 (the new noise) has length at most B + 2 · γR ·
(nj+1

2

)
· dlog qje2 ·

√
d ·Bχ

and (assuming this noise length is less than qj−1/2) we have m = [e2]2.

In terms of computation, the Switch-Key step involves multiplying the transpose of uj-dimensional
vector BitDecomp(c2) with a uj × (nj−1 + 1) matrix B. Assuming nj ≥ nj−1 and qj ≥ qj−1, and using
the optimized versions of BitDecomp and Powersof2 mentioned above to reduce uj , this computation is
Õ(dn3j log2 qj). Still this is quasi-linear in the RLWE instantiation.

4.4 Putting the Pieces Together: Parameters, Correctness, Performance
So far we have established that the scheme is correct, assuming that the noise does not wrap modulo qj or
qj−1. Now we need to show that we can set the parameters of the scheme to ensure that such wrapping never
occurs.

Our strategy for setting the parameters is to pick a “universal” bound B on the noise length, and then
prove, for all j, that a valid ciphertext under key sj for modulus qj has noise length at mostB. This boundB
is quite small: polynomial in λ and log qL, where qL is the largest modulus in our ladder. It is clear that such
a boundB holds for fresh ciphertexts output by FHE.Enc. (Recall the discussion from Section 3.1 where we
explained that we use a noise distribution χ that is essentially independent of the modulus.) The remainder
of the proof is by induction – i.e., we will show that if the bound holds for two ciphertexts c1, c2 at level
j, our lemmas above imply that the bound also holds for the ciphertext c′ ← FHE.Mult(pk, c1, c2) at level
j − 1. (FHE.Mult increases the noise strictly more in the worst-case than FHE.Add for any reasonable
choice of parameters.)

Specifically, after the first step of FHE.Mult (without the Refresh step), the noise has length at most
γR · B2. Then, we apply the Scale function, after which the noise length is at most (qj−1/qj) · γR · B2 +
ηScale,j , where ηScale,j is some additive term. Finally, we apply the SwitchKey function, which introduces
another additive term ηSwitchKey,j . Overall, after the entire FHE.Mult step, the noise length is at most
(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j . We want to choose our parameters so that this bound is at most
B. Suppose we set our ladder of moduli and the bound B such that the following two properties hold:

• Property 1: B ≥ 2 · (ηScale,j + ηSwitchKey,j) for all j.

• Property 2: qj/qj−1 ≥ 2 ·B · γR for all j.

Then we have

(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j ≤
1

2 ·B · γR
· γR ·B2 +

1

2
·B ≤ B

It only remains to set our ladder of moduli and B so that Properties 1 and 2 hold.
Unfortunately, there is some circularity in Properties 1 and 2: qL depends on B, which depends on qL,

albeit only polylogarithmically. However, it is easy to see that this circularity is not fatal. As a non-optimized
example to illustrate this, set B = λa ·Lb for very large constants a and b, and set qj ≈ 2(j+1)·ω(log λ+logL).

15

80
Approved for Public Release; Distribution Unlimited.

If a and b are large enough, B dominates ηScale,L + ηSwitchKey,L, which is polynomial in λ and log qL, and
hence polynomial in λ and L (Property 1 is satisfied). Since qj/qj−1 is super-polynomial in both λ and L, it
dominates 2 ·B · γR (Property 2 is satisfied). In fact, it works fine to set qj as a modulus having (j + 1) · µ
bits for some µ = θ(log λ+ logL) with small hidden constant.

Overall, we have that qL, the largest modulus used in the system, is θ(L · (log λ+logL)) bits, and d ·nL
must be approximately that number times λ for 2λ security.

Theorem 3. For some µ = θ(log λ + logL), FHE is a correct L-leveled FHE scheme – specifically, it
correctly evaluates circuits of depth L with Add and Mult gates over R2. The per-gate computation is
Õ(d · n3L · log2 qj) = Õ(d · n3L · L2). For the LWE case (where d = 1), the per-gate computation is
Õ(λ3 · L5). For the RLWE case (where n = 1), the per-gate computation is Õ(λ · L3).

The bottom line is that we have a RLWE-based leveled FHE scheme with per-gate computation that is
only quasi-linear in the security parameter, albeit with somewhat high dependence on the number of levels
in the circuit.

Let us pause at this point to reconsider the performance of previous FHE schemes in comparison to our
new scheme. Specifically, as we discussed in the Introduction, in previous SWHE schemes, the ciphertext
size is at least Õ(λ ·d2), where d is the degree of the circuit being evaluated. One may view our new scheme
as a very powerful SWHE scheme in which this dependence on degree has been replaced with a similar
dependence on depth. (Recall the degree of a circuit may be exponential in its depth.) Since polynomial-
size circuits have polynomial depth, which is certainly not true of degree, our scheme can efficiently evaluate
arbitrary circuits without resorting to bootstrapping.

4.5 Security
The security of FHE follows by a standard hybrid argument from the security of E, the basic scheme de-
scribed in Section 3.1. We omit the details.

5 Optimizations
Despite the fact that our new FHE scheme has per-gate computation only quasi-linear in the security param-
eter, we present several significant ways of optimizing it. We focus primarily on the RLWE-based scheme,
since it is much more efficient.

Our first optimization is batching. Batching allows us to reduce the per-gate computation from quasi-
linear in the security parameter to polylogarithmic. In more detail, we show that evaluating a function f
homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms of the
security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is still
polynomial in the depth L of the circuit computing f .) Batching works essentially by packing multiple
plaintexts into each ciphertext.

Next, we reintroduce bootstrapping as an optimization rather than a necessity (Section 5.2). Bootstrap-
ping allows us to achieve per-gate computation quasi-quadratic in the security parameter, independent of
the number levels in the circuit being evaluated.

In Section 5.3, we show that batching the bootstrapping function is a powerful combination. With this
optimization, circuits whose levels mostly have width at least λ can be evaluated homomorphically with
only Õ(λ) per-gate computation, independent of the number of levels.

Finally, Section 5.5 presents a few other miscellaneous optimizations.

5.1 Batching
Suppose we want to evaluate the same function f on ` blocks of encrypted data. (Or, similarly, suppose we
want to evaluate the same encrypted function f on ` blocks of plaintext data.) Can we do this using less than

16

81
Approved for Public Release; Distribution Unlimited.

` times the computation needed to evaluate f on one block of data? Can we batch?
For example, consider a keyword search function that returns ‘1’ if the keyword is present in the data

and ‘0’ if it is not. The keyword search function is mostly composed of a large number of equality tests that
compare the target word w to all of the different subsequences of data; this is followed up by an OR of the
equality test results. All of these equality tests involve running the same w-dependent function on different
blocks of data. If we could batch these equality tests, it could significantly reduce the computation needed
to perform keyword search homomorphically.

If we use bootstrapping as an optimization (see Section 5.2), then obviously we will be running the
decryption function homomorphically on multiple blocks of data – namely, the multiple ciphertexts that
need to be refreshed. Can we batch the bootstrapping function? If we could, then we might be able to
drastically reduce the average per-gate cost of bootstrapping.

Smart and Vercauteren [21] were the first to rigorously analyze batching in the context of FHE. In
particular, they observed that ideal-lattice-based (and RLWE-based) ciphertexts can have many plaintext
slots, associated to the factorization of the plaintext space into algebraic ideals.

When we apply batching to our new RLWE-based FHE scheme, the results are pretty amazing. Evaluat-
ing f homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms
of the security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is
still polynomial in the depth L of the circuit computing f .) As we will see later, for circuits whose levels
mostly have width at least λ, batching the bootstrapping function (i.e., batching homomorphic evaluation
of the decryption function) allows us to reduce the per-gate computation of our bootstrapped scheme from
Õ(λ2) to Õ(λ) (independent of L).

To make the exposition a bit simpler, in our RLWE-based instantiation where R = Z[x]/(xd + 1), we
will not use R2 as our plaintext space, but instead use a plaintext space Rp that is isomorphic to the direct
productRp1×· · ·×Rpd of many plaintext spaces (think Chinese remaindering), so that evaluating a function
once over Rp implicitly evaluates the function many times in parallel over the respective smaller plaintext
spaces. The pi’s will be ideals in our ring R = Z[x]/(xd + 1). (One could still use R2 as in [21], but the
number theory there is a bit more involved.)

5.1.1 Some Number Theory

Let us take a very brief tour of algebraic number theory. Suppose p is a prime number satisfying p =
1 mod 2d, and let a be a primitive 2d-th root of unity modulo p. Then, xd + 1 factors completely into linear
polynomials modulo p – in particular, xd + 1 =

∏d
i=1(x − ai) mod p where ai = a2i−1 mod p. In some

sense, the converse of the above statement is also true, and this is the essence of reciprocity – namely, in the
ring R = Z[x]/(xd + 1) the prime integer p is not actually prime, but rather it splits completely into prime
ideals inR – i.e., p =

∏d
i=1 pi. The ideal pi equals (p, x−ai) – namely, the set of allR-elements that can be

expressed as r1 · p+ r2 · (x− ai) for some r1, r2 ∈ R. Each ideal pi has norm p – that is, roughly speaking,
a 1/p fraction of R-elements are in pi, or, more formally, the p cosets 0 + pi, . . . , (p− 1) + pi partition R.
These ideals are relative prime, and so they behave like relative prime integers. In particular, the Chinese
Remainder Theorem applies: Rp ∼= Rp1 × · · · ×Rpd .

Although the prime ideals {pi} are relatively prime, they are close siblings, and it is easy, in some
sense, to switch from one to another. One fact that we will use (when we finally apply batching to boot-
strapping) is that, for any i, j there is an automorphism σi→j over R that maps elements of pi to elements
of pj . Specifically, σi→j works by mapping an R-element r = r(x) = rd−1x

d−1 + · · · + r1x + r0 to
r(xeij) = rd−1x

eij(d−1) mod 2d + · · · + r1x
eij + r0 where eij is some odd number in [1, 2d]. Notice that

this automorphism just permutes the coefficients of r and fixes the free coefficient. Notationally, we will use
σi→j(v) to refer to the vector that results from applying σi→j coefficient-wise to v.

17

82
Approved for Public Release; Distribution Unlimited.

5.1.2 How Batching Works

Deploying batching inside our scheme FHE is quite straightforward. First, we pick a prime p = 1 mod 2d
of size polynomial in the security parameter. (One should exist under the GRH.)

The next step is simply to recognize that our scheme FHE works just fine when we replace the original
plaintext space R2 with Rp. There is nothing especially magical about the number 2. In the basic scheme E
described in Section 3.1, E.PublicKeyGen(params, sk) is modified in the obvious way so that A · s = p · e
rather than 2 · e. (This modification induces a similar modification in SwitchKeyGen.) Decryption becomes
m = [[〈c, s〉]q]p. Homomorphic operations use mod-p gates rather than boolean gates, and it is easy (if
desired) to emulate boolean gates with mod-p gates – e.g., we can compute XOR(a, b) for a, b ∈ {0, 1}2
using mod-p gates for any p as a + b − 2ab. For modulus switching, we use Scale(c1, qj , qj−1, p) rather
than Scale(c1, qj , qj−1, 2). The larger rounding error from this new scaling procedure increases the noise
slightly, but this additive noise is still polynomial in the security parameter and the number of levels, and
thus is still consistent with our setting of parameters. In short, FHE can easily be adapted to work with a
plaintext space Rp for p of polynomial size.

The final step is simply to recognize that, by the Chinese Remainder Theorem, evaluating an arithmetic
circuit over Rp on input x ∈ Rnp implicitly evaluates, for each i, the same arithmetic circuit over Rpi on
input x projected down to Rnpi . The evaluations modulo the various prime ideals do not “mix” or interact
with each other.

Theorem 4. Let p = 1 mod 2d be a prime of size polynomial in λ. The RLWE-based instantiation of FHE
using the ringR = Z[x]/(xd+1) can be adapted to use the plaintext spaceRp = ⊗di=1Rpi while preserving
correctness and the same asymptotic performance. For any boolean circuit f of depth L, the scheme can
homomorphically evaluate f on ` sets of inputs with per-gate computation Õ(λ · L3/min{d, `}).

When ` ≥ λ, the per-gate computation is only polylogarithmic in the security parameter (still cubic in L).

5.2 Bootstrapping as an Optimization
Bootstrapping is no longer strictly necessary to achieve leveled FHE. However, in some settings, it may have
some advantages:

• Performance: The per-gate computation is independent of the depth of the circuit being evaluated.

• Flexibility: Assuming circular security, a bootstrapped scheme can perform homomorphic evaluations
indefinitely without needing to specify in advance, during Setup, a bound on the number of circuit
levels.

• Memory: Bootstrapping permits short ciphertexts – e.g., encrypted using AES – to be de-compressed
to longer ciphertexts that permit homomorphic operations. Bootstrapping allows us to save memory
by storing data encrypted in the compressed form – e.g., under AES.

Here, we revisit bootstrapping, viewing it as an optimization rather than a necessity. We also reconsider
the scheme FHE that we described in Section 3, viewing the scheme not as an end in itself, but rather as a very
powerful SWHE whose performance degrades polynomially in the depth of the circuit being evaluated, as
opposed to previous SWHE schemes whose performance degrades polynomially in the degree. In particular,
we analyze how efficiently it can evaluate its decryption function, as needed to bootstrap. Not surprisingly,
our faster SWHE scheme can also bootstrap faster. The decryption function has only logarithmic depth
and can be evaluated homomorphically in time quasi-quadratic in the security parameter (for the RLWE
instantiation), giving a bootstrapped scheme with quasi-quadratic per-gate computation overall.

18

83
Approved for Public Release; Distribution Unlimited.

5.2.1 Decryption as a Circuit of Quasi-Linear Size and Logarithmic Depth

Recall that the decryption function ism = [[〈c, s〉]q]2. Suppose that we are given the “bits” (elements inR2)
of s as input, and we want to compute [[〈c, s〉]q]2 using an arithmetic circuit that has Add and Mult gates
over R2. (When we bootstrap, of course we are given the bits of s in encrypted form.) Note that we will
run the decryption function homomorphically on level-0 ciphertexts – i.e., when q is small, only polynomial
in the security parameter. What is the complexity of this circuit? Most importantly for our purposes, what
is its depth and size? The answer is that we can perform decryption with Õ(λ) computation and O(log λ)
depth. Thus, in the RLWE instantiation, we can evaluate the decryption function homomorphically using our
new scheme with quasi-quadratic computation. (For the LWE instantiation, the bootstrapping computation
is quasi-quartic.)

First, let us consider the LWE case, where c and s are n-dimensional integer vectors. Obviously, each
product c[i] · s[i] can be written as the sum of at most log q “shifts” of s[i]. These horizontal shifts of
s[i] use at most 2 log q columns. Thus, 〈c, s〉 can be written as the sum of n · log q numbers, where each
number has 2 log q digits. As discussed in [8], we can use the three-for-two trick, which takes as input
three numbers in binary (of arbitrary length) and outputs (using constant depth) two binary numbers with
the same sum. Thus, with O(log(n · log q)) = O(log n + log log q) depth and O(n log2 q) computation,
we obtain two numbers with the desired sum, each having O(log n + log q) bits. We can sum the final
two numbers with O(log log n + log log q) depth and O(log n + log q) computation. So far, we have used
depth O(log n + log log q) and O(n log2 q) computation to compute 〈c, s〉. Reducing this value modulo q
is an operation akin to division, for which there are circuits of size polylog(q) and depth log log q. Finally,
reducing modulo 2 just involves dropping the most significant bits. Overall, since we are interested only in
the case where log q = O(log λ), we have that decryption requires Õ(λ) computation and depth O(log λ).

For the RLWE case, we can use the R2 plaintext space to emulate the simpler plaintext space Z2. Using
Z2, the analysis is basically the same as above, except that we mention that the DFT is used to multiply
elements in R.

In practice, it would be useful to tighten up this analysis by reducing the polylogarithmic factors in
the computation and the constants in the depth. Most likely this could be done by evaluating decryption
using symmetric polynomials [8, 9] or with a variant of the “grade-school addition” approach used in the
Gentry-Halevi implementation [10].

5.2.2 Bootstrapping Lazily

Bootstrapping is rather expensive computationally. In particular, the cost of bootstrapping a ciphertext is
greater than the cost of a homomorphic operation by approximately a factor of λ. This suggests the question:
can we lower per-gate computation of a bootstrapped scheme by bootstrapping lazily – i.e., applying the
refresh procedure only at a 1/L fraction of the circuit levels for some well-chosen L [11]? Here we show
that the answer is yes. By bootstrapping lazily for L = θ(log λ), we can lower the per-gate computation by
a logarithmic factor.

Let us present this result somewhat abstractly. Suppose that the per-gate computation for a L-level no-
bootstrapping FHE scheme is f(λ, L) = λa1 · La2 . (We ignore logarithmic factors in f , since they will
not affect the analysis, but one can imagine that they add a very small ε to the exponent.) Suppose that
bootstrapping a ciphertext requires a c-depth circuit. Since we want to be capable of evaluation depth L
after evaluating the c levels need to bootstrap a ciphertext, the bootstrapping procedure needs to begin with
ciphertexts that can be used in a (c+L)-depth circuit. Consequently, let us say that the computation needed
a bootstrap a ciphertext is g(λ, c + L) where g(λ, x) = λb1 · xb2 . The overall per-gate computation is
approximately f(λ, L) + g(λ, c+ L)/L, a quantity that we seek to minimize.

19

84
Approved for Public Release; Distribution Unlimited.

We have the following lemma.

Lemma 10. Let f(λ, L) = λa1 · La2 and g(λ, L) = λb1 · Lb2 for constants b1 > a1 and b2 > a2 ≥ 1.
Let h(λ, L) = f(λ, L) + g(λ, c + L)/L for c = θ(log λ). Then, for fixed λ, h(λ, L) has a minimum for
L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)] – i.e., at some L = θ(log λ).

Proof. Clearly h(λ, L) = +∞ at L = 0, then it decreases toward a minimum, and finally it eventually
increases again as L goes toward infinity. Thus, h(λ, L) has a minimum at some positive value of L. Since
f(λ, L) is monotonically increasing (i.e., the derivative is positive), the minimum must occur where the
derivative of g(λ, c+ L)/L is negative. We have

d

dL
g(λ, c+ L)/L = g′(λ, c+ L)/L− g(λ, c+ L)/L2

= b2 · λb1 · (c+ L)b2−1/L− λb1 · (c+ L)b2/L2

= (λb1 · (c+ L)b2−1/L2) · (b2 · L− c− L) ,

which becomes positive when L ≥ c/(b2−1) – i.e., the derivative is negative only when L = O(log λ). For
L < (c−1)/(b2−1), we have that the above derivative is less than−λb1 ·(c+L)b2−1/L2, which dominates
the positive derivative of f . Therefore, for large enough value of λ, the value h(λ, L) has its minimum at
some L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)].

This lemma basically says that, since homomorphic decryption takes θ(log λ) levels and its cost is super-
linear and dominates that of normal homomorphic operations (FHE.Add and FHE.Mult), it makes sense to
bootstrap lazily – in particular, once every θ(log λ) levels. (If one bootstrapped even more lazily than this,
the super-linear cost of bootstrapping begins to ensure that the (amortized) per-gate cost of bootstrapping
alone is increasing.) It is easy to see that, since the per-gate computation is dominated by bootstrapping,
bootstrapping lazily every θ(log λ) levels reduces the per-gate computation by a factor of θ(log λ).

5.3 Batching the Bootstrapping Operation
Suppose that we are evaluating a circuit homomorphically, that we are currently at a level in the circuit that
has at least d gates (where d is the dimension of our ring), and that we want to bootstrap (refresh) all of
the ciphertexts corresponding to the respective wires at that level. That is, we want to homomorphically
evaluate the decryption function at least d times in parallel. This seems like an ideal place to apply batching.

However, there are some nontrivial problems. In Section 5.1, our focus was rather limited. For example,
we did not consider whether homomorphic operations could continue after the batched computation. Indeed,
at first glance, it would appear that homomorphic operations cannot continue, since, after batching, the
encrypted data is partitioned into non-interacting relatively-prime plaintext slots, whereas the whole point of
homomorphic encryption is that the encrypted data can interact (within a common plaintext slot). Similarly,
we did not consider homomorphic operations before the batched computation. Somehow, we need the input
to the batched computation to come pre-partitioned into the different plaintext slots.

What we need are Pack and Unpack functions that allow the batching procedure to interface with “nor-
mal” homomorphic operations. One may think of the Pack and Unpack functions as an on-ramp to and an
exit-ramp from the “fast lane” of batching. Let us say that normal homomorphic operations will always use
the plaintext slot Rp1 . Roughly, the Pack function should take a bunch of ciphertexts c1, . . . , cd that encrypt
messagesm1, . . . ,md ∈ Zp under key s1 for modulus q and plaintext slotRp1 , and then aggregate them into
a single ciphertext c under some possibly different key s2 for modulus q and plaintext slot Rp = ⊗di=1Rpi ,
so that correctness holds with respect to all of the different plaintext slots – i.e. mi = [[〈c, s2〉]q]pi for
all i. The Pack function thus allows normal homomorphic operations to feed into the batch operation.

20

85
Approved for Public Release; Distribution Unlimited.

The Unpack function should accept the output of a batched computation, namely a ciphertext c′ such that
mi = [[〈c′, s′1〉]q]pi for all i, and then de-aggregate this ciphertext by outputting ciphertexts c′1, . . . , c

′
d under

some possibly different common secret key s′2 such that mi = [[〈c′i, s′2〉]q]p1 for all i. Now that all of the
ciphertexts are under a common key and plaintext slot, normal homomorphic operations can resume. With
such Pack and Unpack functions, we could indeed batch the bootstrapping operation. For circuits of large
width (say, at least d) we could reduce the per-gate bootstrapping computation by a factor of d, making it
only quasi-linear in λ. Assuming the Pack and Unpack functions have complexity at most quasi-quadratic
in d (per-gate this is only quasi-linear, since Pack and Unpack operate on d gates), the overall per-gate
computation of a batched-bootstrapped scheme becomes only quasi-linear.

Here, we describe suitable Pack and Unpack functions. These functions will make heavy use of the
automorphisms σi→j over R that map elements of pi to elements of pj . (See Section 5.1.1.) We note that
Smart and Vercauteren [21] used these automorphisms to construct something similar to our Pack function
(though for unpacking they resorted to bootstrapping). We also note that Lyubashevsky, Peikert and Regev
[14] used these automorphisms to permute the ideal factors qi of the modulus q, which was an essential tool
toward their proof of the pseudorandomness of RLWE.

Toward Pack and Unpack procedures, our main idea is the following. If m is encoded in the free term
as a number in {0, . . . , p− 1} and if m = [[〈c, s〉]q]pi , then m = [[〈σi→j(c), σi→j(s)〉]q]pj . That is, we can
switch the plaintext slot but leave the decrypted message unchanged by applying the same automorphism
to the ciphertext and the secret key. (These facts follow from the fact that σi→j is a homomorphism, that
it maps elements of pi to elements of pj , and that it fixes free terms.) Of course, then we have a problem:
the ciphertext is now under a different key, whereas we may want the ciphertext to be under the same key
as other ciphertexts. To get the ciphertexts to be back under the same key, we simply use the SwitchKey
algorithm to switch all of the ciphertexts to a new common key.

Some technical remarks before we describe Pack and Unpack more formally: We mention again that
E.PublicKeyGen is modified in the obvious way so that A·s = p·e rather than 2·e, and that this modification
induces a similar modification in SwitchKeyGen. Also, let u ∈ R be a short element such that u ∈ 1 + p1
and u ∈ pj for all j 6= 1. It is obvious that such a u with coefficients in (−p/2, p/2] can be computed
efficiently by first picking any element u′ such that u′ ∈ 1 + p1 and u′ ∈ pj for all j 6= 1, and then reducing
the coefficients of u′ modulo p.

PackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσ1→i(s1)→s2 ←
SwitchKeyGen(σ1→i(s1), s2).

Pack({ci}di=1, {τσ1→i(s1)→s2}di=1): Takes as input ciphertexts c1, . . . , cd such that mi = [[〈ci, s1〉]q]p1 and
0 = [[〈ci, s1〉]q]pj for all j 6= 1, and also some auxiliary information output by PackSetup. For all i, it does
the following:

• Computes c∗i ← σ1→i(ci). (Observe: mi = [[〈c∗i , σ1→i(s1)〉]q]pi while 0 = [[〈c∗i , σ1→i(s1)〉]q]pj for
all j 6= i.)

• Runs c†i ← SwitchKey(τσ1→i(s1)→s2 , c
∗
i) (Observe: Assuming the noise does not wrap, we have that

mi = [[〈c†i , s2〉]q]pi and 0 = [[〈c†i , s2〉]q]pj for all j 6= i.)

Finally, it outputs c ←
∑d

i=1 c
†
i . (Observe: Assuming the noise does not wrap, we have that mi =

[[〈c, s2〉]q]pi for all i.)

UnpackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσi→1(s1)→s2 ←
SwitchKeyGen(σi→1(s1), s2).

21

86
Approved for Public Release; Distribution Unlimited.

Unpack(c, {τσi→1(s1)→s2}di=1): Takes as input a ciphertext c such that mi = [[〈c, s1〉]q]pi for all i, and also
some auxiliary information output by UnpackSetup. For all i, it does the following:

• Computes ci ← u ·σi→1(c). (Observe: Assuming the noise does not wrap,mi = [[〈ci, σi→1(s1)〉]q]p1
and 0 = [[〈ci, σi→1(s1)〉]q]pj for all j 6= 1.)

• Outputs c∗i ← SwitchKey(τσi→1(s1)→s2 , ci). (Observe: Assuming the noise does not wrap, mi =
[[〈c∗i , s2〉]q]p1 and 0 = [[〈c∗i , s2〉]q]pj for all j 6= 1.)

Splicing the Pack and Unpack procedures into our scheme FHE is tedious but pretty straightforward.
Although these procedures introduce many more encrypted secret keys, this does not cause a circular security
problem as long as the chain of encrypted secret keys is acyclic; then the standard hybrid argument applies.
After applying Pack or Unpack, one may apply modulus reduction to reduce the noise back down to normal.

5.4 More Fun with Funky Plaintext Spaces
In some cases, it might be nice to have a plaintext space isomorphic to Zp for some large prime p – e.g.,
one exponential in the security parameter. So far, we have been using Rp as our plaintext space, and (due
to the rounding step in modulus switching) the size of the noise after modulus switching is proportional to
p. When p is exponential, our previous approach for handling the noise (which keeps the magnitude of the
noise polynomial in λ) obviously breaks down.

To get a plaintext space isomorphic to Zp that works for exponential p, we need a new approach. Instead
of using an integer modulus, we will use an ideal modulus I (an ideal ofR) whose norm is some large prime
p, but such that we have a basis BI of I that is very short – e.g. ‖BI‖ = O(poly(d) · p1/d). Using an ideal
plaintext space forces us to modify the modulus switching technique nontrivially.

Originally, when our plaintext space was R2, each of the moduli in our “ladder” was odd – that is, they
were all congruent to each other modulo 2 and relatively prime to 2. Similarly, we will have to choose each
of the moduli in our new ladder so that they are all congruent to each other modulo I . (This just seems
necessary to get the scaling to work, as the reader will see shortly.) This presents a difficulty, since we
wanted the norm of I to be large – e.g., exponential in the security parameter. If we choose our moduli qj to
be integers, then we have that the integer qj+1 − qj ∈ I – in particular, qj+1 − qj is a multiple of I’s norm,
implying that the qj’s are exponential in the security parameter. Having such large qj’s does not work well
in our scheme, since the underlying lattice problems becomes easy when qj/B is exponential in d where
B is a bound of the noise distribution of fresh ciphertexts, and since we need B to remain quite small for
our new noise management approach to work effectively. So, instead, our ladder of moduli will also consist
of ideals – in particular, principle ideals (qj) generated by an element of qj ∈ R. Specifically, it is easy to
generate a ladder of qj’s that are all congruent to 1 moduli I by sampling appropriately-sized elements qj
of the coset 1 + I (using our short basis of I), and testing whether the principal ideal (qj) generated by the
element has appropriate norm.

Now, let us reconsider modulus switching in light of the fact that our moduli are now principal ideals.
We need an analogue of Lemma 4 that works for ideal moduli.

Let us build up some notation and concepts that we will need in our new lemma. Let Pq be the half-open
parallelepiped associated to the rotation basis of q ∈ R. The rotation basis Bq of q is the d-dimensional
basis formed by the coefficient vectors of the polynomials xiq(x) mod f(x) for i ∈ [0, d−1]. The associated
parallelepiped is Pq = {

∑
zi · bi : bi ∈ Bq, zi ∈ [−1/2, 1/2)}. We need two concepts associated to this

parallelepiped. First, we will still use the notation [a]q, but where q is now an R-element rather than integer.
This notation refers to a reduced modulo the rotation basis of a – i.e., the element [a]q such that [a]q−a ∈ qR
and [a]q ∈ Pq. Next, we need notions of the inner radius rq,in and outer radius rq,out of Pq – that is, the

22

87
Approved for Public Release; Distribution Unlimited.

largest radius of a ball that is circumscribed by Pq, and the smallest radius of a ball that circumscribes Pq. It
is possible to choose q so that the ratio rq,out/rq,in is poly(d). For example, this is true when q is an integer.
For a suitable value of f(x) that determines our ring, such as f(x) = xd + 1, the expected value of ratio
will be poly(d) even if q is sampled uniformly (e.g., according to discrete Gaussian distribution centered at
0). More generally, we will refer to rB,out as the outer radius associated to the parallelepiped determined by
basis B. Also, in the field Q(x)/f(x) overlying this ring, it will be true with overwhelming probability, if q
is sampled uniformly, that ‖q−1‖ = 1/‖q‖ up to a poly(d) factor. For convenience, let α(d) be a polynomial
such that ‖q−1‖ = 1/‖q‖ up to a α(d) factor and moreover rq,out/rq,in is at most α(d) with overwhelming
probability. For such an α, we say q is α-good. Finally, in the lemma, γR denotes the expansion factor of R
– i.e., max{‖a · b‖/‖a‖‖b‖ : a,b ∈ R}.
Lemma 11. Let q1 and q2, ‖q1‖ < ‖q2‖, be two α-good elements of R. Let BI be a short basis (with outer
radius rBI ,out) of an ideal I ofR such that q1−q2 ∈ I . Let c be an integer vector and c′ ← Scale(c, q2, q1, I)
– that is, c′ is an R-element at most 2rBI ,out distant from (q1/q2) · c such that c′ − c ∈ I . Then, for any s
with

‖[〈c, s〉]q2‖ <
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

we have

[
〈
c′, s

〉
]q1 = [〈c, s〉]q2 mod I and ‖[

〈
c′, s

〉
]q1‖ < α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `

(R)
1 (s)

where `(R)
1 (s) is defined as

∑
i ‖s[i]‖.

Proof. We have

[〈c, s〉]q2 = 〈c, s〉 − kq2
for some k ∈ R. For the same k, let

eq1 =
〈
c′, s

〉
− kq1 ∈ R

Note that eq1 = [〈c′, s〉]q1 mod q1. We claim that ‖eq1‖ is so small that eq1 = [〈c′, s〉]q1 . We have:

‖eq1‖ = ‖ − kq1 + 〈(q1/q2) · c, s〉+
〈
c′ − (q1/q2) · c, s

〉
‖

≤ ‖ − kq1 + 〈(q1/q2) · c, s〉 ‖+ ‖
〈
c′ − (q1/q2) · c, s

〉
‖

≤ γR · ‖q1/q2‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ γ2R · ‖q1‖ · ‖q2−1‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

By the final expression above, we see that the magnitude of eq1 may actually be less than the magnitude
of eq2 if ‖q1‖/‖q2‖ is small enough. Let us continue with the inequalities, substituting in the bound for
‖[〈c, s〉]q2‖:

‖eq1‖ ≤ α(d) · γ2R · (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

+γR · 2rBI ,out · `
(R)
1 (s)

≤ (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

≤
(
rq1,in − γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

= rq1,in

23

88
Approved for Public Release; Distribution Unlimited.

Since ‖eq1‖ < rq1,in, eq1 is inside the parallelepiped Pq1 and it is indeed true that eq1 = [〈c′, s〉]q1 . Further-
more, we have [〈c′, s〉]q1 = eq1 = 〈c′, s〉 − kq1 = 〈c, s〉 − kq2 = [〈c, s〉]q2 mod I .

The bottom line is that we can apply the modulus switching technique to moduli that are ideals, and this
allows us to use, if desired, plaintext spaces that are very large (exponential in the security parameter) and
that have properties that are often desirable (such as being isomorphic to a large prime field).

5.5 Other Optimizations
If one is willing to assume circular security, the keys {sj} may all be the same, thereby permitting a public
key of size independent of L.

While it is not necessary, squashing may still be a useful optimization in practice, as it can be used to
lower the depth of the decryption function, thereby reducing the size of the largest modulus needed in the
scheme, which may improve efficiency.

For the LWE-based scheme, one can use key switching to gradually reduce the dimension nj of the
ciphertext (and secret key) vectors as qj decreases – that is, as one traverses to higher levels in the circuit.
As qj decreases, the associated LWE problem becomes (we believe) progressively harder (for a fixed noise
distribution χ). This allows one to gradually reduce the dimension nj without sacrificing security, and
reduce ciphertext length faster (as one goes higher in the circuit) than one could simply by decreasing qj
alone.

6 Summary and Future Directions
Our RLWE-based FHE scheme without bootstrapping requires only Õ(λ ·L3) per-gate computation where L
is the depth of the circuit being evaluated, while the bootstrapped version has only Õ(λ2) per-gate computa-
tion. For circuits of width Ω(λ), we can use batching to reduce the per-gate computation of the bootstrapped
version by another factor of λ.

While these schemes should perform significantly better than previous FHE schemes, we caution that the
polylogarithmic factors in the per-gate computation are large. One future direction toward a truly practical
scheme is to tighten up these polylogarithmic factors considerably.

Acknowledgments. We thank Carlos Aguilar Melchor, Boaz Barak, Shai Halevi, Chris Peikert, Nigel
Smart, and Jiang Zhang for helpful discussions and insights.

References
[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and

circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Proceed-
ings of Theory of Cryptography Conference 2005, volume 3378 of LNCS, pages 325–342, 2005.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/344.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. Manuscript, to appear in CRYPTO 2011.

[5] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully-homomorphic
encryption over the integers with shorter public-keys. Manuscript, to appear in Crypto 2011.

24

89
Approved for Public Release; Distribution Unlimited.

[6] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lec-
ture Notes in Computer Science, pages 24–43. Springer, 2010. Full version available on-line from
http://eprint.iacr.org/2009/616.

[7] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[9] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arith-
metic circuits. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/279.

[10] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[11] Shai Halevi, 2011. Personal communication.

[12] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

[13] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? Manuscript at http://eprint.iacr.org/2011/405, 2011.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[15] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic encryption
with -operand multiplications. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Com-
puter Science, pages 138–154. Springer, 2010.

[16] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended ab-
stract. In STOC, pages 333–342. ACM, 2009.

[17] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[18] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference on Computational
Complexity, pages 191–204. IEEE Computer Society, 2010.

[19] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–180, 1978.

[20] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[21] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

25

90
Approved for Public Release; Distribution Unlimited.

[22] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 377–394. Springer, 2010.

26

91
Approved for Public Release; Distribution Unlimited.

On-the-Fly Multiparty Computation on the Cloud via Multikey

Fully Homomorphic Encryption

Adriana López-Alt
New York University

Eran Tromer
Tel Aviv University

Vinod Vaikuntanathan
MIT

Abstract

We propose a new notion of secure multiparty computation aided by a computationally-
powerful but untrusted “cloud” server. In this notion that we call on-the-fly multiparty compu-
tation (MPC), the cloud can non-interactively perform arbitrary, dynamically chosen computa-
tions on data belonging to arbitrary sets of users chosen on-the-fly. All user’s input data and
intermediate results are protected from snooping by the cloud as well as other users. This ex-
tends the standard notion of fully homomorphic encryption (FHE), where users can only enlist
the cloud’s help in evaluating functions on their own encrypted data.

In on-the-fly MPC, each user is involved only when initially uploading his (encrypted) data
to the cloud, and in a final output decryption phase when outputs are revealed; the complexity
of both is independent of the function being computed and the total number of users in the
system. When users upload their data, they need not decide in advance which function will be
computed, nor who they will compute with; they need only retroactively approve the eventually-
chosen functions and on whose data the functions were evaluated.

This notion is qualitatively the best possible in minimizing interaction, since the users’
interaction in the decryption stage is inevitable: we show that removing it would imply generic
program obfuscation and is thus impossible.

Our contributions are two-fold:

1. We show how on-the-fly MPC can be achieved using a new type of encryption scheme that
we call multikey FHE, which is capable of operating on inputs encrypted under multiple,
unrelated keys. A ciphertext resulting from a multikey evaluation can be jointly decrypted
using the secret keys of all the users involved in the computation.

2. We construct a multikey FHE scheme based on NTRU, a very efficient public-key encryp-
tion scheme proposed in the 1990s. It was previously not known how to make NTRU fully
homomorphic even for a single party. We view the construction of (multikey) FHE from
NTRU encryption as a main contribution of independent interest. Although the transfor-
mation to a fully homomorphic system deteriorates the efficiency of NTRU somewhat, we
believe that this system is a leading candidate for a practical FHE scheme.

1

92
Approved for Public Release; Distribution Unlimited.

Contents

1 Introduction 1
1.1 Our Results and Techniques . 3
1.2 (Multikey) Fully Homomorphic Encryption from NTRU 4
1.3 On-The-Fly MPC from Multikey FHE . 7

1.3.1 Protocol Security . 7
1.4 Related Work . 9
1.5 Roadmap . 12

2 Definitions and Preliminaries 12
2.1 Notation . 12
2.2 Σ-Protocols and Zero-Knowledge Proofs . 12
2.3 Succinct Non-Interactive Arguments: SNARGs and SNARKs 15

2.3.1 Delegation of Computation from SNARGs . 16
2.3.2 Constructions . 16

2.4 Secure Multiparty Computation (MPC) . 17
2.4.1 Security in the Ideal/Real Paradigm . 17
2.4.2 Types of Adversaries . 18

2.5 Fully Homomorphic Encryption (FHE) . 19
2.5.1 Bootstrapping . 21

2.6 Rings . 21
2.6.1 Discrete Gaussians . 22
2.6.2 The Ring LWE Assumption . 23
2.6.3 Choice of Parameters . 24
2.6.4 The Worst-case to Average-case Connection 24

2.7 NTRU Encryption . 24
2.7.1 Security . 25

3 Multikey FHE 26
3.1 Definition . 26
3.2 Multikey FHE for a Small Number of Keys . 27

3.2.1 O(1)-Multikey FHE from any FHE . 27
3.2.2 O(log κ)-Multikey FHE from Ring-LWE . 30

3.3 Multikey Somewhat Homomorphic Encryption for Any Number of Keys 31
3.3.1 Multikey Homomorphism . 31
3.3.2 Formal Description . 33
3.3.3 Security . 36

3.4 From Somewhat to Fully Homomorphic Encryption 36
3.4.1 Modulus Reduction . 37
3.4.2 Obtaining A Leveled Homomorphic Scheme 38
3.4.3 Formal Description . 39
3.4.4 Multikey Fully Homomorphic Encryption . 42

2

93
Approved for Public Release; Distribution Unlimited.

4 On-the-Fly MPC from Multikey FHE 43
4.1 The Basic Protocol . 43

4.1.1 Security Against Semi-Malicious Adversaries 44
4.2 Achieving Security Against Malicious Adversaries . 46

4.2.1 Formal Protocol . 49
4.2.2 Proof of Security . 51
4.2.3 Efficient NIZKs to Prove Plaintext Knowledge 57

4.3 Impossibility of a 2-Round Protocol . 60

3

94
Approved for Public Release; Distribution Unlimited.

1 Introduction

We are fast approaching a new digital era in which we store our data and perform our expen-
sive computations remotely, on powerful servers — the “cloud”, in popular parlance. While the
cloud offers numerous advantages in costs and functionality, it raises grave questions of confiden-
tiality, since data stored in the cloud could be vulnerable to snooping by the cloud provider or
even by other cloud clients [RTSS09]. Since this data often contains sensitive information (e.g.,
personal conversations, medical information and organizational secrets), it is prudent for the users
to encrypt their data before storing it in the cloud. Recent advances in fully homomorphic en-
cryption (FHE) [Gen09b, vDGHV10, BV11b, BV11a, GH11a, BGV12] make it possible to perform
arbitrary computations on encrypted data, thus enabling the prospect of personal computers and
mobile devices as trusted but weak interfaces to a powerful but untrusted cloud on which the bulk
of computing is performed.

FHE is only suitable in settings where the computations involve a single user, since it requires
inputs to be encrypted under the same key. However, there are many scenarios where users, who
have uploaded their large data stores to the cloud in encrypted form, then decide to compute some
joint function of their data. For example, they may wish the cloud to compute joint statistical
information on their databases, locate common files in their collections, run a computational agent
to reach a decision based on their pooled data (without leaking anything but the final decision), or
generally, in contexts where multiple (mutually distrusting) users need to pool together their data
to achieve a common goal.

The multiparty scenario is significantly more complex, and comes with a set of natural but
stringent requirements. First, the participants involved in the computation and the function to
be computed may be dynamically chosen on-the-fly, well after the data has been encrypted and
uploaded to the cloud. Secondly, once the function is chosen, we should not expect the users to be
online all the time, and consequently it is imperative that the cloud be able to perform the bulk of
this computation (on the encrypted data belonging to the participants) non-interactively, without
consulting the participants at all. Finally, all the burden of computation should indeed be carried
by the cloud: the computational and communication complexity of the users should depend only on
the size of the individual inputs and the output, and should be independent of both the complexity
of the function computed and the total number of users in the system, both of which could be very
large.

On-the-Fly Multiparty Computation. Consider a setting with a large universe of computa-
tionally weak users and a powerful cloud. An on-the-fly multiparty computation protocol proceeds
thus:

1. The numerous users each encrypt their data and upload them to the cloud, unaware of the
identity or even the number of other users in the system. Additional data may arrive directly
to the cloud, encrypted under users’ public keys (e.g., as encrypted emails arriving to a
cloud-based mailbox).

2. The cloud decides to evaluate an arbitrary dynamically chosen function on the data of ar-
bitrary subset of users chosen on-the-fly. (The choice may be by some users’ request, or
as a service to compute the function on the data of parties fulfilling some criterion, or by
a need autonomously anticipated by the cloud provider, etc.) The cloud can perform this

1

95
Approved for Public Release; Distribution Unlimited.

computation non-interactively, without any further help from the users. The result is still
encrypted.

3. The cloud and the subset of users whose data was used in the computation interact in a
decryption phase. At this point the users retroactively approve the choice of function and the
choice of peer users on whose data the function was evaluated, and cooperate to retrieve the
output.

Crucially, the computation and communication of all the users (including the cloud) in the
decryption phase should be independent of both the complexity of the function computed, and the
size of the universe of parties (both of which can be enormous). Instead, the effort expended by
the cloud and the users in this phase should depend only on the size of the output and the number
of users who participated in the computation. Also crucially, the users need not be online at all
during the bulk of the computation; they need to “wake up” only when it is time to decrypt the
output.

We call this an on-the-fly multiparty computation (or on-the-fly MPC in short) to signify the fact
that the functions to be computed on the encrypted data and the participants in the computation
are both chosen on-the-fly and dynamically, without possibly even the knowledge of the participants.
Protocols following this framework have additional desirable features such as the ability for users
to “join” a computation asynchronously.

Possible Approaches (and Why They Do Not Work). The long line of work on secure
multiparty computation (MPC) [GMW87, BGW88, CCD88, Yao82] does not seem to help us
construct on-the-fly MPC protocols since the computational and communication complexities of
all the parties in these protocols depends polynomially on the complexity of the function being
computed.1 In contrast, we are dealing with an asymmetric setting where the cloud computes a
lot, but the users compute very little. (Nevertheless, we will use the traditional MPC protocols to
interactively compute the decryption function at the end.)

Fully homomorphic encryption (FHE) is appropriate in such an asymmetric setting of computing
with the cloud. Yet, traditional FHE schemes are single-key in the sense that they can perform
(arbitrarily complex) computations on inputs encrypted under the same key. In our setting, since
the parties do not trust each other, they will most certainly not want to encrypt their inputs using
each other’s keys. Nevertheless, Gentry [Gen09a] proposed the following way of using single-key
FHE schemes in order to do multiparty computation: first, the parties run a (short) MPC protocol
to compute a joint public key, where the matching secret key is secret-shared among all the parties.
The parties then encrypt their inputs under the joint public key and send the ciphertexts to the
cloud who then uses the FHE scheme to compute an encryption of the result. Finally, the parties run
yet another (short) MPC protocol to recover the result. A recent work by Asharov et al. [AJL+12]
extends this schema and makes it efficient in terms of the concrete round, communication and
computational complexity.

This line of work does not address the dynamic and non-interactive nature of on-the-fly MPC.
In particular, once a subset of parties and a function are chosen, the protocols of [Gen09a, AJL+12]
require the parties to be online and run an interactive MPC protocol to generate a joint public key.
In contrast, we require that once the function and a subset of parties is chosen, the cloud performs

1The works of Damg̊ard et al. [DIK+08, DIK10] are an exception to this claim. However, it is not clear how to
build upon these results to address the dynamic and non-interactive nature of on-the-fly MPC.

2

96
Approved for Public Release; Distribution Unlimited.

the (expensive) computations non-interactively, without help from any of the users. It would
also be unsatisfactory to postpone the (lengthy) computation of the function until the interactive
decryption phase; indeed, we require that once the users “wake up” for the decryption phase, the
running time of all parties is independent of the complexity of the function being computed. Thus,
even the feasibility of on-the-fly MPC is not addressed by existing techniques.

1.1 Our Results and Techniques

We present a new notion of fully homomorphic encryption (FHE) that we call a multikey FHE
that permits computation on data encrypted under multiple unrelated keys; a new construction of
multikey FHE based on the NTRU encryption scheme (originally proposed by Hoffstein, Pipher
and Silverman [HPS98]); and a new method of achieving on-the-fly multiparty computation (for
any a-priori bounded number of users) using a multikey FHE scheme. Although the number of
users involved in any computation has to be bounded in our solution, the total number of users in
the system is arbitrary.

Multikey FHE. An N -key fully homomorphic encryption scheme is the same as a regular FHE
scheme with two changes. First, the homomorphic evaluation algorithm takes in polynomially many
ciphertexts encrypted under at most N keys, together with the corresponding evaluation keys, and
produces a ciphertext. Second, in order to decrypt the resulting ciphertext, one uses all the involved
secret keys. As mentioned above, one of our main contributions is a construction of N -key FHE
for any N ∈ N from the NTRU encryption scheme. We give an overview of our construction below
(in Section 1.2) and refer the reader to Section 3.3 for more details.

Our NTRU-based construction raises a natural question: can any other FHE schemes be made
multikey? We show that any FHE scheme is inherently a multikey FHE for a constant number
of keys (in the security parameter), i.e. it can homomorphically evaluate functions on ciphertexts
encrypted under at most a constant number of keys.2 Furthermore, we show that the Ring-LWE
based FHE scheme of Brakerski and Vaikuntanathan [BV11b] is multikey homomorphic for a log-
arithmic number of keys, but only for circuits of logarithmic depth. This arises from the fact that
when multiple keys are introduced, it is no longer clear how to use relinearization or squashing to
go beyond somewhat homomorphism. We refer the reader to Section 3.2 for more details.

On-the-Fly MPC from Multikey FHE. A multikey FHE scheme is indeed the right tool to
perform on-the-fly MPC as shown by the following simple protocol: the users encrypt their inputs
using their own public keys and send the ciphertexts to the cloud, the cloud then computes a
dynamically chosen function on an arbitrary subset of parties using the multikey property of the
FHE scheme, and finally, the users together run an interactive MPC protocol in order to decrypt.
Note that the users can be offline during the bulk of the computation, and they need to participate
only in the final cheap interactive decryption process. Note also that participants in the protocol
need not be aware of the entire universe of users, but only those users that participate in a joint
computation. This simple protocol provides us security against a semi-malicious collusion [AJW11,
AJL+12] of the cloud with an arbitrary subset of parties. We then show how to achieve security

2This construction was originally suggested to us by an anonymous STOC 2012 reviewer; we include it here for
completeness.

3

97
Approved for Public Release; Distribution Unlimited.

against a malicious adversary using zero-knowledge proofs and succinct argument systems [Kil92,
Kil95, Mic94, GKR08, GLR11, BCCT12, BCCT13].

We further remark that the computation of the decryption function can itself be outsourced to
the cloud. In particular, using the cloud-assisted MPC protocol of Asharov et al. [AJL+12] yields
an on-the-fly MPC protocol with one offline round and 5 online rounds (for decryption).

We give an overview of our construction below (in Section 1.3) and refer the reader to Section 4
for more details.

Completely Non-Interactive On-the-Fly MPC? We know from the work of Halevi, Lindell,
and Pinkas [HLP11] that in the non-interactive setting, the server can always evaluate the circuit
multiple times, keeping some parties inputs but plugging in fake inputs of its choosing for the other
parties. However, even if we accept this as the ideal functionality, we show that a non-interactive
online phase cannot be achieved by drawing on the impossibility of general program obfuscation
as a virtual black-box with single-bit output [BGI+01]. Thus, our notion is qualitatively “the best
possible” in terms of interaction. Our techniques in showing this negative result are inspired by
those of van Dijk and Juels [vDJ10]. We refer the reader to Section 4.3 for more details.

1.2 (Multikey) Fully Homomorphic Encryption from NTRU

The starting point for our main construction of multikey FHE is the NTRU encryption scheme of
Hoffstein, Pipher, and Silverman [HPS98], with the modifications of Stehlé and Steinfeld [SS11b].
NTRU encryption is one of the earliest lattice-based cryptosystems, together with the Ajtai-Dwork
cryptosystem [AD97] and the Goldreich-Goldwasser-Halevi cryptosystem [GGH97]. One of our
most important contributions is to show that NTRU can be made fully homomorphic (for a single
key)3 and moreover, that the resulting scheme can handle homomorphic evaluations on ciphertexts
encrypted under any number of different and independent keys.

We find this contribution particularly interesting because NTRU was originally designed to be an
efficient public-key encryption scheme, meant to replace RSA in applications where computational
efficiency is at a premium (e.g. in applications that run on smart cards and embedded systems).
Although the transformation to fully homomorphic encryption degrades the efficiency of the scheme,
we believe it to be a leading candidate for a practical FHE scheme. Therefore, we view this as an
important contribution of independent interest.

In this section we give an overview of our construction, and refer the reader to Section 3.3 for
more details.

NTRU Encryption. We describe the modified NTRU scheme of Stehlé and Steinfeld [SS11b],
which is based on the original NTRU cryptosystem [HPS98]. The scheme is parametrized by the
ring R

def= Z[x]/〈xn + 1〉, where n is a power of two, an odd prime number q, and a B-bounded
distribution χ over R, for B � q. By “B-bounded”, we mean that the magnitude of the coefficients
of a polynomial sampled from χ is guaranteed to be less than B. We define Rq

def= R/qR, and use
[·]q to denote coefficient-wise reduction modulo q into the set

{
−

⌊ q
2

⌋
, . . . ,

⌊ q
2

⌋}
.

3The observation that NTRU can be made single-key fully homomorphic was made concurrently by Gentry et
al.[GHL+11].

4

98
Approved for Public Release; Distribution Unlimited.

• Keygen(1κ): Key generation samples “small” polynomials f ′, g ← χ ands sets f
def= 2f ′ + 1

so that f (mod 2) = 1. If f is not invertible in Rq, it resamples f ′. Otherwise, it computes
the inverse f−1 of f in Rq and sets

sk = f and pk =
[
2gf−1

]
q

• Enc(pk,m): To encrypt a bit m ∈ {0, 1}, the encryption algorithm samples “small” polyno-
mials s, e← χ, and outputs the ciphertext

c = [hs + 2e + m]q

• Dec(sk, c): To decrypt a ciphertext c, the decryption algorithm computes µ = [fc]q and
returns µ (mod 2).

Correctness follows from a few simple observations. First note that [fc]q = [2gs + 2fe + fm]q.
Furthemore, since the elements g, s, f, e were all sampled from a B-bounded distribution and B � q,
the magnitude of the coefficients in 2gs + 2fe + fm is smaller than q/2, so there is no reduction
modulo q: in other words, [2gs + 2fe + fm]q = 2gs + 2fe + fm. Therefore, µ = 2gs + 2fe + fm.
Taking modulo 2 yields the message m since by construction, f ≡ 1 (mod 2).

Multikey Homomorphism. We now briefly describe the (multikey) homomorphic properties of
the scheme and the challenges encountered when converting it into a fully homomorphic encryption
scheme.

Let c1 = [h1s1 + e1 + m1]q and c2 = [h2s2 + e2 + m2]q be ciphertexts under two different

keys h1 =
[
2g1f

−1
1

]
q

and h2 =
[
2g2f

−1
2

]
q
, respectively. We claim that cadd

def= [c1 + c2]q and

cmult
def= [c1c2]q decrypt to m1 + m2 and m1m2 respectively, under the joint secret key f1f2.

Indeed, notice that:

f1f2(c1 + c2) = 2 (f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 + m2)
= 2eadd + f1f2(m1 + m2)

for a slightly larger noise element eadd. Similarly,

f1f2(c1c2) = 2(2g1g2s1s2 + g1s1f2(2e2 + m2) + g2s2f1(2e1 + m1)+
f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

= 2emult + f1f2(m1m2)

for slightly larger noise element emult. This shows that the ciphertexts cadd
def= [c1 + c2]q and

cmult
def= [c1c2]q can be correctly decrypted to the sum and the product of the underlying messages,

respectively, as long as the error does not grow too large.
Extending this to circuits, we notice that the secret key required to decrypt a ciphertext c

that is the output of a homomorphic evaluation on ciphertexts encrypted under N different keys,

is
N∏

i=1

fdi
i , where di is the degree of the ith variable in the polynomial function computed by the

5

99
Approved for Public Release; Distribution Unlimited.

circuit. Thus, decrypting a ciphertext that was the product of a homomorphic evaluation requires
knowing the circuit! This is unacceptable even for somewhat homomorphic encryption.

We employ the relinearization technique of Brakerski and Vaikuntanathan [BV11a], to essen-
tially reduce the degree from di to 1, so that the key needed to decrypt the evaluated ciphertext is

now
N∏

i=1

fi. This guarantees that decryption is dependent on the number of keys N but indepen-

dent of the circuit computed. After using relinearization, we can show that the resulting scheme is
multikey somewhat homomorphic for ≈ nδ keys and circuits of depth ≈ log log q − δ log n for any
δ ∈ (0, 1).

From (Multikey) Somewhat to Fully Homomorphic Encryption. Once we obtain a (mul-
tikey) somewhat homomorphic encryption scheme, we can apply known techniques to convert it
into a (multikey) fully homomorphic scheme. In particular, we follow the original template of our
work [LTV12] and use modulus reduction [BV11a, BGV12] to increase the circuit depth that the
scheme can handle in homomorphic evaluation. This yields a leveled homomorphic scheme for N
keys that can evaluate circuits of depth D as long as ND ≈ log q. For any number of keys N and
any depth D, we can set q to be large enough to guarantee the successful homomorphic evaluation
of depth-D circuits on ciphertexts encrypted under N different keys.

Theorem 1.1 (Informal). For all N ∈ N and D ∈ N, there exists a leveled homomorphic encryption
scheme that can homomorphically evaluate depth-D circuits on ciphertext encrypted under at most
N different keys. The size of the keys and ciphertexts in the scheme grow polynomially with N and
D.

Finally, using an analog of Gentry’s bootstrapping theorem [Gen09b, Gen09a] for the multikey
setting, we can convert the leveled homomorphic scheme into a fully homomorphic scheme, in which
the algorithms are independent of the circuit depth D (albeit with an additional circular security
assumption). On the other hand, we are unable to remove the dependence on the number of keys
N , and therefore obtain a scheme that is fully homomorphic with respect to the depth of circuits
it can evaluate, but “leveled” with respect to the number of different keys it can handle.

We remark that using the recent noise-management technique of Brakerski [Bra12], it is possible
to obtain a simpler leveled homomorphic scheme, based on a weaker security assumption. This was
already noted in the follow-up work of Bos et al. [BLLN13]. In another recent work, Gentry, Sahai,
and Waters [GSW13] show how to remove the required evaluation key, yielding an even simpler
scheme.

Security. Stehlé and Steinfeld [SS11b] showed that the security of the modified NTRU encryption
scheme can be based on the Ring-LWE assumption of Lyubashevsky et al., which can be reduced
to worst-case hard problems in ideal lattices [LPR10]. To prove the security of NTRU, Stehlé and
Steinfeld first show that the public key h =

[
2gf−1

]
q

is statistically close to uniform over the ring
R if f ′ and g are sampled from a discrete Gaussian with standard deviation poly(n)

√
q (which can

be shown to be a poly(n)
√

q-bounded distribution). Unfortunately, if we sample f ′ and g from
this distribution the error in a single homomorphic operation would grow large enough to cause
decryption failures. We must therefore make the assumption that the public key h =

[
2gf−1

]
q

is

6

100
Approved for Public Release; Distribution Unlimited.

computationally indistinguishable4 from uniform over R when f ′ and g are sampled from a discrete
Gaussian that is B-bounded for B � q.

Ultimately, we arrive at the following theorem.

Theorem 1.2 (Informal). For all N ∈ N, there exists a fully homomorphic encryption scheme
that can perform homomorphic evaluation on ciphertext encrypted under at most N different keys.
The size of the keys and ciphertexts in the scheme grow polynomially with N . The security of the
scheme is based on the Ring-LWE assumption, the assumption that the public key is pseudorandom,
and the assumption that the scheme is weakly circular secure.

In a follow-up work, Bos et al. [BLLN13] show how to apply Brakerski’s techniques [Bra12] to
maintain the fully homomorphic properties of the scheme while sampling the elements f ′ and g
from a discrete Gaussian with standard deviation poly(n)

√
q, as in the work of Stehlé and Steinfeld

[SS11b]. This yields an NTRU-based FHE scheme that is secure under the RLWE assumption alone.
However, as far as we know, this scheme is multikey for only a constant number of parties, which
is an inherent property of any FHE scheme (see Section 3.2.1).

1.3 On-The-Fly MPC from Multikey FHE

Once we have constructed multikey FHE for any number of keys, we can construct on-the-fly MPC.
The following gives an informal outline of our protocol.

Offline Phase: The clients sample independent key pairs (pki, ski, eki), encrypt their input under
their corresponding public key: ci ← Enc(pki, xi), and send this ciphertext to the server along
with the public and evaluation keys (pki, eki).

Online Phase: Once a function has been chosen, together with a corresponding subset of com-
puting parties V :

Step 1: The server performs the multikey homomorphic evaluation of the desired circuit on
the corresponding ciphertexts, and broadcasts the evaluated ciphertext to all computing
parties (i.e. all parties in V).

Step 2: The computing parties (i.e. parties in V) run a generic MPC protocol to decrypt
the evaluated ciphertext using their individual secret keys ski.

Observe that the computation of the decryption function in Step 2 of the online phase can itself
be delegated to the server. In particular, if we instantiate the decryption protocol using the cloud-
assisted MPC protocol of Asharov et al. [AJW11, AJL+12] we obtain a round-efficient solution:
the overall protocol has an online phase of only 5 rounds.

1.3.1 Protocol Security

We show that the above protocol is secure against semi-malicious adversaries [AJW11, AJL+12],
who follow the protocol specifications (like semi-honest adversaries) but choose their random coins
from an arbitrary distribution (like malicious adversaries). We then show how to modify the
protocol to achieve security against malicious adversaries. We make three modifications, described
below.

4It is not difficult to see that with our setting of parameters, the distribution of the public key is not statistically
close to uniform. We must therefore rely on computational indistinguishability.

7

101
Approved for Public Release; Distribution Unlimited.

Modifying the Decryption Protocol. The first modification we make is to change the de-
cryption protocol in Step 2 of the online phase to first check that the secret key being used is a
valid secret key for the corresponding public and evaluation keys. This ensures that if decryption
is successful, then in particular, a corrupted party knows a valid secret key s̃ki. This secret key
binds the corrupted party to the input x̃i = Dec

(
s̃ki, c̃i

)
, which by semantic security of the FHE,

must be independent of the honest inputs.
Once again, we note that the computation of this function can be delegated to the server using

the cloud-assisted protocol of Asharov et al. [AJW11, AJL+12], yielding a 5-round online phase.

Adding Zero-Knowledge Proofs. We further require that in the offline phase, each party create
a non-interactive zero-knowledge proof πenc

i showing that the ciphertext ci is well-formed (i.e. that
there exists plaintext xi and randomness si such that ci = Enc(pki, xi ; si). This guarantees that for
a corrupted party, Dec

(
s̃ki, c̃i

)
6= ⊥ and thus the party really “knows” an input x̃i. Furthermore,

it guarantees that the ciphertexts ci are fresh encryptions, which is important in our setting of
fully homomorphic encryption where we must ensure that the error stays low in a homomorphic
evaluation.

While constructions of NIZK arguments are known for all of NP [GOS06, GOS12], using these
constructions requires expensive NP reductions. To avoid this, in Section 4.2.3 we show how to
construct an efficient NIZK argument system, secure in the random oracle model, for proving the
well-formedness of a ciphertext in the NTRU-based multikey FHE scheme (the scheme we use to
instantiate the generic multikey FHE scheme in our on-the-fly MPC construction).

Adding Verification of Computation. Finally, we must also rely on a succinct argument
system [Kil92, Kil95, Mic94, GKR08, GLR11, BCCT12, BCCT13] to ensure that the server
performs the homomorphic computation correctly. Due to the dynamic nature of our on-the-
fly model, we are unable to use verifiable computation protocols in the pre-processing model
[GGP10, CKV10, AIK10] or succinct arguments with a reference string that depends on the circuit
being computed [Gro10, Lip12, GGPR13, PHGR13, Lip13]. These would require the clients to per-
form some pre-computation dependent on the circuit to be computed before knowing the circuit, or
to interact with the server after a function has been selected and compute in time proportional to
the circuit-size of the function. Indeed, the beauty of our on-the-fly MPC model is that the server
can choose any function dynamically, “on-the-fly”, and homomorphically compute this function
without interacting with the clients, who additionally, compute in time only polylogarithmically in
the size of any function being computed.

We show how to guarantee verification of computation in two different cases.

Verification for Small Inputs: When the total size of the inputs (and therefore the ciphertexts)
is small enough to be broadcasted to all parties, it suffices for the server to use any of the
succinct arguments of [Kil92, Kil95, Mic94, GKR08, GLR11, BCCT12, BCCT13] to prove
that it carried out the computation correctly as specified. Along with this argument, the
server broadcasts the ciphertexts ci and public and evaluations keys (pki, ski) for all parties
in V . With this information, the computing parties can verify the argument before engaging
in the decryption protocol.

Verification for Large Inputs: In the case when the total size of the inputs (and therefore the
ciphertexts) is too large to be broadcasted to all parties, then we additionally require the

8

102
Approved for Public Release; Distribution Unlimited.

parties to sample a hash key hki for a collision-resistant hash function, and compute a digest
di of the ciphertext ci. Each party then sends the tuple (pki, eki, ci, π

enc
i , hki, di) to the server

in the offline phase. It is then sufficient for the server to broadcast the tuples (pki, eki, hki, di)
and a succinct argument for the NP language:

“there exist c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N such that di = Hhki
(c̃i) and

c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)) and π̃enc
i is a valid proof”.

If the succinct argument is additionally a proof of knowledge, as in the case of CS proofs [Mic94]
under Valiant’s analysis [Val08], and the SNARKs of Bitansky et al. [BCCT12, BCCT13],
then we are guaranteed that the server actually “knows” such c̃1, π̃

enc
1 , . . . , c̃N , π̃enc

N whenever
it successfully convinces the clients.

Putting everything together, we arrive at the following theorem.

Theorem 1.3 (Informal). There exists an on-the-fly MPC protocol in the CRS-model with the
following properties:

• Achieves security against malicious corruptions of an arbitrary subset of clients and possibly
the server, under the Ring-LWE assumption, the assumption that the public key in the (modi-
fied) NTRU cryptosystem [HPS98, SS11b] is pseudorandom for a special setting of parameters,
and the existence of zero-knowledge proofs and a secure succinct argument system.

• The offline phase runs in one (asynchronous) round of unidirectional communication from
the parties to the server. The online phase runs in 5 rounds.

• The communication complexity of the online phase and the computation time of the computing
parties therein is polylogarithmic in the size of the computation and the total size of the inputs,
and linear in the size of their own input and the size of the output.

• The computation time of the server is polynomial in the size of the circuit.

1.4 Related Work

We briefly survey related works in the areas of fully homomorphic encryption, MPC from homo-
morphic encryption, and MPC with the aid of a “cloud” server.

Fully Homomorphic Encryption. The notion of fully homomorphic encryption was first pro-
posed by Rivest, Adleman, and Dertouzos [RAD78], but was only recently constructed in the
groundbreaking result of Gentry [Gen09b, Gen09a]. In subsequent years, many improvements and
new constructions have appeared in the literature [vDGHV10, BV11b, BV11a, BGV12, Bra12,
BLLN13, GSW13, BV14].

Gentry’s first construction [Gen09b, Gen09a] followed the following blueprint: first, he con-
structed a somewhat homomorphic encryption scheme working over ideal lattices, that was able
to perform a limited number of evaluations. He then proved a bootstrapping theorem, showing
that if a somewhat homomorphic scheme can homomorphically evaluate its own decryption circuit,
then it can be converted into a fully homomorphic scheme. Unfortunately, Gentry’s somewhat
homomorphic scheme cannot evaluate its own decryption circuit and is therefore not bootstrap-
pable. Nevertheless, he was able to construct a boostrappable scheme by squashing the decryption

9

103
Approved for Public Release; Distribution Unlimited.

circuit sufficiently for the scheme to be able to homorphically evaluate it. Using this squashing
technique required making an additional security assumption, namely, the sparse subset sum (SSS)
assumption.

van Dijk et al. [vDGHV10] subsequently showed how to construct FHE over the integers, and
Brakerski and Vaikuntanathan [BV11b] showed how to construct FHE from the Ring-LWE as-
sumption of Lyubashevsky, Regev, and Peikert [LPR10]. Both of these works use squashing and
bootstrapping, as in Gentry’s original blueprint.

Gentry and Halevi [GH11a] showed how to use depth-3 arithmetic circuits and a hybrid of
somewhat homomorphic encryption and multiplicatively homomorphic encryption (e.g. ElGamal
encryption [Gam84]) to construct FHE without the use of squashing, and therefore without assum-
ing the hardness of the SSS problem. In a separate work, Brakerski and Vaikuntanathan showed
how to construct FHE from Regev’s (standard) LWE assumption [Reg05, Reg09]. In this work,
they introduced the techniques of relinearization and modulus reduction, which allowed them to
forgo squashing as well. Gentry, Brakerski, and Vaikuntanathan [BGV12] later showed a refinement
of these techniques into so-called key-switching and modulus switching, and showed how to build
“leveled” homomorphic schemes that can evaluate circuits of any a-priori known depth without the
use of squashing or bootstrapping. Formally, they show that for every D ∈ N, there exists a homo-
morphic scheme E(D) that is able to homomorphically evaluate circuits of depth D. Their technique
involves switching to a smaller modulus after every level in a homomorphic computation, therefore
requiring a fairly large modulus at the start of the computation. This required basing security of
their scheme on the hardness of solving approximate-SVP to within sub-exponential factors. Coron
et al. [CNT12] show how to apply the modulus reduction technique over the integers.

In work subsequent to ours, Brakerski [Bra12] showed a new noise-management technique that
forwent the modulus switching step, allowing the use of a single modulus that is much smaller than
the one needed in the BGV scheme. Security of Brakerski’s scheme can be based on the hardness
of solving approximate-SVP to within quasi-polynomial factors, a much weaker assumption. Bos
et al. [BLLN13] show how to apply Brakerki’s noise-management technique to the (multikey) FHE
described in this dissertation [LTV12], based on the NTRU encryption scheme of Hofftein, Pipher,
and Silverman [HPS98], with the modifications of Stehlé and Steinfeld [SS11b]. They further show
that using these techniques, one can base security of the resulting FHE scheme on the Ring-LWE
assumption alone, by using Stehlé and Steinfeld’s original analysis. Their construction, however, is
multikey for only a constant number of keys, which we show is an inherent property of any FHE
scheme. Coron et al. [CLT14] show how to apply Brakerski’s techniques over the integers.

Finally, Gentry et al. [GSW13] show how to construct a leveled homomorphic scheme that does
not require the use an evaluation key to perform homomorphic computation, as do all previous
schemes. Brakerski and Vaikuntanathan [BV14] show how to leverage the techniques of Gentry
et al. [GSW13] to build a leveled homomorphic scheme that is as secure as standard (non-FHE)
LWE-based public-key encryption.

Many other works study the efficiency of the schemes described above and present several
optimizations [SV10, SS11a, GH11b, CMNT11, GHPS12, GHS12a, GHS12b, GHS12c, CCK+13,
SV14].

MPC from Homomorphic Encryption. The basic idea of using threshold homomorphic en-
cryption (e.g. Paillier encryption [Pai99]) to boost the efficiency of MPC protocols was first pre-
sented by Cramer, Damg̊ard, and Nielsen [CDN01], predating the existence of fully homomorphic

10

104
Approved for Public Release; Distribution Unlimited.

encryption (first showed by Gentry in 2009 [Gen09b, Gen09a]). They show that if the parties have
access to a public key for an additively homomorphic encryption scheme, and if they also have a
corresponding secret key secret-shared among them, then they can evaluate any Boolean circuit
“under the covers” of the encryption. Using the homomorphic properties of the scheme, the parties
can locally evaluate all addition gates. Cramer et al. additionally show a short, interactive subpro-
tocol for evaluating multiplication gates. After showing the first construction of fully homomorphic
encryption, Gentry used the same template to show a generic MPC construction from any FHE
[Gen09a].

In a work concurrent to ours, Myers, Sergi, and Shelat [MSS13] show a black-box construction
of MPC from any threshold FHE scheme. Their main hurdle is devising a way for parties to prove
plaintext knowledge of a ciphertext. To this end, they present a 2-round protocol for proving
plaintext knowledge, which they construct from any circuit-private FHE scheme. Their protocol
is not zero-knowledge [GO94], but it conserves the semantic security of the ciphertext in question.
They also show how to construct threshold FHE using the scheme of van Dijk et al. [vDGHV10]
over the integers. While the communication of their protocol is independent of the circuit-size of the
function being computed, their protocol is not computation-efficient: parties compute proportional
to the complexity of the function.

Other works by Damg̊ard et al. [BDOZ11, DPSZ12, DKL+13] build MPC from “semi-
homomorphic” and somewhat homomorphic encryption. Their protocols require all parties to
compute proportional to the complexity of the function at hand, and require interaction between
parties at every gate. However, they display very good concrete efficiency. A work of Choudhury
et al. [CLO+13] shows how to trade computation efficiency for communication efficiency. Their
protocol is parametrized by an integer L. Setting L = 2 yields a classic MPC protocol, in which
interaction is required for computing every gate. As L increases, interaction is required less fre-
quently, and only to “refresh” the computation after an increasing number of steps. Thus, at their
heart of their construction lies an interactive “bootstrapping” protocol that refreshes ciphertexts
during the evaluation.

Finally, a recent work by Garg et al. [GGHR14] shows how to achieve 2-round MPC in the CRS
model from indistinguishability obfuscation (iO) [BGI+12]. As an optimization, they use multikey
FHE (as defined in this work) to construct 2-round MPC with communication complexity that is
independent of the circuit being computed. Though an efficient construction of iO is known for all
circuits [GGH+13b], its security is based on assumptions on multilinear maps [GGH13a] that are
not very well understood yet.

MPC on the Cloud. The idea of using a powerful cloud server to alleviate the computational
efforts of parties in an MPC protocol was recently explored in the work on “server-aided MPC” by
Kamara, Mohassel, and Raykova [KMR11]. Their protocols, however, require some of the parties
to do a large amount of work, essentially proportional to the size of the computation.

Halevi, Lindell, and Pinkas [HLP11] recently considered the model of “secure computation on
the web” wherein the goal is to minimize interaction between the parties. While their definition
requires absolutely no interaction among the participants of the protocol (they only interact with
the server), they show that this notion can only be achieved for a small class of functions. Our
goal, on the other hand, is to construct MPC protocols for arbitrary functions.

11

105
Approved for Public Release; Distribution Unlimited.

1.5 Roadmap

We have given a high-level overview of our results. Detailed descriptions of all the results highlighted
in this introduction can be found in the corresponding sections.

In Section 2 we present preliminaries, definitions and technical tools used throughout the re-
maining chapters.

In Section 3, we define multikey FHE and describe several constructions. In particular, we show
that any FHE is inherently multikey for a constant number of keys, and that the ring-based FHE
scheme of Brakerski and Vaikuntanathan is somewhat homomorphic for a logarithmic number of
keys. More importantly, we show that the NTRU encryption scheme can be made multikey fully
homomorphic for any number of keys.

In Section 4 we show how to construct on-the-fly MPC from multikey FHE. We show a basic
protocol that is secure against semi-malicious corruptions, and then describe how to modify it
to achieve security against malicious adversaries. We also show how to construct efficient NIZKs
(in the random oracle model) for proving plaintext knowledge for the NTRU-based FHE scheme
described in Section 3. Finally, we show that a completely non-interactive solution is impossible.

2 Definitions and Preliminaries

2.1 Notation

In this work, we use the following notation. We use κ to denote the security parameter. For an
integer n, we use the notation [n] to denote the set [n] def= {1, . . . , n}. For a randomized function
f , we write f(x; r) to denote the unique output of f on input x with random coins r. We write
f(x) to denote a random variable for the output of f(x; r) over uniformly random coins r. For a
distribution or random variable X, we write x← X to denote the operation of sampling a random
x according to X. For a set S, we overload notation and use s ← S to denote sampling s from
the uniform distribution over S. We use y := f(x) to denote the deterministic evaluation of f on
input x with output y. For two distributions, X and Y , we use X

c
≈ Y to mean that X and Y are

computationally indistinguishable, and X
s
≈ Y to mean that they are statistically close.

2.2 Σ-Protocols and Zero-Knowledge Proofs

Σ-Protocols. We recall the notion of gap Σ-protocols [AJW11], a weaker version of Σ-protocols
[CDS94], where honest-verifier zero-knowledge holds for all statements in some NP relation Rzk

but soundness only holds w.r.t. Rsound ⊇ Rzk. In other words, zero-knowledge is guaranteed for
an honest prover holding a statement in Rzk, but an honest verifier is only convinced that the
statement is in a larger set Rsound ⊇ Rzk.

Definition 2.1 (Gap Σ-Protocol). Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆
{0, 1}∗ × {0, 1}∗, and let Lzk and Lsound be their corresponding NP languages. A gap Σ-protocol
for (Rzk, Rsound) is a 3-step interactive protocol 〈P, V 〉 between a prover P = (P1, P2) and a verifier
V = (V1, V2), with the following syntax:

• (a, st) ← P1(x,w): Given a statement and witness pair (x,w), outputs a message a and a
state string st.

12

106
Approved for Public Release; Distribution Unlimited.

• c ← V1(x, a): Given a statement x and message a, outputs a random challenge c from a
challenge space C.

• z ← P2(st, c): Given a state string st and a challenge c, outputs an answer z.

• b← V2(x, a, c, z): Given a statement x, a message a, a challenge c, and an answer z, outputs
a bit b, i.e. either accepts or rejects the transcript (a, c, z) for statement x.

We require that the following three properties hold:

Completeness: For any (x, w) ∈ Rzk,

Pr

 V2(x, a, c, z) = 1

∣∣∣∣∣∣
(a, st)← P1(x,w)

c← V1(x, a)
z ← P2(st, c)

 = 1

Special Soundness: There exists an ”extractor” such that for any two accepting transcripts (a, c, z)
and (a, c′, z′) for the same statement x with c 6= c′, the extractor outputs a valid witness for
x ∈ Rsound. Formally, there exists a ppt algorithm Ext such that for all x and all (a, c, z) and
(a, c′, z′) such that c 6= c′ and V2(x, a, c, z) = V2(x, a, c′, z′) = 1:

Pr
[

(x,w) 6∈ Rsound

∣∣ w ← Ext(x, a, c, z, c′, z′)
]

= 1

Honest-Verifier Zero Knowledge (HVZK): There exists a ppt simulator Sim that “simu-
lates” valid transcripts without knowing a witness, if it sees the challenge beforehand. For-
mally, there exists ppt algorithm Sim such that for all (x,w) ∈ Rzk and all c ∈ C, we have:[

(a, c, z)
∣∣∣∣ (a, st)← P1(x,w)

z ← P2(st, c)

]
s
≈

[
(a′, c, z′) | (a′, z′)← Sim(x, c)

]
For an NP relation R with corresponding language L, a well-known construction using Σ-

protocols allows a prover to show that either x0 ∈ L or x1 ∈ L without revealing which one holds.
Suppose 〈P, V 〉 is a Σ-protocol for R; we construct a new protocol for proving that either x0 ∈ L
or x1 ∈ L. Let b be such that (xb, wb) ∈ R for some witness wb known to the prover. The
prover chooses c1−b at random from the challenge space C and runs (ab, st) ← P1(xb, wb) and
(a1−b, z1−b)← Sim(x, c1−b). It sends (a0, a1) to the verifier, who returns a challenge c. The prover
computes cb = c− c1−b, runs zb ← P2(st, c) and sends (c0, c1, z0, z1) to the verifier, who checks that
V2(x0, a0, c0, z0) = V2(x1, a1, c1, z1) = 1 and c = c0 + c1. The resulting protocol is called an OR
Σ-protocol. The theorem below modifies this to the setting of gap Σ-protocols.

Theorem 2.1. Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆ {0, 1}∗ ×{0, 1}∗,
and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound). The construction described above is a gap OR
Σ-protocol for (Rzk, Rsound).

13

107
Approved for Public Release; Distribution Unlimited.

Non-Interactive Zero-Knowledge (NIZK). We also recall the notion of non-interactive zero-
knowledge (NIZK) [BFM88]. For our purposes, it is more convenient to use the notion of (same-
string) NIZK arguments from [SCO+01]. This definition and all our constructions that use it can be
extended in the natural way to NIZK proofs, where soundness holds for all unbounded adversaries5.

Definition 2.2 (NIZK). Let R be an NP relation on pairs (x,w) with corresponding language
L = {x | ∃ w s.t. (x,w) ∈ R}. A non-interactive zero-knowledge (NIZK) argument system for R
consists of three algorithms (Setup,Prove, Verify) with syntax:

• (crs, tk)← Setup(1κ): Outputs a common reference string (CRS) crs and a trapdoor key tk to
the CRS.

• π ← Provecrs(x,w): Outputs an argument π showing that R(x,w) = 1.

• 0/1← Verifycrs(x, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prove and Verify without the crs in the subscript when the crs can
be inferred from context. We require that the following three properties hold:

Completeness: For any (x, w) ∈ R,

Pr
[

Verify(x, π) = 1
∣∣ (crs, tk)← Setup(1κ)

π ← Prove(x,w)

]
= 1

Soundness: For any ppt adversary P̃ ,

Pr
[

Verify(x∗, π∗) = 1
x∗ 6∈ L

∣∣∣∣ (crs, tk)← Setup(1κ)
(x∗, π∗)← P̃ (crs)

]
= negl(κ).

Unbounded Zero-Knowledge: There exists a ppt simulator Sim that “simulates” valid proofs
without knowing a witness, but with the aid of the trapdoor key. We start by defining two
oracles.

The Prover Oracle: A query to the prover oracle P(·) consists of a pair (x,w). The oracle
checks if (x,w) ∈ R. If so, it outputs a valid argument Prove(x,w); otherwise it outputs
⊥.

The Simulation Oracle: A query to the simulation oracle SIMtk(·) consists of a pair (x,w).
The oracle checks if (x,w) ∈ R. If so, it ignores w and outputs a simulated argument
Sim(tk, x); otherwise it outputs ⊥.

Formally, we require that for any ppt adversary A, the advantage of A in the following game
is negligible (in κ):

• The challenger samples (crs, tk) ← Setup(1κ) and gives crs to A. The challenger also
samples a bit b← {0, 1}.

5Apart from modifying the soundness condition, in the setting of proofs key generation samples a CRS but not a
trapdoor, and the zero-knowledge simulator first samples a simulated CRS that is computationally indistinguishable
from the real CRS, and a trapdoor to this CRS.

14

108
Approved for Public Release; Distribution Unlimited.

• If b = 0, the adversary A is given access to the prover oracle P(·). If b = 1, A is given
access to the simulation oracle SIMtk(·). In either case, the adversary can adaptively
access its oracle..

• The adversary A outputs a bit b̃.

The advtange of A is defined to be
∣∣∣Pr[b̃ = b]− 1

2

∣∣∣.
Fiat and Shamir [FS86] showed how to convert a Σ protocol 〈P, V 〉 for an NP relation R into

a NIZK argument for R secure in the random oracle model [BR93]. Informally, the CRS contains
a description of a hash function H, which is modeled as a random oracle. To compute a non-
interactive argument, the prover runs (a, st) ← P1(x,w) and obtains the verifier’s challenge by
applying the hash function to a and x: c := H(a, x). It then computes z ← P2(st, c) and sends the
argument π = (a, c, z). The verifier runs V2(x, a, c, z) to verify the argument. The theorem below
modifies this to the setting of gap Σ-protocols.

Theorem 2.2 ([FS86]). Let Rzk and Rsound be two NP relations such that Rzk ⊆ Rsound ⊆ {0, 1}∗×
{0, 1}∗, and let 〈P, V 〉 be a gap Σ-protocol for (Rzk, Rsound). Applying the Fiat-Shamir transform
to 〈P, V 〉 yields a non-interactive zero-knowledge (NIZK) argument system where soundness holds
w.r.t. Rsound and completeness and zero-knowledge hold w.r.t. Rzk, secure in the random oracle
model.

Though secure in the random oracle model, we remark that in some cases standard-model
security of the resulting NIZK appears to be harder to achieve [DJKL12, BDG+13]. In particular,
if the language L is quasi-polynomially hard and the protocol has messages of size polylog(κ) and
is κlog κ-HVZK, then the resulting NIZK cannot be proven sound via a black-box reduction to a
(super-polynomially hard) falsifiable assumption [Nao03].

2.3 Succinct Non-Interactive Arguments: SNARGs and SNARKs

We review the definitions of succinct non-interactive arguments (SNARGs) and succinct non-
interactive arguments of knowledge (SNARKs); we use the formalization of Gentry and Wichs
[GW11], and Bitansky et al. [BCCT12]. As in the work of Bitansky et al., we allow the proof size
to be polynomial in the size of the statement, but require it to be polylogarithmic in the size of the
witness. We also require fast proof verification.

Definition 2.3 (SNARG). Let R be an NP relation on pairs (x, w) with corresponding language
L = {x | ∃ w s.t. (x, w) ∈ R}. A succinct non-interactive argument (SNARG) system for L
consists of three algorithms (Setup,Prove, Verify) with syntax:

• (vrs, priv) ← Setup(1κ): Outputs a verification reference string vrs and a private verification
state priv.

• ϕ← Prove(vrs, x, w): Outputs an argument ϕ showing that R(x, w) = 1.

• 0/1← Verify(priv, x, ϕ): Verifies whether or not the argument ϕ is correct.

We require that the following properties hold:

15

109
Approved for Public Release; Distribution Unlimited.

Completeness: For any (x, w) ∈ R,

Pr
[

Verify(priv, x, ϕ) = 1
∣∣ (vrs, priv)← Setup(1κ)

ϕ← Prove(vrs, x, w)

]
= 1

In addition, Prove(vrs, x, w) runs in time poly(κ, |x| , |w|).

Adaptive Soundness: For any ppt adversary P̃ ,

Pr
[

Verify(priv, x∗, ϕ∗) = 1 ∧
x∗ 6∈ L

∣∣∣∣ (vrs, priv)← Setup(1κ)
(x∗, ϕ∗)← P̃ (vrs)

]
= negl(κ).

Succinctness: The length of the proof and the time required for its verification are polylogarithmic
in the size of the witness, i.e. poly(κ) (poly(|x|) + polylog(|w|)).

Definition 2.4 (SNARK). A SNARG Φ = (Setup,Prove, Verify) is additionally a proof of knowl-
edge, or a succinct non-interactive argument of knowledge (SNARK) if it satisfies the following
stronger definition of soundness:

Adaptive Extractability: There exists an extractor Ext that “extracts” a valid witness from any
valid proof ϕ. Formally, for any ppt adversary P̃ , there exists a ppt algorithm Ext such that:

Pr

 Verify(priv, x∗, ϕ∗) = 1 ∧
R(x∗, w′) = 0

∣∣∣∣ (vrs, priv)← Setup(1κ)
(x∗, ϕ∗)← P̃ (vrs)
w′ ← Ext(x∗, ϕ∗)

 = negl(κ)

Public vs. Private Verifiability. In the case where priv = vrs, we say that the SNARG or
SNARK is publicly verifiable. In this case, anyone can verify all proofs. Otherwise, we say that it is
a designated-verifier SNARG/SNARK, in which case soundness/extractability is only guaranteed
as long as priv remains secret to the prover. In this case, only the party holding priv can verify the
proof.

2.3.1 Delegation of Computation from SNARGs

In delegation of computation we are concerned with at a client C, who wishes to delegate the
computation of a pre-specified polynomial-time algorithm M on an input x, to a worker W . The
client additionally wishes to verify the correctness of the output y returned by W (i.e. verify that
y = M(x)) in time that is significantly smaller than the time required to compute M(x) from
scratch.

SNARGs can be used in this setting as follows: Define the NP language: LM = { (x, y) such that
M(x) = y }. A straight-forward witness to the statement (x, y) ∈ LM consists of the steps taken by
M in a computation of M(x) resulting in the output y. The size of this witness is proportional to
the size of the computation. Using a SNARG guarantees that the size of the proof is polylogaritmic
in the size of the witness, and therefore polylogarithmic in the size of the computation.

2.3.2 Constructions

Gentry and Wichs [GW11] proved that standard-model security of SNARGs with adaptive sound-
ness and proof size sublinear in the witness and statement sizes, cannot be based on any falsifiable
assumption [Nao03]. The constructions we show below either assume a random oracle [BR93] or
most often use a non-falsifiable assumption.

16

110
Approved for Public Release; Distribution Unlimited.

CS Proofs. Kilian [Kil92, Kil95] showed how to perform succinct interactive verification for
any NP language. His solution describes a 4-round protocol, where the prover first constructs
a PCP for the correctness of the computation and then uses Merkle hashes to compress it to a
sufficiently small proof. Micali’s CS proofs [Mic94] apply the Fiat-Shamir transform [FS86] to
Kilian’s protocol, obtaining a non-interactive solution. CS proofs are publicly verifiable SNARGs
(and SNARKs under Valiant’s analysis [Val08]); indeed, the only “setup” required is a description
of a hash function H to use as the random oracle. This can be ensured by letting the vrs be a
random key for a (say) collision-resistant hash function.

Due to its use of the Fiat-Shamir transform, Micali’s solution is only secure in the random
oracle model [BR93]. Unfortunately, several results have shown the implausibility of instantiating
the random oracle in the Fiat-Shamir transform with any explicit hash function [HT98, Bar01,
CGH04, DNRS03, GK03]. In particular, Dachman-Soled et at. [DJKL12, BDG+13] show that
the security of CS proofs (even with non-adaptive soundness) cannot be based on any falsifiable
assumption. On the other hand, it has been shown that the security of the Fiat-Shamir paradigm
can be based on specific non-falsifiable assumptions regarding the existence of robust randomness
condensers for seed-dependent sources [BLV06, DRV12].

Constructions will Small VRS. Bitansky et al. [BCCT12, BCCT13] and Goldwasser et al.
[GLR11] revisit the construction of CS proofs and, based on the works of Di Crescenzo and Lipmaa
[CL08] and Valiant [Val08], show how to construct SNARGs and SNARKs based on a different
non-falsifiable assumption relating to the existence of extractable collision-resistant hash functions.
In these works, the verifier’s entire computation (both in computing its reference string vrs and in
verifying the proof) depends only polylogarithmically in the size of the witness (i.e. the delegated
computation). The SNARGs and SNARKs in these works are designated-verifier.

Allowing a Large VRS. Another series of works [Gro10, Lip12, GGPR13, PHGR13, Lip13]
constructs SNARGs and SNARKs where the verifier’s reference string vrs is allowed to depend on
the circuit being delegated. In particular, Groth’s construction [Gro10] has a VRS of size quadratic
in the circuit size. Lipmaa [Lip12] reduces this size to be quasi-linear, and the works of Gennaro
et al. [GGPR13] and Parno et al. [PHGR13] further reduce it to linear in the circuit size. Lipmaa
[Lip13] refines the construction of Gennaro et al. to reduce the magnitude of the constant in the
size of the VRS. All of these constructions are based on certain number-theoretic non-falsifiable
assumptions.

2.4 Secure Multiparty Computation (MPC)

Let f be an N -input function with single output. A multiparty protocol Π for f is a protocol between
N interactive Turing Machines P1, . . . , PN , called parties, such that for all ~x = (x1, . . . , xN), the
output of Π in an execution where Pi is given xi as input, is y

def= f(~x).

2.4.1 Security in the Ideal/Real Paradigm

Informally, a multiparty protocol Π is secure if after running Π, no colluding set of corrupt parties
can learn anything about an honest player’s input or change the output of an honest party. We
formalize this in the Ideal/Real paradigm (see e.g. [Gol04]).

17

111
Approved for Public Release; Distribution Unlimited.

Ideal and Real Worlds. We define an ideal world in which the computation of f is per-
formed through a trusted functionality F that receives inputs xi from each party Pi, computes
y

def= f(x1, . . . , xN) and gives y to all parties P1, . . . , PN . It is clear that in the ideal world, the
only information that any party learns is its own input and the output y. We also define a real
world in which parties P1, . . . , PN run the protocol Π.

The Network. We assume that the real-world execution of the protocol is performed over a secure
and synchronous network; that is, we assume that parties can reliably send messages to other parties
without these being read or altered in transmission, and that all point-to-point communications
happen at the same time. We also assume that a secure broadcast channel is available to all parties.

The Adversary. In either world, we consider a single adversary that is allowed to corrupt any
subset of t < N parties. An adversary is modeled as an interactive Turing Machine that receives all
messages directed to the corrupted parties and controls the messages sent by them. In this work,
we consider only static adversaries, that is, adversaries that select the subset of corrupted parties
non-adaptively, before any computation is performed. On the other hand, we assume that in each
round of the protocol, the adversary chooses the messages for the corrupted parties adaptively,
based on the entire transcript of the protocol, up to that round.

We remark that our results can be extended to achieve security against rushing real-world
adversaries who, on any given round, choose the messages for the corrupted parties adaptively,
based on the entire transcript of the protocol and the messages of the honest parties on that round.
Note that rushing adversaries correspond to a semi-synchronous model of communication.

Output Distributions. We use IDEALF ,S(~x) to denote the joint output of an ideal-world
adversary S and parties P1, . . . , PN in an ideal execution with functionality F and inputs ~x =
(x1, . . . , xN). Similarly, we use REALΠ,A(~x) to denote the joint output of a real-world adversary
A and parties P1, . . . , PN in an execution of protocol Π with inputs ~x = (x1, . . . , xN).

We say that a protocol Π securely realizes F against the class of adversaries Adv, if for every
real-world adversary A ∈ Adv, there exists an ideal-world adversary S with black-box access to A
such that for all input vectors ~x,

IDEALF ,S(~x)
c
≈ REALΠ,A(~x)

2.4.2 Types of Adversaries

As stated above, in this work we only consider classes of adversaries Adv containing static adversaries
that corrupt any subset of t < N parties. We now describe three different types of adversaries:
malicious, semi-honest, and semi-malicious. The first two are used extensively in the literature,
while the latter was introduced recently by Asharov et al. [AJW11, AJL+12]. Of these, malicious
adversaries are the strongest, and it is our end goal to achieve security against them in all our
protocols.

It is customary to prove security against semi-honest adversaries as a stepping stone to proving
security against malicious adversaries. However, in this work we follow a different path and first
prove security against semi-malicious adversaries. We then show how to modify the protocol at
hand to achieve security against malicious adversaries. For completeness, we describe all three

18

112
Approved for Public Release; Distribution Unlimited.

types of adversaries below and describe how security against one type is related to security against
another.

Semi-Honest Adversaries. A semi-honest adversary, also known as an honest-but-curious ad-
versary, is one that follows the protocol as described (samples randomness from the correct distri-
bution, and computes the specified message at each round), but given its view of the protocol will
try to learn information about honest players’ inputs.

Malicious Adversaries. A malicious adversary is not restricted in how it samples random el-
ements or how it computes its messages at each round. It can sample random elements from
any arbitrary distribution, and compute the messages of corrupted parties in any arbitrary way,
adaptively, according to the partial view it has seen up to that point.

Semi-Malicious Adversaries. Recall that an adversary is modeled as an interactive Turing
Machine (ITM). A semi-malicious adversary is an ITM with an additional witness tape. At each
round ` and for every corrupted party Pj , the adversary must write on the special witness tape,

some witness pair
(
x

(`)
j , r

(`)
j

)
of input and randomness that explains the message m

(`)
j sent by Pj on

that round. More formally, the messages of a corrupted party Pj must match those of the specified

honest protocol when at each round ` party Pj is run with input and randomness
(
x

(`)
j , r

(`)
j

)
.

A semi-malicious adversary can sample random elements from any arbitrary distribution, but it
must follow the correct behavior of the honest protocol with inputs and randomness that it knows.
It is therefore weaker than a malicious adversary, who might not know witnesses for the messages
it sends at every round, but stronger than a semi-honest adversary, whose witnesses at every round
are distributed honestly.

From Semi-Malicious to Malicious Security. Asharov et al. [AJW11, AJL+12] show how to
generically transform a protocol that is secure against semi-malicious adversaries into one that is
secure against malicious adversaries. The idea behind the compiler is to have each party prove in
zero-knowledge that every message it sends follows the honest protocol and is consistent with all
previous messages. In particular, this forces all parties to know witnesses that explain their behavior
at every round. The same compiler works in our security model with one subtlety: instead of using
standard zero-knowledge proofs, the protocol must use zero-knowledge proofs of knowledge. This
is to ensure that the simulator can extract the witness w

(`)
j from the proof sent on round ` by

the malicious adversary on behalf of the corrupted party Pj . We refer the reader to the work of
Asharov et al. [AJW11, AJL+12] for more details.

Finally, we note that unlike the standard GMW compiler from semi-honest security to malicious
security [GMW87], the parties are not required to perform any coin-flipping. This, in particular,
reduces the round complexity of the resulting protocol.

2.5 Fully Homomorphic Encryption (FHE)

We review the definitions of fully and leveled homomorphic encryption.

19

113
Approved for Public Release; Distribution Unlimited.

Definition 2.5 (C-Homomorphic Encryption [Gen09b]). For a class of circuits C, a C-homo-
morphic encryption scheme is a tuple of algorithms E = (Setup,Keygen, Enc, Dec, Eval) with the
following syntax:

• params ← Setup(1κ): For security parameter κ, outputs public parameters params. All other
algorithms, Keygen, Enc, Dec, Eval, implicitly take params as input, even when not explicitly
stated.

• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outpus a public key pk, a secret key
sk, and a (public) evaluation key ek.

• c← Enc(pk,m): Given a public key pk and a message m, outputs a ciphertext c.

• m := Dec(sk, c): Given a secret key sk and a ciphertext c, outputs a message m.

• c := Eval(ek, C, c1, . . . , c`): Given an evaluation key ek, a (description of a) circuit C and `
ciphertexts c1, . . . , c`, outputs a ciphertext c.

We require that for all c ∈ C, all (pk, sk, ek) in the support of Keygen(1κ) and all plain-
texts (m1, . . . ,m`) and ciphertexts (c1, . . . , c`) such that ci is in the support of Enc(pk,mi), if
c := Eval(ek, C, c1, . . . , c`), then Dec(sk, c) = C(m1, . . . ,m`).

Definition 2.6 (Fully Homomorphic Encryption [Gen09b]). An encryption scheme E is fully ho-
momorphic if it satisfies the following properties:

Correctness: E is C-homomorphic for the class C of all circuits.

Compactness: The computational complexity of E’s algorithms is polynomial in the security pa-
rameter κ, and in the case of the evaluation algorithm, the size of the circuit.

We now state the definition of leveled homomorphic encryption from [BGV12], which is a re-
laxation of the original definition of fully homomorphic encryption (Definition 2.6). The main
difference is that Definition 2.6 requires all algorithms (decryption in particular) to be indepen-
dent of the circuit(s) that the scheme can evaluate. Leveled homomorphic encryption relaxes this
definition to let all algorithms (including decryption) depend on the circuit depth D.

Definition 2.7 (Leveled Homomorphic Encryption [BGV12]). Let C(D) be the class of all circuits
of depth at most D (that use some specified complete set of gates). We say that a family of
homomorphic encryption schemes {E(D) : D ∈ Z+} is leveled fully homomorphic if, for all D ∈ Z+,
it satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.

Compactness: The computational complexity of E(D)’s algorithms is polynomial in the security
parameter κ and D, and in the case of the evaluation algorithm, the size of the circuit. We
emphasize that this polynomial must be the same for all D.

20

114
Approved for Public Release; Distribution Unlimited.

2.5.1 Bootstrapping

We remind the reader of the definition of a bootstrappable encryption scheme and present Gentry’s
bootstrapping theorem [Gen09b, Gen09a] that states that a bootstrappable scheme can be converted
into a fully homomorphic one.

Definition 2.8 (Bootstrappable Scheme). Let E = (Keygen, Enc, Dec, Eval) be a C-homomor-phic
encryption scheme, and let fadd and fmult be the augmented decryption functions of the scheme
defined as

f c1,c2
add (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2)

f c1,c2
mult (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2)

E is bootstrappable if
{
f c1,c2
add , f c1,c2

mult

}
c1,c2
⊆ C, namely, if it can homomorphically evaluate fadd

and fmult.

Definition 2.9 (Weak Circular Security). A public-key encryption scheme E = (Keygen, Enc, Dec)
is weakly circular secure if it is IND-CPA secure even for an adversary with auxiliary informa-
tion containing encryptions of all secret key bits: {Enc(pk, sk[i])}i. Namely, no polynomial-time
adversary can distinguish an encryption of 0 from an encryption of 1, even given this additional
information.

Theorem 2.3 (Bootstrapping Theorem). Let E be a bootstrappable scheme that is also weakly
circular secure. Then there exists a fully homomorphic encryption scheme E ′.

2.6 Rings

In this section we introduce preliminaries to our concrete constructions, which are all ring-based.
Some of the discussion in this section is taken verbatim from the work of Brakerski and Vaikun-
tanathan [BV11b].

We work over rings R
def= Z[x]/ 〈φ(x)〉 and Rq

def= R/qR for some degree n = n(κ) integer poly-
nomial φ(x) ∈ Z[x] and a prime integer q = q(κ) ∈ Z. Note that Rq is isomorphic to Zq[x]/ 〈φ(x)〉,
the ring of degree n polynomials modulo φ(x) with coefficients in Zq. Addition in these rings is
done component-wise in their coefficients (thus, their additive group is isomorphic to Zn and Zn

q

respectively), and multiplication is polynomial multiplication modulo φ(x) (and also q, in the case
of the ring Rq). An element in R (or Rq) can be viewed as a degree (n− 1) polynomial over Z (or
Zq). We represent such an element using the vector of its n coefficients. In the case of Rq each
coefficient is in the range {−

⌊ q
2

⌋
, ...,

⌊ q
2

⌋
}. For an element a(x) = a0 + a1x + . . . + an−1x

n−1 ∈ R,
we let ‖a‖∞ = max |ai| denote its `∞ norm.

In this work, we set φ(x) = xn + 1 where n is a power of two, and use distributions over the
ring R

def= Z[x]/ 〈φ(x)〉. For the purpose of homomorphism, the only important property of these
distributions is the magnitude of the coefficients of a polynomial output by the distribution. Hence,
we define a B-bounded distribution to be a distribution over R where the `∞-norm of a sample is
bounded by B.

Definition 2.10. (B-Bounded Polynomial) A polynomial e ∈ R is called B-bounded if ‖e‖∞ ≤
B.

21

115
Approved for Public Release; Distribution Unlimited.

Definition 2.11. (B-Bounded Distribution) A distribution ensemble {χκ}κ∈N, supported over
R, is called B-bounded (for B = B(κ)) if for all e in the support of χκ, we have ‖e‖∞ < B. In
other words, a B-bounded distribution over R outputs a B-bounded polynomial.

The following lemma says that multiplication in the ring Z[x]/ 〈xn + 1〉 increases the norm of
the constituent elements only by a small amount.

Lemma 2.4. Let n ∈ N, let φ(x) = xn + 1 and let R = Z[x]/ 〈φ(x)〉. For any s, t ∈ R,

||s · t|| ≤
√

n · ||s|| · ||t|| and ||s · t||∞ ≤ n · ||s||∞ · ||t||∞

Lemma 2.4 yields the following corollary.

Corollary 2.5. Let n ∈ N, let φ(x) = xn + 1 and R = Z[x]/ 〈φ(x)〉. Let χ be a B-bounded
distribution over the ring R and let s1, . . . , sk ← χ. Then s

def=
∏k

i=1 si is (nk−1Bk)-bounded.

2.6.1 Discrete Gaussians

For any real r > 0 the Gaussian function on Rn centered at c with parameter r is defined as:

∀x ∈ Rn : ρr,c(x) def= e−π‖x−c‖2/r2

Definition 2.12. For any n ∈ N and for any c ∈ Rn and real r > 0, the Discrete Gaussian
distribution over Zn with standard deviation r and centered at c is defined as:

∀x ∈ Zn : DZn,r,c
def=

ρr,c(x)
ρr,c(Zn)

where ρr,c(Zn) def=
∑
x∈Zn

ρr,c(x) is a normalization factor.

We present some elementary facts about the Gaussian distribution. The first fact shows that
the discrete Gaussian distribution over Zn with standard deviation r outputs a (r

√
n)-bounded

polynomial with high probability. This allows us to define a truncated Gaussian distribution that
is (r
√

n)-bounded and statistically close to the discrete Gaussian.

Lemma 2.6 (MR07). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[
||x|| > r

√
n
]
≤ 2−n+1

Using Lemma 2.6 together with the fact that for all x ∈ Rn, ‖x‖ ≥ ‖x‖∞ yields the following
bound.

Lemma 2.7. Let n = ω(log κ). For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[
‖x‖∞ > r

√
n
]
≤ 2−n+1 = negl(κ)

22

116
Approved for Public Release; Distribution Unlimited.

Define the truncated Discrete Gaussian distribution with standard deviation r and centered
at c, denoted by DZn,r,c, to be one that samples a polynomial according to the discrete Gaussian
DZn,r,c and repeats the sampling if the polynomial is not (r

√
n)-bounded. As long as n = ω(log(κ)),

Lemma 2.7 implies that this distribution is statistically close to the discrete Gaussian : DZn,r,c ≈s

DZn,r,c.

The second fact says that the statistical distance between a discrete Gaussian with standard
deviation r and centered at 0, and one centered at c ∈ Zn is at most ‖c‖ /r. In particular, if r is
super-polynomially larger than ‖c‖ then the two distributions are statistically close.

Lemma 2.8. Let n ∈ N. For any real number r > ω(
√

log n), and any c ∈ Zn, the statistical
distance between the distributions DZn,r and DZn,r,c is at most ||c||/r.

Corollary 2.9. Let c ∈ Zn. For any real number r ≥ 2ω(log κ) ‖c‖, the distributions DZn,r and
DZn,r,c are statistically close.

2.6.2 The Ring LWE Assumption

We now describe the Ring Learning With Errors (RLWE) assumption of Lyubaskevsky, Peikert,
and Regev [LPR10]. The RLWE assumption is analogous to the standard Learning With Errors
(LWE) assumption, first defined by Regev [Reg05, Reg09] (generalizing the learning parity with
noise assumption of Blum et al. [BFKL93]).

The RLWEφ,q,χ assumption is that for a random ring element s ← Rq, given any polynomial
number of samples of the form (ai, bi = ai · s+ ei) ∈ R2

q , where ai is uniformly random in Rq and ei

is drawn from the error distribution χ, the bi’s are computationally indistinguishable from uniform
in Rq. We use the Hermite normal form of the assumption, as in [BV11b], where the secret s is
sampled from the noise distribution χ rather than being uniform in Rq. This presentation is more
useful for the purposes of this work and is equivalent to the original up to obtaining one additional
sample [ACPS09, LPR10].

Definition 2.13. (The RLWE Assumption - Hermite Normal Form [LPR10]) For all κ ∈ N,
let φ(x) = φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z be an odd prime
integer, let the ring R

def= Z[x]/ 〈φ(x)〉 and Rq
def= R/qR, and let χ denote a distribution over the

ring R.
The Decisional Ring LWE assumption RLWEφ,q,χ states that for any ` = poly(κ) it holds that

{(ai, ai · s + ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “error polynomials” ei

are sampled from the error distribution χ, and finally, the ring elements ui are uniformly random
over Rq.

We now present a couple of facts about the RLWE assumption. The first says that the assumption
also holds if the error is multiplied by 2 in every sample. This follows immediately from the fact
that q is an odd prime and therefore relatively prime with 2.

Fact 2.10. The RLWEφ,q,χ assumption implies that for any ` = poly(κ),

{(ai, ai · s + 2 · ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] .

where ai, ui are uniformly random in Rq and s, ei are drawn from the error distribution χ.

23

117
Approved for Public Release; Distribution Unlimited.

The second fact says that the assumption also holds if the distinguisher is additionally given
samples with the same parameter aj and different secret key si. This follows from a hybrid argument
that slowly changes the samples, one secret at a time, from RLWE to uniform.

Fact 2.11. The RLWEφ,q,χ assumption implies that for any ` = poly(κ), `′ = poly(κ),

{(aj , aj · si + ei,j)}i∈[`],j∈[`′]
c
≈ {(aj , ui,j)}i∈[`],j∈[`′] .

where aj , ui,j are uniformly random in Rq and si, ei,j are drawn from the error distribution χ.

2.6.3 Choice of Parameters

As already stated above, we will rely of the following specific choices of the polynomial φ(x) and
the error distribution χ. For security parameter κ and a dimension parameter n = n(κ) which is a
power of two:

• We set φ(x) def= xn + 1 where n is a power of two.

• The error distribution χ is the truncated discrete Gaussian distribution DZn,r with standard
deviation r > 0. A sample from this distribution is a (r

√
n)-bounded polynomial e ∈ R.

2.6.4 The Worst-case to Average-case Connection

We state a worst-case to average-case reduction from the shortest vector problem on ideal lattices
to the RLWE problem for our setting of parameters. The reduction stated below is a special case
of the results of [LPR10].

Theorem 2.12 ([LPR10]). Let φ(x) = xn + 1 where n is a power of two. Let r ≥ ω(
√

log n) be a
real number, and let q ≡ 1 (mod 2n) be a prime integer. Let R

def= Z[x]/ 〈φ(x)〉. Then there is
a randomized reduction from 2ω(log n) · (q/r)-approximate R-SVP to RLWEφ,q,χ where χ = DZn,r is
the discrete Gaussian distribution.

Solving approximate R-SVP to within a sub-exponential factor is believed to be hard. Thus, if
q/r = 2o(n) then the RLWEφ,q,χ assumption is believed to be hard.

2.7 NTRU Encryption

We describe the NTRU encryption scheme of Hofftein et al. [HPS98], with the modifications pro-
posed by Stehlé and Steinfeld [SS11b]. For security parameter κ, the scheme is parameterized by
a prime number q = q(κ), a degree n = n(κ) polynomial φ(x) ∈ Z[x], and an error distribution
χ = χ(κ) over the ring R

def= Z[x]/ 〈φ(x)〉. The parameters n, φ, q, χ are public and we assume
that given κ, there are polynomial-time algorithms that output φ and q, and sample from the error
distribution χ. The message space is M = {0, 1}, and all operations are carried out in the ring R
(i.e. modulo φ(x)).

• Keygen(1κ) : Sample polynomials f ′, g ← χ and set f
def= 2f ′ + 1 so that f ≡ 1 (mod 2). If

f is not invertible in Rq, resample f ′; otherwise, let f−1 be the inverse of f in Rq. Set

pk
def= h :=

[
2gf−1

]
q
∈ Rq , sk

def= f ∈ R

24

118
Approved for Public Release; Distribution Unlimited.

• Enc(pk,m) : To encrypt a bit m ∈ {0, 1} with public key pk = h, sample polynomials s, e← χ
and output the ciphertext

c
def= [hs + 2e + m]q ∈ Rq

• Dec(sk, c) : To decrypt a ciphertext c ∈ Rq with secret key sk = f , let µ
def= [fc]q and output

m
def= µ (mod 2).

It is easily seen that this scheme is correct as long as there is no reduction modulo q. To decrypt
a ciphertext c, we compute:

[fc]q = [fhs + 2fe + fm]q = [2gs + 2fe + fm]q

If there is no reduction modulo q then

[fc]q (mod 2) = 2gs + 2fe + fm (mod 2) = fm (mod 2) = m

Furthermore, our choice of parameter φ(x) = xn + 1 ensures there is no reduction modulo
q. Notice that since the coefficients of g, s, e are all bounded by B, and the coefficients of f are
bounded by 2B + 1. By Corollary 2.5, we know that the coefficients of [fc]q are bounded by
2nB2(2nB + 1)(2B + 1). As long as we set q to be large enough so that q/2 is larger than this
quantity, a fresh ciphertext generated by Enc is guaranteed to decrypt correctly. From here on, we
refer to µ = [fc]q ∈ Rq as the “error in ciphertext c”.

2.7.1 Security

The security of the (modified) NTRU encryption scheme can be based on two assumptions – the
RLWE assumption described in Section 2.6, as well as an assumption that we call the (Decisional)
Small Polynomial Ratio (DSPR) Assumption.

Definition 2.14. (Decisional Small Polynomial Ratio Assumption) Let φ(x) ∈ Z[x] be a
polynomial of degree n, let q ∈ Z be a prime integer, and let χ denote a distribution over the ring
R

def= Z[x]/ 〈φ(x)〉. The (decisional) small polynomial ratio assumption DSPRφ,q,χ says that it is
hard to distinguish the following two distributions:

• a polynomial h
def=

[
2gf−1

]
q
, where f ′ and g are sampled from the distribution χ (conditioned

on f
def= 2f + 1 being invertible over Rq) and f−1 is the inverse of f in Rq.

• a polynomial u sampled uniformly at random over Rq.

The security proof uses a hybrid argument, in two steps.

1. The hardness of DSPRφ,q,χ allows to change the public key h =
[
2gf−1

]
q

to a uniformly
sampled h.

2. Once this is done, we can use RLWEφ,q,χ to change the challenge ciphertext c∗ = [hs + 2e + m]q
to c∗ = [u + m]q, where u is uniformly sampled from Rq.

In this final hybrid, the advantage of the adversary is exactly 1/2 since c∗ is uniform over Rq,
independent of the message m.

25

119
Approved for Public Release; Distribution Unlimited.

Stehlé and Steinfeld [SS11b] showed that the DSPRφ,q,χ assumption is unconditionally true
even for unbounded adversaries (namely, the two distributions above are statistically close) if n is
a power of two, φ(x) = xn + 1, and χ is the discrete Gaussian DZn,r for r >

√
q · poly(n). Thus,

with this setting of parameters, semantic security of the modified NTRU scheme can be based on
the RLWEφ,q,χ assumption alone.

3 Multikey FHE

As mentioned earlier, the main building block in our construction of on-the-fly MPC is multikey
FHE: fully homomorphic encryption that allows homomorphic evaluation on ciphertexts encrypted
under different and independent keys. In this chapter, we formally define multikey FHE and show
a construction for any number of keys based on the NTRU encryption scheme [HPS98, SS11b]
described in Section 2.7. We also show that any FHE scheme is inherently multikey for a constant
number of keys (in the security parameter), and that the Brakerski-Vaikuntanathan scheme [BV11b,
BGV12] is somewhat homomorphic for a logarithmic number of keys.

3.1 Definition

To formally define multikey fully homomorphic encryption, we introduce a parameter N , which is
the number of distinct keys that the scheme can handle; all algorithms will depend polynomially
on N . This is similar to the definition of leveled homomorphic encryption from [BGV12] (see
Definition 2.7), but we note that in our definition, the algorithms depend on N but are independent
of the depth of circuits that the scheme can evaluate. Thus, we consider schemes that are “leveled”
with respect to the number of keys N , but fully homomorphic (“non-leveled”) with respect to the
circuits that are evaluated. The construction of multikey FHE schemes that are not leveled with
respect to the number of keys (i.e., where all algorithms are independent of N) remains an open
problem.

Finally, we note that to guarantee semantic security, decryption requires all corresponding secret
keys.

Definition 3.1 (Multikey C-Homomorphic Encryption). Let C be a class of circuits. A family{
E(N) = (Keygen, Enc, Dec, Eval)

}
N>0

of algorithms is multikey C-homomorphic if for all integers
N > 0, E(N) has the following properties:

• (pk, sk, ek) ← Keygen(1κ): For a security parameter κ, outputs a public key pk, a secret key
sk and a (public) evaluation key ek.

• c← Enc(pk,m): Given a public key pk and message m, outputs a ciphertext c.

• m := Dec (sk1, . . . , skN , c): Given N secret keys sk1, . . . , skN and a ciphertext c, outputs a
message m.

• c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): Given a (description of) a boolean circuit C along
with ` tuples (ci, pki, eki), each comprising of a ciphertext ci, a public key pki, and an evalu-
ation key eki, outputs a ciphertext c.

We require absence of decryption failures and compactness of ciphertexts. Formally: for
every circuit C ∈ C, all sequences of N key tuples

{(
pk′j , sk

′
j , ek

′
j

)}
j∈[N]

each of which is in

26

120
Approved for Public Release; Distribution Unlimited.

the support of Keygen(1κ), all sequences of ` key tuples {(pki, ski, eki)}i∈[`] each of which is in{(
pk′j , sk

′
j , ek

′
j

)}
j∈[N]

, and all plaintexts (m1, . . . ,m`) and ciphertexts (c1, . . . , c`) such that ci

is in the support of Enc(pki,mi), Eval satisfies the following properties:

Correctness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)). Then
Dec

(
sk′1, . . . , sk

′
N , c

)
= C(m1, . . . ,m`).6

Compactness: Let c := Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)). There exists a polynomial P
such that |c| ≤ P (κ, N). In other words, the size of c is independent of ` and |C|. Note,
however, that we allow the evaluated ciphertext to depend on the number of keys, N .

Definition 3.2 (Multikey Fully Homomorphic Encryption). A family of encryption schemes{
E(N) = (Keygen, Enc, Dec, Eval)

}
N>0

is multikey fully homomorphic if it is multikey C-homomor-
phic for the class C of all circuits.

Semantic security of a multikey FHE follows directly from the semantic security of the under-
lying encryption scheme in the presence of the evaluation key ek. This is because given ek, the
adversary can compute Eval himself. Note that taking N = 1 in Definition 3.1 and Definition 3.2
yield the standard definitions of C-homomorphic and fully homomorphic encryption schemes (Def-
inition 2.5 and Definition 2.6).

3.2 Multikey FHE for a Small Number of Keys

As a prelude to our main result in Section 3.3, we show that multikey homomorphic encryption for
a small number of keys can be easily achieved. In particular, we show that any (standard) FHE
can be converted into a multikey FHE for a constant number of keys, N = O(1). Furthermore,
we show that the Brakerski-Vaikuntanathan (ring-based) FHE [BV11b] is multikey homomorphic
for a logarithmic number of keys, N = O(log κ). Unfortunately, once we introduce multiple keys
we are unable to use either relinearization or squashing, and can therefore only obtain a somewhat
homomorphic encryption scheme.

3.2.1 O(1)-Multikey FHE from any FHE

We show that any FHE scheme is inherently multikey for a constant number of keys, N = O(1).7

Let E = (Keygen, Enc, Dec, Eval) be an FHE scheme with message space {0, 1} and ciphertext space
{0, 1}λ where λ = p(κ) for some polynomial p(·). For x ∈ {0, 1}∗, define x[i] to be the ith bit of x,
and define Ẽnc to be the bit-wise encryption of x:

Ẽnc(pk, x) def= (Enc(pk, x[1]), . . . ,Enc(pk, x[|x|]))

6Note that correctness still holds even if the circuit C completely ignores all ciphertexts encrypted under a public
key pk′i, or if none of the original ciphertexts were encrypted under this key. In other words, using superfluous keys
in the decryption process does not affect its correctness (as long as decryption uses at most N keys).

7The idea for this construction was originally suggested to us by an anonymous STOC 2012 reviewer. We include
it in this dissertation and formally prove its correctness for the sake of completeness.

27

121
Approved for Public Release; Distribution Unlimited.

Furthermore, for any k ∈ N, recursively define “onion” encryption and decryption:

Enc∗(pk, x) def= Enc(pk, x)

Enc∗ (pk1, . . . , pkk, x) def= Enc∗
(
pk1, . . . , pkk−1,Enc (pkk, x)

)
= Enc (pk1,Enc (pk2, . . . ,Enc ((pkk, x)))

Dec∗(sk, x) def= Dec(sk, x)

Dec∗ (sk1, . . . , skk, x) def= Dec∗ (sk2, . . . , pkk,Dec (sk1, x))
= Dec (skk,Dec (skk−1, . . . ,Dec (sk1, x)))

We highlight two properties of “onion” encryption and decryption:

1. First, note that Enc∗ and Dec∗ satisfy correctness: if (pki, ski) ← Keygen(1κ) for all i ∈ [k],
then for all m ∈ {0, 1}:

Dec∗ (sk1, . . . , skk,Enc∗ (pk1, . . . , pkk,m)) = m

2. Second, note that the bit-size of the ciphertext Enc∗ (pk1, . . . , pkk,m) is λk. Recall that the
ciphertext space of Enc is {0, 1}λ and λ = p(κ) for some polynomial p(·).

Construction Overview. We now give an overview of the construction. Given N ciphertexts
ci ← Enc (pki,mi) encrypting plaintext mi under key pki, for all i ∈ [N], it is possible to homomor-
phically compute “onion” ciphertexts:

zi ≈ Enc∗ (pk1, . . . , pkN ,mi)

This is done by homomorphically evaluating the function Enc∗
(
pki+1, . . . , pkN , ·

)
on cipher-

text ci. This outputs an onion encryption z̃i ≈ Enc∗ (pki, . . . , pkN ,mi). The ciphertext zi can be
obtained by onion encrypting z̃i with the remaining keys: zi = Enc∗

(
pk1, . . . , pki−1, z̃i

)
Once the ciphertexts z1, . . . , zN have been obtained, we can recursively perform homomorphic

evaluations corresponding to the keys pk1, . . . , pkN (in that order), to obtain a ciphertext:

c ≈ Enc∗ (pk1, . . . pkN , C (m1, . . . ,mN))

By correctness of “onion” encryption, decrypting c can be easily achieved using “onion” de-
cryption:

Dec∗ (sk1, . . . , skk, c) = C (m1, . . . ,mN)

However, recall that the size of each ciphertext zi is λN = p(κ)N for some polynomial p(·). This
means that the multikey homomorphic evaluation is efficient only if N = O(1). Thus, this generic
construction of multikey FHE from (standard) FHE allows only a constant number of keys.

Formal Description. We now give a formal description of the generic multikey construction,
and prove its correctness. Let E = (Keygen, Enc, Dec, Eval) be an FHE scheme with message space
{0, 1} and ciphertext space {0, 1}λ where λ = p(κ) for some polynomial p(·). Let Enc∗ and Dec∗

be the “onion” encryption and decryption algorithms described above.

• GMK.Keygen(1κ) : Run Keygen(1κ).

28

122
Approved for Public Release; Distribution Unlimited.

• GMK.Enc(pk,m) : Run Enc(pk,m).

• GMK.Dec (sk1, . . . , skN , c) : Output Dec∗ (sk1, . . . , skN , c).

• GMK.Eval (C, (c1, pk1, ek1) , . . . , (cN , pkN , ekN)) : For i ∈ [N], define

Gi(x) def= Enc∗
(
pki+1, . . . , pkN , x ; r

)
for some fixed and valid randomness r,8 and recursively define

C(k) (x1, . . . , xN) def=
{

C (x1, . . . , xN) for k = N

Eval
(
ekk+1, C

(k+1), x1, . . . , xN

)
for k < N

For i ∈ [N], compute

z̃i
def= Eval (eki, Gi, ci) , zi

def= Enc∗
(
pk1, . . . , pki−1, z̃i

)
and output the ciphertext c

def= Eval
(
ek1, C

(1), z1, . . . , zN

)
.

Theorem 3.1. The encryption scheme EGMK = (GMK.Keygen, GMK.Enc, GMK.Dec,
GMK.Eval) is multikey fully homomorphic for N = O(1) keys.

Proof. To prove correctness of evaluation, we wish to prove that if (pki, ski, eki) is in the support
of GMK.Keygen(1κ) = Keygen(1κ) and ci ← GMK.Enc (pki,mi) = Enc (pki,mi), then

GMK.Dec (sk1, . . . , skN , c) = Dec∗ (sk1, . . . , skN , c) = C (m1, . . . ,mN)

We first show that each zi is a valid “onion” encryption of mi. By correctness of evaluation
with evaluation key eki, we know that

Dec (ski, z̃i) = Gi (mi) = Enc∗
(
pki+1, . . . , pkN ,mi ; r

)
and by correctness of encryption, we conclude that

Dec∗ (ski, . . . , skN , z̃i) = mi and Dec∗ (sk1, . . . , skN , zi) = mi

We now make the following claim, which constitutes the bulk of the proof.

Claim 3.1.1. For every k ∈ [N],

Dec∗ (sk1, . . . , skk, c) = Ck

(
z
(k)
1 , . . . , z

(k)
N

)
where z

(k)
i

def= Dec∗ (sk1, . . . , skk, zi).

In particular, for k = N , this claim implies:

Dec∗ (sk1, . . . , skN , c) = C(N)
(
z
(N)
1 , . . . , z

(N)
N

)
= C (m1, . . . ,mN)

where the second equality follows from the fact that CN = C by definition, and the fact that
z
(N)
i = Dec∗ (sk1, . . . , skN , zi) = mi, which we proved earlier.

It thus suffices to prove Claim 3.1.1 to conclude the proof of the theorem.
8We need to include the randomness in the definition because we want Gi(x) to be a deterministic circuit with x

as its sole input.

29

123
Approved for Public Release; Distribution Unlimited.

Proof. We prove Claim 3.1.1 by induction. The base case, k = 1, follows directly from correctness
of evaluation and correctness of decryption:

Dec∗ (sk1, c) = C(1) (Dec (sk1, z1) , . . . ,Dec (sk1, zN)) = C(1)
(
z
(1)
1 , . . . , z

(1)
N

)
Now suppose that the claim holds for k − 1; that is, suppose

Dec∗ (sk1, . . . , skk−1, c) = C(k−1)
(
z
(k−1)
1 , . . . , z

(k−1)
N

)
Decrypting both sides by skk yields:

Dec∗ (sk1, . . . , skk, c) = Dec
(
skk, C

(k−1)
(
z
(k−1)
1 , . . . , z

(k−1)
N

))
= Dec

(
skk,Eval

(
ekk, C

(k), z
(k−1)
1 , . . . , z

(k−1)
N

))
= C(k)

(
Dec

(
skk, z

(k−1)
1

)
, . . . ,Dec

(
skk, z

(k−1)
N

))
= C(k)

(
z
(k)
1 , . . . , z

(k)
1

)
where the second-to-last equality follows from correctness of evaluation and correctness of decryp-
tion. This concludes the inductive step and the proof.

3.2.2 O(log κ)-Multikey FHE from Ring-LWE

We now show that the Brakerski-Vaikuntanathan FHE [BV11b] based on the RLWE assumption is
multikey somewhat homomorphic for N = O(log κ) keys.

Decryption in Regev-style encryption consists of computing the inner product 〈c, s〉 (mod 2),
where c, s ∈ R2

q are the ciphertext and secret key, respectively. Brakerski and Vaikuntanathan
[BV11b] generalize this to allow the ciphertext and secret key to grow in dimension. For c, s ∈ Rd

q ,
they define: Dec(s, c) = 〈c, s〉 (mod 2). Homomorphic operations are then defined as follows:

• Given two same-length ciphertexts c1 and c2, output the ciphertext cadd
def= c1 + c2 as an

encryption of the sum of the underlying messages.

The ciphertext cadd is decryptable with the same secret key s since

〈c1 + c2, s〉 = 〈c1, s〉+ 〈c2, s〉

• Given two ciphertexts c1 and c2 of potentially different length, output the ciphertext cmult
def=

c1 ⊗ c2 as the product of the underlying messages.

The ciphertext cmult is now decryptable with the secret key s⊗ s since

〈c1 ⊗ c2, s⊗ s〉 = 〈c1, s〉 · 〈c2, s〉

We can extend this to the multikey setting. Multiplication is trivial, but some changes are
necessary in the case of addition.

30

124
Approved for Public Release; Distribution Unlimited.

• Given two same-length ciphertexts c1 and c2 decryptable with secret keys s1, s2 respectively,
output the ciphertext cadd

def= (c1, c2) as an encryption of the sum of the underlying messages.

The ciphertext cadd is decryptable with the same secret key (s1, s2) since

〈(c1, c2), (s1, s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

• Given two ciphertexts c1 and c2 decryptable with secret keys s1, s2 respectively, and of poten-
tially different length, output the ciphertext cmult

def= c1⊗c2 as the product of the underlying
messages.

The ciphertext cmult is now decryptable with the secret key s1 ⊗ s2 since

〈c1 ⊗ c2, s1 ⊗ s2〉 = 〈c1, s1〉 · 〈c2, s2〉

Observe that each homomorphic operation (at most) doubles the size of the ciphertext. Starting
with fresh ciphertexts of length 2, after (N−1) operations (which can combine ciphertexts encrypted
under at most N distinct keys), the size of both the ciphertext and the joint decryption key is 2N .
This is only feasible if N = O(log κ).

As shown in the work of Brakerski and Vaikuntanathan [BV11b], the scheme can evaluate
circuits of depth D < ε log n− log log n+Θ(1), where q = 2nε

for constant ε ∈ (0, 1). Unfortunately,
we do not know how to apply relinearization or squashing in the multikey setting, and are therefore
not able to convert the resulting multikey scheme into a leveled or fully homomorphic one.

3.3 Multikey Somewhat Homomorphic Encryption for Any Number of Keys

We now turn to our main result in this section: we construct a multikey somewhat homomorphic
encryption scheme based on the (modified) NTRU encryption scheme [HPS98, SS11b] described
in Section 2.7. Unlike the schemes in Section 3.2, the scheme we describe in this section will be
multikey for N ≈ nε keys, with constant ε ∈ (0, 1). In Section 3.4, we show how to convert the
scheme into a multikey fully homomorphic scheme for N ≈ nε keys. By setting n ≈ N1/ε, we can
construct a multikey FHE for any number of keys N , as long as N is known a-priori.

We begin by informally describing the multikey homomorphic properties of NTRU encryption
and some of the problems encountered when trying to convert the scheme from Section 2.7 into a
somewhat homomorphic one. We then show a formal description of our somewhat homomorphic
scheme, formally prove its homomorphic properties, and discuss its security. In Section 3.4, we
show how to convert this scheme into a fully homomorphic scheme.

3.3.1 Multikey Homomorphism

Recall from Section 2.7 that an NTRU key pair consists of ring elements (h, f) such that h =[
2gf−1

]
q
, where g, f are “small” ring elements sampled from a B-bounded distribution χ, and f−1

is the inverse of f in Rq. Further recall that an NTRU ciphertext has the form c = [hs + 2e + m]q
for “small” elements s, e sampled from χ, and decryption computes [fc]q (mod 2).

Let (h1, f1) and (h2, f2) be two different NTRU public/secret key pairs, and let c1
def=

[h1s1 + 2e1 + m1]q and c2
def= [h2s2 + 2e2 + m2]q be two ciphertexts, encrypted under public

keys h1 and h2, respectively. We show how to compute ciphertexts that decrypt to the sum and

31

125
Approved for Public Release; Distribution Unlimited.

the product of the underlying plaintexts, m1 and m2. In particular, we show that the “ciphertexts”
cmult

def= c1 · c2 and cadd
def= c1 + c2 can be decrypted to the product and the sum of m1 and m2

respectively, using the secret key f12
def= f1 · f2.

To see this, note that

[f1f2(c1 + c2)]q = [2f1f2e1 + 2f1f2e2 + 2f2g1s1 + 2f1g2s2 + f1f2(m1 + m2)]q

[f1f2(c1 · c2)]q = [4g1g2s1s2 + 2g1s1f2(2e2 + m2) + 2g2s2f1(2e1 + m1) +

2f1f2(e1m2 + e2m1 + 2e1e2) + f1f2(m1m2)]q
= m1 ·m2 (mod 2)

Since f1 ≡ f2 ≡ 1 (mod 2), we can conclude that as long as there is no reduction modulo q,

[f1f2(c1 + c2)]q (mod 2) = m1 + m2 (mod 2)

[f1f2(c1 · c2)]q (mod 2) = m1 ·m2 (mod 2)

In other words, the “joint secret key” f12
def= f1f2 can be used to decrypt cadd = [c1 + c2]q and

cmult = [c1 · c2]q. We can extend this argument to any combination of operations, with ciphertexts
encrypted under multiple public keys.

Of course, the error in the ciphertexts will grow with the number of operations performed (as
with all known fully homomorphic encryption schemes). Thus, correctness of decryption will only
hold for a limited number of operations. We can show that the scheme can correctly evaluate
circuits of depth roughly ε log(n) when q = 2nε

and B = poly(n).

Problems in Multikey Decryption. An astute reader will have observed that in order to
successfully decrypt a ciphertext that was the result of a homomorphic evaluation, we must know
the circuit that was evaluated. For example, to decrypt c2

1+c2 we need to multiply by f2
1 f2, whereas

to decrypt c1 + c2
2 we need to multiply by f1f

2
2 . This is unsatisfactory.

Furthermore, consider what happens when we add or multiply two ciphertexts c, c′ that are
themselves a result of homomorphic evaluation. Suppose, for example, that c = c1c2 and c′ = c2c3,
where ci is encrypted under hi for i ∈ {1, 2, 3}. We know c can be decrypted using f1f2 and c′ can
be decrypted using f2f3. Thus, we know that

[f1f2 · c]q = 2e + f1f2m ,
[
f2f3 · c′

]
q

= 2e′ + f2f3m
′

for some messages m and m′ and error terms e and e′. Following the discussion above, we can see
that c + c′ can be decrypted using the key f1f2f3:[

f1f2f3 · (c + c′)
]
q

=
[
f3(f1f2 · c) + f1(f2f3 · c′)

]
q

= 2(f3e + f1e
′) + f1f2f3(m + m′)

In general, given a ciphertext c encrypted under a set of keys K, and c′ encrypted under a set
of keys K ′, their sum can be decrypted using the product of the keys in the union K ∪ K ′. We
note that the absolute magnitude of the coefficients of this product grows exponentially with the
number of keys in K ∪K ′, i.e. the total number of keys involved in the homomorphic computation.

32

126
Approved for Public Release; Distribution Unlimited.

Analogously, in the context of homomorphic multiplication, we need f1f
2
2 f3 to decrypt c · c′:[

f1f
2
2 f3 · (c · c′)

]
q

=
[
(f1f2 · c) · (f2f3 · c′)

]
q

= 2Emult + f1f
2
2 f3(m ·m′)

where Emult
def= 2ee′ + ef2f3m

′ + e′f1f2m. This hints at the fact that the magnitude of the
coefficients of the joint secret key needed to decrypt an evaluated ciphertext grows exponentially
with the degree of the evaluated circuit (and not just with the number of keys involved, as in the case
of addition). Indeed, after M multiplications, the joint secret key needed to decrypt the evaluated
ciphertext will be the product of M polynomials, and the magnitude of the coefficients of this
product will be exponential in M .

Our Solution. To solve the above problems, we use relinearization (also known as key-switching),
a technique first introduced by Brakerski and Vaikuntanathan [BV11a]. Informally, we introduce
a (public) evaluation key ek that will be output by the Keygen algorithm. Every time we multiply
ciphertexts that share a key fi, we will use the evaluation key to ensure that we only need fi, and
not f2

i , to decrypt the new ciphertext. This ensures two things.

1. First, it ensures that to decrypt a ciphertext c∗, we only need to multiply it by one copy of
each secret key, making decryption independent of the circuit used to produce c∗.

2. Second, it ensures that the size of the joint secret key needed to decrypt the new ciphertext
depends only on the number of keys N , and not on the degree of the circuit C that was
evaluated.

Though we are able to eliminate the dependence (of the magnitude of the coefficients of the
joint secret key) on the degree of the circuit, we remark that we do not succeed in eliminating the
exponential dependence on N , the number of keys – indeed, this is the reason why our solution will
eventually assume an a-priori upper bound on N .

3.3.2 Formal Description

We present a formal description of our multikey somewhat homomorphic encryption scheme based
on the (modified) NTRU encryption scheme [HPS98, SS11b] described in Section 2.7.

• SH.Keygen(1κ) : Sample f ′, g ← χ and set f := 2f ′ + 1 so that f ≡ 1 (mod 2). If f is not
invertible in Rq, resample f ′; otherwise let f−1 be the inverse of f in Rq. Set

pk
def= h :=

[
2gf−1

]
q
∈ Rq , sk

def= f ∈ R

Sample s̃, ẽ ← χdlog qe and compute ek
def= [hs̃ + 2ẽ + Pow (f)]q ∈ R

dlog qe
q . Output the key

tuple (pk, sk, ek).

• SH.Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := hs + 2e + m ∈ Rq.

• SH.Dec(sk1, . . . , skN , c) : Parse ski = fi for i ∈ [N]. Compute µ = [f1 · · · fN · c]q ∈ Rq and
output m := µ (mod 2).

33

127
Approved for Public Release; Distribution Unlimited.

• SH.Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): We show how to evaluate an `-variate boolean
circuit C : {0, 1}` → {0, 1} of depth D. To this end, we show how to homomorphically add
and multiply two elements in {0, 1}. Given two ciphertexts c, c′, we assume that we also have
a set of distinct public keys associated with each ciphertext.9 We will denote these lists by
K, K ′, respectively. The public-key set of a fresh encryption is simply the set {pk} containing
the public key under which it was encrypted. For convenience, in our analysis we sometimes
assume that the set contains the indices of the public keys instead of the keys themselves.

– Given two ciphertexts c and c′ with corresponding public-key sets K and K ′, output the
ciphertext

cadd =
[
c + c′

]
q
∈ Rq

as an encryption of the sum of the underlying messages. Output the set Kadd = K ∪K ′

as its corresponding public-key set.

– Given two ciphertexts c and c′ with corresponding public-key sets K and K ′, compute
ciphertext c0 = [c · c′]q ∈ Rq.

∗ If K ∩K ′ = ∅, let cmult = c0.
∗ Otherwise, let K ∩ K ′ =

{
pki1 , . . . , pkit

}
. For j ∈ [t], compute cj =[〈

Bit (cj−1) , ekij

〉]
q
, and let cmult = ct at the end of the iteration.

In either case, output cmult as an encryption of the product of the underlying messages,
and output the set Kmult = K ∪K ′ as its corresponding public-key set.

For a set S ⊆ [N], let fS
def=

∏
i∈S

fi. Note that the ciphertext c0 can be decrypted to

m ·m′ with the “joint” secret key fKfK′ , which contains the term f2
i1

. . . f2
it
. The goal

of relinearization is to convert it into a ciphertext that decrypts to the same message
under the secret key

fKfK′

(∏
j∈K∩K′

fj

)−1

= fK∪K′

which replaces the term f2
i1

. . . f2
it

with the term fi1 . . . fit .

We first show that the scheme works correctly as advertised:

Lemma 3.2. If q = 2nε
for ε ∈ (0, 1) and χ is a B-bounded distribution for B = poly(n), then

the encryption scheme ESH = (SH.Keygen,SH.Enc, SH.Dec,SH.Eval) described above is multikey
homomorphic for N = O

(
nδ

)
keys and circuits of depth D < (ε− δ) log n− log log n−O(1).

Proof. We define the (multikey) error of a ciphertext c with corresponding public-key set K to be
µ

def= [fK · c]q. We start by showing that the magnitude of the error coefficients does not grow
too much after a homomorphic evaluation.

Claim 3.2.1. Let c, c′ be ciphertexts encrypting m and m′, respectively, and suppose that the
magnitude of their error coefficients is bounded by E < q/2. Then cadd and cmult correctly decrypt
to m + m′ and m ·m′, respectively, and their error coefficients are bounded by (nB)2NE2.

9That is, we assume each set contains distinct public keys, but the intersection of any two sets might not be empty.

34

128
Approved for Public Release; Distribution Unlimited.

Proof. Let c, c′ be encryptions of m,m′, respectively, with corresponding public-key sets K, K ′. We
know that for some e, e′ ∈ R we have:

[fK · c]q = 2e + m ,
[
fK′ · c′

]
q

= 2e′ + m′

and ‖2e + m‖∞ , ‖2e′ + m‖∞ < E. Then

[fKadd
· cadd]q =

[
fK∪K′ · (c + c′)

]
q

=
[
fK\K′(fK · c) + fK′\K(fK′ · c′)

]
q

= fK\K′(2e + m) + fK′\K(2e′ + m′)

We can thus bound the magnitude of the coefficients of [fKadd
· cadd]q by 2(nB)NE < (nB)2NE2, as

desired. Furthermore, it easy to see that [fKadd
· cadd]q (mod 2) = m + m′.

The multiplication case is more complex. Let K ∩ K ′ = {i1, . . . , it}, as before. Define
F0

def= fKfK′ , and for j ∈ [t], define Fj = Fj−1 · f−1
ij

. Then Fr = fK∪K′ is a simple product
of the secret keys fi, without any quadratic terms. We know that

[F0 · c0]q = [(fK · c)(fK′ · cK)]q = (2e + m)(2e′ + m′)

so that
∥∥∥[F0 · c0]q

∥∥∥
∞

< nE2 and [F0 · c0]q (mod 2) = m ·m′. Furthermore, for all j ∈ [t],

[Fj · cj]q =
[
Fj ·

〈
Bit (cj−1) , hij s̃ + 2ẽ + Pow

(
fij

)〉]
q

=
[
Fj ·

〈
Bit (cj−1) , hij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fjcj−1fij

]
q

= Fjf
−1
ij
·
〈
Bit (cj−1) , 2gij s̃

〉
+ Fj · 〈Bit (cj−1) , 2ẽ〉+ Fj−1cj−1

Using the fact that each Fj is the product of at most (2N − j) keys, we have that∥∥∥[Fj · cj]q
∥∥∥
∞

< 2 dlog qen2B2 · (nB)2N−j−1 + 2 dlog qenB · (nB)2N−j +
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

= 4 dlog qe (nB)2N−j+1 +
∥∥∥[Fj−1 · cj−1]q

∥∥∥
∞

This yields the following bound on the error of cmult:∥∥∥[FK∪K′ · cmult]q
∥∥∥
∞

=
∥∥∥[Ft · ct]q

∥∥∥
∞
≤ nE2 +

t∑
j=1

4 dlog qe (nB)2N−j+1

= nE2 + 4 dlog qe (nB)2N+1
t∑

j=1

(nB)−j

≤ nE2 + 8 dlog qe (nB)2N+1

≤ (nB)2NE2

where the last inequality holds by the fact that q = 2nε
.

Furthermore, notice that [Fj · cj]q ≡ Fj−1cj−1 (mod 2). Since [F0 · c0]q (mod 2) = m ·m′, we
can conclude that [FK∪K′ · cmult]q (mod 2) = [Ft · ct]q (mod 2) = m ·m′.

35

129
Approved for Public Release; Distribution Unlimited.

Once we have bounded the magnitude of the error coefficients after a homomorphic operation,
we can bound the overall error incurred after evaluating a circuit of depth D. Starting with error
E0 ≤ 3(nB)2, after D levels of homomorphic operations, the error magnitude can grow to at most:(

(nB)2NE0

)2D

≤
(
(3nB)2

D·(2N+2)
)

This results in correct decryption as long as D < log log q − log log n − log N − O(1), where
we use the fact that B = poly(n). In particular, for N = O(nδ) keys and q = 2nε

, we get
D < (ε− δ) log n− log log n−O(1).

3.3.3 Security

Recall from Section 2.7 that the security of the (modified) NTRU encryption scheme can be based
on two assumptions – the RLWE assumption and the DSPR assumption. Recall further that Stehlé
and Steinfeld [SS11b] showed that the DSPRφ,q,χ assumption is unconditionally true if n is a power
of 2, φ(x) = xn + 1 is the nth cyclotomic polynomial, and χ is the discrete Gaussian DZn,r for
r >

√
q · poly(n). This allowed them to prove semantic security for the modified NTRU scheme

under the RLWEφ,q,χ assumption alone.
Unfortunately, their result holds only if r >

√
q · poly(n), which is too large to permit even a

single homomorphic multiplication. To support homomorphic operations, we need to use a much
smaller value of r, for which it is easy to see that the DSPRφ,q,χ assumption does not hold in a
statistical sense any more. Thus, it is necessary to assume that the decisional small polynomial
ratio problem is hard for our choice of parameters.

Additionally, note that the evaluation key ek contains elements of the form [hsτ + 2eτ + 2τf]q,
which can be thought of as “pseudo-encryptions” of (multiples of) the secret key f under the
corresponding public key h.10 The security of the scheme must then additionally rely on a “circular
security” assumption that states that semantic security of the scheme is maintained given the
evaluation key as constructed above. We remark that this assumption can be avoided at the cost
of obtaining a leveled homomorphic encryption scheme (where the size of the evaluation key grows
with the depth of the circuits that the scheme supports).

Thus, we can base the security of the scheme on the DSPR assumption, the RLWE assumption,
and the “circular security” assumption described above.

Lemma 3.3. Let n be a power of 2, let φ(x) = xn +1, let q = 2nε
for ε ∈ (0, 1) and χ = DZn,r with

r = poly(n). Then the somewhat homomorphic encryption scheme ESH = {SH.Keygen,SH.Enc,
SH.Dec,SH.Eval described above is secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions, and
the assumption that the scheme remains semantically secure even given the evaluation key ek.

3.4 From Somewhat to Fully Homomorphic Encryption

We use a generalization of Gentry’s bootstrapping theorem [Gen09b, Gen09a] (see Section 2.5)
to convert the multikey somewhat homomorphic scheme from Section 3.3 into a multikey fully
homomorphic one. We modify Gentry’s bootstrapping theorem and the corresponding definitions
from their original presentation to generalize them to the multikey setting.

10We point out that these are not true encryptions of the “message” 2τf since 2τf is not a binary polynomial,
whereas our scheme is only equipped to correctly encrypt polynomials m ∈ R2.

36

130
Approved for Public Release; Distribution Unlimited.

Definition 3.3 (Multikey Bootstrappable Schemes). Let E ={
E(N) = (Keygen, Enc, Dec, Eval)

}
N>0

be a family of multikey C-homomorphic encryption
schemes, and let fadd and fmult be the the augmented decryption functions of the scheme defined as

f c1,c2
add (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2)

f c1,c2
mult (sk1, . . . , skN) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2)

Then E is bootstrappable if
{
f c1,c2
add , f c1,c2

mult

}
c1,c2
⊆ C. Namely, the scheme can homomorphically

evaluate fadd and fmult.

We now state a generalization of Gentry’s bootstrapping theorem to the multikey setting. Tak-
ing N = 1 yields the theorem and the definitions from [Gen09b, Gen09a] and Section 2.5.

Theorem 3.4 (Multikey Bootstrapping Theorem). Let E be a bootstrappable family of multikey ho-
momorphic schemes that is also weakly circular secure. Then there is a multikey fully homomorphic
family of encryption schemes E ′.

Unfortunately, the somewhat homomorphic scheme described in Section 3.3 is not bootstrap-
pable. Recall that the scheme can only evaluate circuits of depth less than ε log(n), where ε < 1.
However, the shallowest implementation of the decryption circuit we are aware of has depth
c log N · log n for some constant c > 1.We therefore turn to modulus reduction, a technique in-
troduced by [BV11a] and refined by [BGV12], to convert our somewhat homomorphic scheme into
a bootstrappable scheme.

3.4.1 Modulus Reduction

Modulus reduction [BV11a, BGV12] is a noise-management technique that provides an exponential
gain on the depth of the circuits that can be evaluated, while keeping the depth of the decryption
circuit unchanged. Informally, if Ddec is the depth of the decryption circuit of the multikey scheme
described in Section 3.3.1, then we modify the scheme so that its decryption circuit is unchanged
but the scheme can now evaluate circuits of depth Ddec. Hence, the new scheme can evaluate its
own decryption circuit, making it bootstrappable. Details follow.

Let (h, f) be a key pair and let c be a ciphertext under public key h. Recall that for decryption
to be successful, we need the error [fc]q to be equal to fc ∈ R. However, each homomorphic
operation increases this error. Modulus reduction allows us to keep the error magnitude small by
simply scaling the ciphertext after each operation. The key idea is to exploit the difference in how
the error affects security and homomorphism:

• The growth of error upon homomorphic multiplication is governed by the magnitude of the
noise.

• Security is governed by the ratio between the magnitude of the error and the modulus q.

This suggests a method of reducing the magnitude of the error and the modulus by roughly the
same factor, thus preserving security while at the same time making homomorphic multiplications
“easier”. In particular, modulus reduction gives us a way to transform a ciphertext c ∈ Rq into
a different ciphertext c′ ∈ Rp (for p < q) while preserving correctness: for “joint” secret key
f =

∏N
i=1 fi,

[fc]p = [fc′]q (mod 2)

The transformation from c to c′ involves simply scaling by (p/q) and rounding appropriately.

37

131
Approved for Public Release; Distribution Unlimited.

Lemma 3.5 ([BGV12]). Let p and q be two odd moduli, and let c ∈ Rq. Define c′ to be the
polynomial in Rp closest to (p/q) · c such that c′ ≡ c (mod 2). Then, for any f with ‖[fc]q‖∞ <
q/2− (q/p) · ‖f‖1, we have

[fc′]p = [fc]q (mod 2) and
∥∥[fc′]p

∥∥
∞ < (p/q) · ‖[fc]q‖∞ + ‖f‖1

where ‖·‖∞ and ‖·‖1 are the `∞ and `1, respectively.

Proof. Let fc =
∑n−1

i=0 dix
i, and consider a coefficient di. We know that there exists k ∈ Z such

that:

[di]q = di − kq ∈
[
−q

2
+

q

p
‖f‖1 ,

q

2
− q

p
‖f‖1

]
,

so that
(p/q) · di − kp ∈

[
−p

2
+ ‖f‖1 ,

p

2
− ‖f‖1

]
Let fc′ =

∑n−1
i=0 eix

i. Then −‖f‖1 ≤ (p/q) · ei − di ≤ ‖f‖1. Therefore,

ei − kp ∈
[
−p

2
,
p

2

]
and [ei]p = ei − kp

This proves the second part of the lemma. To prove the first part, notice that since p and q are
both odd, we know kp ≡ kq (mod 2). Moreover, we chose c′ such that c ≡ c′ (mod 2). We thus
have

ei − kp ≡ di − kq (mod 2)
[ei]p ≡ [di]q (mod 2)

[fc′]p ≡ [fc]q (mod 2)

The beauty of Lemma 3.5 is that if we know the depth D of the circuit we want to evaluate, then
we can construct a ladder of decreasing moduli q0, . . . , qD and perform modulus reduction after each
operation so that at level i all ciphertexts reside in Rqi and the magnitude of the noise at each level
is small. In particular, this is true at level D so that once the evaluation is complete, it is possible
to decrypt the resulting ciphertext without decryption errors. This yields a leveled homomorphic
encryption scheme. A bootstrappable scheme can then be obtained by setting D = Ddec, the depth
of the augmented decryption circuit.

3.4.2 Obtaining A Leveled Homomorphic Scheme

We change the somewhat homomorphic scheme from Section 3.3 to use modulus reduction during
the evaluation. The main changes to the scheme are as follows:

• The scheme is now additionally parametrized by an integer D, which is the maximum circuit
depth that it can homomorphically evaluate, and a ladder of decreasing moduli q0, . . . qD.

• We cannot use a single key f for all levels (at the expense of assuming the circular security),
as in Section 3.3. This is because the public key h depends on the modulus q (recall that
h = 2gf−1, where f−1 is the inverse of f in Rq). With the new ladder of moduli, this

38

132
Approved for Public Release; Distribution Unlimited.

would require that the following two conditions be met simultaneously: First, that f−1 is
the inverse of f in RqD (to guarantee correctness of decryption) and second, that h = 2gf−1

is (indistinguishable from) uniformly random in Rq0 (to guarantee semantic security). This
would require making a much stronger (and perhaps false) hardness assumption.

Instead, key generation computes a different key pair
(
h(d), f (d)

)
for each level d ∈ {0, . . . , D}.

Encryption uses pk
def= h(0) as the public key, and decryption uses sk(d) def= f (d) to decrypt

a “level-d” ciphertext, ie. a ciphertext that is the output of a depth-d circuit evaluation.
W.l.o.g. we assume any ciphertext to be decrypted is a level-D ciphertext and set the secret
key to be sk = f (D).

Homomorphic operations will ensure that if c, c′ are level-(d − 1) ciphertexts in Rqd−1
de-

cryptable with f (d−1), then cadd and cmult are level-d ciphertexts in Rqd
decryptable with

f (d).

• Relinearization will now serve two purposes: it will ensure that only linear terms of keys
are needed to decrypt the resulting ciphertext, but it will also switch the level-(d − 1) key
to the corresponding level-(d) key. (Indeed, relinearization is also known as key-switching
in the literature). Moreover, note that we must perform the key-switching step not only for
quadratic terms but also for linear terms. Thus, we now perform relinearization/key-switching
after every homomorphic operation, both addition and multiplication, and furthermore, we
relinearize/key-switch every key in K ∪K ′, instead of only those in K ∩K ′.

• To perform the relinearization/key-switching step described above, the evaluation key consists
of pseudo-encryptions of f (d−1) and

(
f (d−1)

)2
under the public key h(d), for all d ∈ [D].

Note in particular that we now need pseudo-encryptions of the quadratic terms of the key. In
the scheme from Section 3.3, relinearization only required pseudo-encryptions of (multiples of)
f because the term 〈Bit (c) ,Pow (f)〉 only performed “partial decryption” of the ciphertext c;
it computes fc but f2 is required to decrypt c. Decryption of c was completed at decryption
time when the ciphertext was multiplied by f once more, obtaining f2c.

In our new setting, because decryption is performed using a different key, relinearization needs
to “completely decrypt” c with the original key. For a key in K ∩K ′, this means computing[〈

Bit (c) ,Pow
((

f (d−1)
)2

)〉]
q

=
[(

f (d−1)
)2

c
]
q
. Since Pow

((
f (d−1)

)2
)

is encrypted under

h(d), the new ciphertext can be decrypted using f (d).

Pseudo-encryptions of the linear terms of the keys are also required in order to relinearize/key-
switch keys in K4K ′, the symmetric difference of K, K ′.

3.4.3 Formal Description

We now give a formal description of the leveled homomorphic encryption scheme resulting from
applying the changes described above to the somewhat homomorphic scheme ESH described in
Section 3.3.

• LH.Keygen(1κ) : For every i ∈ {0, . . . , D}, sample g(i), u(i) ← χ and set f (i) := 2u(i) + 1 so
that f (i) ≡ 1 (mod 2). If f (i) is not invertible in Rqi , resample u(i); otherwise, let

(
f (i)

)−1

39

133
Approved for Public Release; Distribution Unlimited.

be the inverse of f (i) in Rq. Let h(i) def=
[
2g(i)

(
f (i)

)−1
]
qi

∈ Rqi , and set

pk
def= h(0) ∈ Rq0 , sk

def= f (D) ∈ RqD

For all i ∈ [D], sample s̃(i)
γ , ẽ(i)

γ , s̃(i)
ζ , ẽ(i)

ζ ← χdlog qe and compute

γ(i) :=
[
h(i)s̃(i)

γ + 2ẽ(i)
γ + Pow

(
f (i−1)

)]
qi

∈ Rdlog qie
qi

ζ(i) :=
[
h(i)s̃(i)

ζ + 2ẽ(i)
ζ + Pow

((
f (i−1)

)2
)]

qi

∈ Rdlog qie
qi

Set ek
def=

{
γ(i), ζ(i)

}
i∈[D]

, and output the key tuple (pk, sk, ek).

• LH.Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := [hs + 2e + m]q0
∈ Rq0 .

• LH.Dec(sk1, . . . , skN , c) : Assume w.l.o.g. that c ∈ RqD . Parse ski = fi for i ∈ [N]. Let
µ := [f1 · · · fN · c]qD

∈ RqD . Output m′ := µ (mod 2).

• LH.Eval(C, (c1, pk1, ek1), . . . , (c`, pk`, ek`)): We show how to evaluate an `-variate boolean
circuit C : {0, 1}` → {0, 1} of depth D. To this end, we show how to homomorphically add
and multiply two elements in {0, 1}. As before, given two ciphertexts c, c′, we assume that
we also have a set of distinct public keys associated with each ciphertext, and denote these
lists by K, K ′, respectively. The public-key set of a fresh encryption is simply the set {pk}
containing the public key under which it was encrypted. For convenience, in our analysis
we sometimes assume that the set contains the indices of the public keys instead of the keys
themselves.

– Given two ciphertexts c, c ∈ Rqd
with corresponding public-key sets K, K ′, compute

c0 = [c + c′]qd
∈ Rqd

and let K ∪K ′ =
{
pki1 , . . . , pkit

}
. For j = 1, . . . , r, parse ekij ={

γ
(δ)
ij

, ζ
(δ)
ij

}
δ∈[D]

and compute

cj =
[〈

Bit (cj−1) ,γ
(d)
ij

〉]
q
∈ Rqd

Finally, reduce the modulus: let cadd be the integer vector closest to (qd+1/qd) · ct such
that cadd ≡ ct (mod 2). Output cadd ∈ Rqd+1

as an encryption of the sum of the

underlying messages. Output the set Kadd
def= K ∪K ′ as its corresponding public-key

set.

– Given two ciphertexts c, c ∈ Rqd
with corresponding public-key sets K, K ′, compute

c0 = [c + c′]qd
∈ Rqd

and let K ∪K ′ =
{
pki1 , . . . , pkit

}
. For j = 1, . . . , r, parse ekij ={

γ
(δ)
ij

, ζ
(δ)
ij

}
δ∈[D]

and compute cj as follows:

∗ If pkij ∈ K ∩K ′, let

cj =
[〈

Bit (cj−1) ,γ
(d)
ij

〉]
q
∈ Rqd

40

134
Approved for Public Release; Distribution Unlimited.

∗ Otherwise, let
cj =

[〈
Bit (cj−1) , ζ

(d)
ij

〉]
q
∈ Rqd

Finally, reduce the modulus: let cmult be the integer vector closest to (qd+1/qd) · ct such
that cmult ≡ ct (mod 2). Output cmult ∈ Rqd+1

as an encryption of the product of the

underlying messages. Output the set Kmult
def= K ∪K ′ as its corresponding public-key

set.

Leveled Homomorphism. We can now show the following lemma, characterizing the circuits
and number of keys that the scheme can handle in evaluation.

Lemma 3.6. Let χ is a B-bounded distribution for B = poly(n), let q0 = 2nε
for ε ∈ (0, 1) and for

d ∈ [D], let qd−1/qd = 8n(nB)2N+2. Then the encryption scheme ELH = (LH.Keygen, LH.Enc, LH.Dec,
LH.Eval) described above is multikey homomorphic for N keys and circuits of depth D as long as
ND = O (nε/ log n).

Proof. We claim that for all d ∈ {0, . . . , D}, the error of a level-d ciphertext is bounded by
E

def= (1/2n) · (qd−1/qd) = 4(nB)2N+2, and prove it by induction. The base case follows im-
mediately since the error of a freshly encrypted ciphertext is bounded by 3(nB)2 < 4(nB)2N+2.

We now turn to the inductive step. Let c, c′ be level-(d − 1) ciphertexts with corresponding
public key sets K, K ′. The inductive hypothesis tells us the error in c and c′ is bounded by E. Using
the same analysis as in the proof of Lemma 3.2, we can show that relinearizing all keys in K ∪K ′

generates an additive error less than 8 dlog qde (nB)2N+1 < (nB)2N+2, where we used the fact that
qd < q0 = 2nε

for ε < 1. Recall that ct is the ciphertext obtained in a homomorphic operation after
relinearization has been completed but before modulus reduction is performed. Then:

• In a homomorphic addition, the error of ct is bounded by 2(nB)NE + (nB)2N+2. By
Lemma 3.5, the error of cadd is bounded by:

qd

qd−1
·
(
2(nB)NE + (nB)2N+2

)
+ ‖f‖1 ≤

2(nB)NE + (nB)2N+2

2nE
+ nB

≤ 2(nB)NE

2nE
+ (nB)2N+2 + nB

≤ (nB)N

n
+ (nB)2N+2 + nB

≤ 4(nB)2N+2 = E

• In a homomorphic multiplication, the error of ct is bounded by nE2 + (nB)2N+2. By
Lemma 3.5, the error of cmult is bounded by:

qd

qd−1
·
(
nE2 + (nB)2N+2

)
+ ‖f‖1 ≤

nE2 + (nB)2N+2

2nE
+ nB

≤ nE2

2nE
+ 2(nB)2N+2

≤ E

2
+

E

2
= E

41

135
Approved for Public Release; Distribution Unlimited.

This concludes the inductive step and the proof that ciphertexts of all levels have error at most E.
To correctly decrypt a level-D ciphertext, we must have that

(nB)2N+2 = E <
qD

2
<

q0

2(8n(nB)2N+2)D
=

2nε

2(8n(nB)2N+2)D

which yields the theorem statement: ND = O (nε/ log n).

Security. As in Section 3.3, the security of the scheme ELH can be based in the DSPRφ,q,χ and
RLWEφ,q,χ assumptions. However, unlike in Section 3.3, we do not need to assume circular security
of the encryption scheme. This is due to the fact that the evaluation key consists of pseudo-
encryptions of (multiples of) f (d−1) and

(
f (d−1)

)2
under a different public key h(d), for all d ∈ [D].

Semantic security even given the evaluation key can then be established by a hybrid argument that
converts all pseudo-encryptions in the evaluation key, one-by-one, to uniform elements in Rq.

Lemma 3.7. Let n be a power of 2, let φ(x) = xn +1, let q = 2nε
for ε ∈ (0, 1) and χ = DZn,r with

r = poly(n). Then the multikey leveled homomorphic encryption scheme ELH = (LH.Keygen, LH.Enc,
LH.Dec, LH.Eval) described above is secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions.

3.4.4 Multikey Fully Homomorphic Encryption

To convert the leveled homomorphic encryption scheme described in Section 3.4.2 into a fully
homomorphic scheme, we use the multikey bootstrapping theorem (Theorem 3.4). First, we show
an upper bound on the depth of the decryption circuit and show that the scheme is bootstrappable.

Lemma 3.8. The N -key decryption circuit of the leveled homomorphic encryption scheme described
above can be implemented as a polynomial-size arithmetic circuit over GF (2) of depth O(log N ·
(log log qD + log n)).

Proof. The decryption circuit for a ciphertext encrypted under N keys can be written as

Dec(f1, . . . , fN , c) = c ·
N∏

i=1

fi

Multiplying two polynomials over RqD can be done using a polynomial-size Boolean circuit of depth
O(log log qD +log n) (see, e.g., [BV11a, Lemma 4.5] for a proof). Using a binary tree of polynomial
multiplications, the decryption operation above can then be done in depth O(log N · (log log qD +
log n)), as claimed.

This means that the modified scheme is bootstrappable, and therefore applying the bootstrap-
ping theorem gives us:

Theorem 3.9. Let χ is a B-bounded distribution for B = poly(n), let q0 = 2nε
for ε ∈ (0, 1) and for

d ∈ [D], let qd−1/qd = 8n(nB)2N+2. Then, there exists a multikey fully homomorphic encryption
scheme for N = O(nε/ log3 n) keys, secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions, and the
assumption that the leveled homomorphic encryption scheme ELH = (LH.Keygen, LH.Enc, LH.Dec,
LH.Eval) described above is weakly circular secure.

42

136
Approved for Public Release; Distribution Unlimited.

Proof. To apply the multikey bootstrapping theorem (Theorem 3.4), we require that the depth of
the decryption circuit is smaller than the depth of the circuits that the scheme can evaluate. That
is, we require that

log N · (log log qD + log n) < C · log q0

N · log n

for some universal constant C > 0. For N ≤
√

C/2 · (nε/2/ log n), we have,

N · log n · log N · (log log qD + log n) ≤ N2 · log n · ·(log log q0 + log n)

≤ C

2
· nε

log2 n
· (1 + ε) · log2 n

≤ C · nε = C · log q0

as required.

Remark 3.4. Theorem 3.9 implies that for any N ∈ N, there exists a multikey fully homomorphic
encryption scheme for N keys. This is achieved by choosing ε′ such that nε′ ≤

√
C/2 · (nε/2/ log n)

and setting n ≥ N1/ε′.

We emphasize the fact that bootstrapping (and therefore assuming weak circular security) can
be avoided at the cost of obtaining a leveled homomorphic encryption scheme.

4 On-the-Fly MPC from Multikey FHE

We now show how to construct on-the-fly MPC from multikey FHE. We first construct a basic
protocol that is secure against semi-malicious adversaries, and then describe how to modify the
protocol to obtain security against malicious adversaries. As mentioned earlier, the main building
block of our construction is multikey fully homomorphic encryption, defined and constructed in
Section 3.

4.1 The Basic Protocol

Let
{
E(N) = (Keygen, Enc, Dec, Eval)

}
N>0

be a multikey fully-homomorphic family of encryption
schemes. The following construction is an on-the-fly MPC protocol secure against semi-malicious
adversaries. The protocol is defined as follows:

Step 1: For i ∈ [U], party Pi samples a key tuple (pki, ski, eki) ← Keygen(1κ) and encrypts its
input xi under pki: ci ← Enc(pki, xi). It sends (pki, eki, ci) to the server S.

At this point a function F , represented as a circuit C, has been selected on inputs {xi}i∈V for some
V ⊆ U . Let N = |V |. For ease of notation, assume w.l.o.g. that V = [N]. The parties proceed as
follows.

Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN)) and broadcasts c to
parties P1, . . . , PN .

Step 3: The parties P1, . . . , PN run a secure MPC protocol Πdec
sm to compute the function

gc(sk1, . . . , skN) def= Dec(sk1, . . . , skN , c).

43

137
Approved for Public Release; Distribution Unlimited.

We remark that an upper bound on the number of computing parties must be known in advance.
This is a direct consequence of the “leveled” nature of our multikey FHE construction with respect
to the number of keys.

4.1.1 Security Against Semi-Malicious Adversaries

Theorem 4.1. Let
{
E(N) = (Keygen, Enc, Dec, Eval)

}
N>0

be a multikey fully-homomorphic encryp-
tion scheme, and let Πdec

sm be an N -party MPC protocol for computing the decryption function
gc(sk1, . . . , skN) def= Dec(sk1, . . . , skN , c). If E is semantically secure, and Πdec

sm is secure against
semi-honest adversaries corrupting t < N parties, then the above construction is an on-the-fly
MPC protocol secure against (static) semi-malicious adversaries corrupting t parties and possibly
the server S.

Proof. We prove that the protocol is correct and secure, and that it satisfies the performance
requirements of an on-the-fly protocol.

Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the MPC protocol Πdec

sm for decryption.

Performance: By compactness of evaluation, we know that c is independent of |C|. This means
that the communication complexity and the computation time of the parties is independent
of |C|.

Security: We show security for the case when the server is corrupted; the case when the server
is honest is analogous. Let Asm be a real-world semi-malicious adversary corrupting t clients
and the server. Recall that for security, we only need to consider adversaries corrupting a
subset T of the parties P1, . . . , PN involved in the computation. Thus, we assume t < N , let
T ([N] be the set of corrupted clients, and let T = [N]\T .

We construct a simulator Ssm as follows. The simulator receives the inputs of the corrupted
parties, {xi}i∈T and runs Asm on these inputs {xi}i∈T . It simulates the messages for all
honest parties in the protocol execution with Asm by sampling all key tuples correctly, but
encrypting 0 instead of the honest input xi (which it doesn’t know). In Step 3, it runs the
simulator Ssm

Πdec
for the protocol Πdec

sm.

Step 1: For non-computing parties i ∈ {N + 1, . . . , U} and for honest parties i ∈ T , Ssm

computes (pki, ·, eki) ← Keygen(1κ) honestly and computes ci ← Enc(pki, 0). For each
party Pi, the simulator sends (ci, pki, eki) to Asm on behalf of Pi.

At the end of this round, it reads from Asm’s witness tape the secret keys {ski}i∈T and
the inputs {x̃i}i∈T . The simulator sends these inputs to the trusted functionality F and
receives the output ỹ = f(x̃1, . . . , x̃N), where x̃i = xi for honest inputs i ∈ T

Step 2: The simulator receives c from Asm as the server’s broadcast message.

Step 3: The simulator Ssm runs the simulator Ssm
Πdec

for the decryption protocol (interact-
ing with Asm). When Ssm

Πdec
queries the ideal decryption functionality with secret keys{

s̃ki

}
i∈T

, Ssm returns ỹ.

44

138
Approved for Public Release; Distribution Unlimited.

Output: The simulator receives the output of the corrupted parties from Asm, and returns
these as its output.

We prove that IDEALF ,Ssm(~x)
c
≈ REALΠsm,Asm(~x) via a series of hybrids.

Hybrid 0: This is the real-world execution of the protocol.

Hybrid 1: We change how Step 3 is performed. Instead of executing the protocol Πdec
sm

where honest parties use their individual secret keys, we run the simulator Ssm
Πdec

(in-
teracting with Asm). When Ssm

Πdec
queries the ideal decryption functionality with secret

keys
{

s̃ki

}
i∈T

, we return

ỹ = gc(s̃k1, . . . , s̃kN) = Dec(s̃k1, . . . , s̃kN , c)

where s̃ki = ski for honest secret keys i ∈ T . The output of the corrupted parties is
defined to be the output of Ssm

Πdec
, and the output of the honest parties is defined to be

ỹ.

We claim that Hybrid 0 is computationally indistinguishable from Hybrid 1 by the
security of Πdec

sm. Indeed, the security of the decryption protocol Πdec
sm guarantees

that as long as we correctly emulate the ideal decryption functionality, the joint output of
all parties is computationally indistinguishable in a real-world execution of the protocol
with adversary Asm (Hybrid 0), and in an ideal-world execution of the protocol with
adversary Ssm

Πdec
(Hybrid 1). We correctly emulate the ideal decryption functionality, by

definition.

Hybrid 2: We now change how we compute ỹ, the value returned to the simulator Ssm
Πdec

when
it queries the decryption ideal functionality. Instead of computing ỹ = gc(s̃k1, . . . , s̃kN) =
Dec(s̃k1, . . . , s̃kN , c), we instead compute

ỹ = f(x̃1, . . . , x̃N)

where x̃i = xi for honest inputs i ∈ T , and where for corrupt parties i ∈ T , we recover
x̃i by reading Asm’s witness tape at the end of Step 1.

We claim that Hybrid 1 and Hybrid 2 are identically distributed. The adversary Asm

follows the protocol as specified, so in particular, it performs the homomorphic eval-
uation correctly. By correctness of multikey evaluation we know that c decrypts to
f(x̃1, . . . , x̃N) when decrypted using the secret keys it computed in Step 1, {ski}i∈[N];
that is, Dec(sk1, . . . , skN , c) = f(x̃1, . . . , x̃N)
Furthermore, because the adversary Asm follows the protocol as specified, we know
that the secret keys it uses in Step 3 are the same as the ones it computed in Step 1,
i.e. ski = s̃ki for all i ∈ T . We conclude that Dec(s̃k1, . . . , s̃kN , c) = f(x̃1, . . . , x̃N).

Hybrids 3.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 3.k we change cik so
that instead of encrypting xik it now encrypts 0. More formally, in Hybrid 3.k we have:{

cij ← Enc(pkij , 0)
}

j≤k
,

{
cij ← Enc(pkij , xij)

}
j>k

45

139
Approved for Public Release; Distribution Unlimited.

For ease of notation we let Hybrid 2 be Hybrid 3.0. We claim that the view of Asm

in Hybrid 3.k is indistinguishable from its view in Hybrid 3.(k − 1) by the semantic
security of E under public key pkik

. Indeed, now that we run the simulator Ssm
Πdec

in
Step 3 instead of the real decryption protocol, the secret key skik is only used to encrypt
cik . So suppose, for the sake of contradiction, that there exists an algorithm D that
distinguishes between hybrids 3.k and 3.(k − 1). We construct an adversary B that
breaks the semantic security of E under public key pkik

. The reduction B works as
follows:

1. The reduction chooses arbitrary {xi}.
2. It receives (pk, ek) from the semantic security challenger and sets pkik

= pk and
ekik = ek. Gives m0 = 0 and m1 = xik to the challenger and receives c =
Enc(pk,mb). Sets cik = c. For all i ∈ T , i 6= ik, computes (pki, ·, eki) ← Keygen(1κ)
honestly. For j < k, computes cij ← Enc(pkij , 0) and for j > k, computes cij ←
Enc(pkij , xij).

3. The reduction runs Asm: for all i ∈ T gives (pki, eki, ci) to Asm on behalf of Pi, and
receives c from Asm.

4. It reads from Asm’s witness tape the inputs {x̃i}i∈T and runs the simulator Ssm
Πdec

(interacting with Asm). When Ssm
Πdec

queries the ideal decryption functionality, it
returns ỹ = f(x̃1, . . . , x̃N) where x̃i = xi for inputs i ∈ T .

5. The reduction then gives D ỹ as the output of all honest parties, as well as the
output of Ssm

Πdec
.

6. Finally, B outputs the bit output by D.

When b = 0, B perfectly emulates Hybrid 3.k, whereas if b = 1, B perfectly emulates
Hybrid 3.(k−1). Therefore, if D can distinguish between Hybrids 3.k and 3.(k−1), then
B can distinguish between an encryption of m0 and an encryption of m1, contradicting
the semantic security of E .

We have proved that the joint output in Hybrid 0 is computationally indistinguishable from
the joint output in Hybrid 3.(N − t). But notice that the joint output in Hybrid 3.(N − t) is
precisely IDEALF ,Ssm(~x), and the joint output in Hybrid 0 is defined to be REALΠsm,Asm(~x).
We conclude that IDEALF ,Ssm(~x)

c
≈ REALΠsm,Asm(~x), as desired.

4.2 Achieving Security Against Malicious Adversaries

The protocol described in Section 4.1, though secure against semi-malicious adversaries, is not
secure against fully malicious adversaries. We transform the protocol into one that is secure against
malicious corruptions in three steps:

1. First, we replace the decryption protocol in Step 3 with one that is secure against malicious
corruptions. More importantly, we change the function it computes to ensure that the secret
key used in this protocol is consistent with the public and evaluation keys that the parties
computed in Step 1.

46

140
Approved for Public Release; Distribution Unlimited.

2. Second, we add zero-knowledge proofs at each step in the protocol, following the AJW com-
piler [AJW11, AJL+12] (which is based on the GMW compiler [GMW87]).

3. Finally, in order to maintain the performance guarantees of the scheme, in Step 2 we replace
the server’s proof with a succinct argument (not necessarily ZK). This allows the server to
prove that it correctly performed the homomorphic evaluation, and the clients to verify the
validity of the proof in time that is significantly less than the size of the circuit.

The New Decryption Protocol. Our first step in handling malicious attacks is to replace the
decryption protocol Πdec

sm with one that is secure against malicious adversaries; we will denote
it by Πdec

mal. The function being computed by this protocol also needs to change in order to
guarantee that the secret key used by each party is consistent with its public and evaluation keys:

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N]
⊥ otherwise

Intuitively, if the protocol outputs something other than ⊥, then in particular every corrupt
party Pi “knows” a secret key s̃ki that is consistent with its public and evaluation keys (pki, eki). By
correctness of decryption, this binds Pi to the input x̃i = Dec

(
s̃ki, c̃i

)
, which by semantic security

of the FHE, must be independent of the honest party’s inputs.
We remark that the proceedings version of this work [LTV12] does not change the decryp-

tion function, but instead adds to Step 1 a zero-knowledge proof πgen
i for the relation Rgen =

{ ((pki, eki) , (ski, ri)) | (pki, ski, eki) := Keygen(1κ ; ri) }. While this guarantees that the pub-
lic and evaluation keys are well-formed, it does not guarantee that the secret key used in the
decryption protocol in Step 3 is consistent with the public and evaluation keys (pki, eki) created
and used in Step 1. This allows a corrupt party to use a different secret key sk∗i in Step 3 and
potentially change the outcome of the decryption. We are therefore unable to prove security of
that construction. However, the zero-knowledge proofs πgen

i can be required as an optimization,
to guarantee that an honest server does not accept, store, or compute on ciphertexts that are
encrypted under malformed keys (even though the outcome of any joint computation on such a
ciphetext would not be decryptable using protocol Πdec

mal).
Finally, we highlight the fact that if the protocol Πdec

mal can implemented using the cloud-
assisted protocol of Asharov et al. [AJW11, AJL+12]. Jumping ahead, this yields a 5-round on-the-
fly MPC protocol in the CRS-model, secure against malicious corruptions of any t < [N] parties
and possibly the server.

Adding Zero-Knowledge Proofs. The second step in our transformation is to apply the AJW
compiler [AJW11, AJL+12] (based on the GMW compiler [GMW87]) to the rest of the protocol
(Steps 1 and 2), in order to ensure that parties do not deviate from the protocol specifications. This
entails having each party and the server compute a zero-knowledge proof at every round, proving
that their message in that round is well-formed and consistent with the protocol transcript.

Because the well-formedness of the public and evaluation keys (pki, eki) is checked in the de-
cryption protocol Πdec

mal, the parties do not need to compute a separate zero-knowledge proof for
this statement (unless required for the optimization described above). Therefore, each party only

47

141
Approved for Public Release; Distribution Unlimited.

needs to prove that their ciphertext ci is well-formed by providing a non-interactive zero-knowledge
(NIZK) proof for the NP relation:

Renc = { ((pki, ci) , (xi, si)) | ci = Enc(pki, xi ; si) }

We highlight the fact that the proof πenc
i must be non-interactive, for reasons that will become

apparent shortly. Informally, this proof will either be broadcast by the server in Step 2 for all
parties to verify, or it will be used as a witness in the proof of another NP relation. An interactive
zero-knowledge proof would not be convincing it either of these cases since a valid proof transcript
can always be simulated without knowing a witness and without the use of any trapdoors.

Maintaining Performance Guarantees. Unfortunately, verifying a standard zero-knowledge
proof for the server’s computation in Step 2 requires time proportional to the size of the circuit. On
the other hand, this computation is deterministic and public; indeed, anyone can verify the validity
of the server’s broadcast message by performing the homomorphic evaluation themselves, albeit by
also computing in time proportional to the size of the circuit. We solve this problem by replacing
the server’s proof with a succinct argument (not necessarily ZK), that allows the server to prove
that it correctly performed the homomorphic evaluation, and the clients to verify the validity of
the proof in time that is significantly less than the size of the circuit. We offer several solutions,
each with its own benefits and drawbacks.

Verification for Small Inputs: We first consider the case where the ciphertexts (c1, . . . , cN) are
small enough to be broadcast to the N parties in V , allowing communication complexity in
the online phase to be linear in the total input size of the participating parties. In this case,
the server will broadcast all ciphertexts and proofs {ci, π

enc
i }i∈[N], the evaluated ciphertext c,

and a succinct argument ϕ showing that it performed the homomorphic evaluation correctly.
The server needs to convince the participating parties that “c = Eval(C, (c1, pk1, ek1), . . . ,
(cN , pkN , ekN))”, i.e., that a deterministic circuit of size poly(|C|, κ) accepts. For any uni-
form circuit C (i.e., computable by a poly(κ)-time Turing machine), the following offer
poly(κ, log(|C|)) communcation and verification efficiency.11

1. Use the argument system of Kilian [Kil92, Kil95], yielding interactive 4-round verifica-
tion. It relies on expensive PCPs.

2. Use the succinct non-interactive arguments (SNARGs and SNARKs) of Micali [Mic94],
Bitansky et al. [BCCT12, BCCT13] or Goldwasser et al. [GLR11] (see Section 2.3).
These are non-interactive12 but are secure only in the random oracle model [BR93]
(in the case of CS proofs) or hold in the standard model but require a non-falsifiable
assumption [Nao03]. Some variants rely on PCPs, PIR or FHE.

In case that the evaluation circuit is in logspace-uniform NC, we have another alternative:

11For any given family of C, |C| = poly(κ), and thus, poly(κ, log(|C|)) = poly(κ); but the degree of this polynomial
depends on the circuit family.

12In our protocol, each party can run Gen in Step 1 and send the vrs to the server in that step. Or in the case of
CS proofs, where only a description of a hash function is required, this can be added to the CRS of the protocol.

48

142
Approved for Public Release; Distribution Unlimited.

4. Use the argument system of Goldwasser et al. [GKR08] for a 1-round solution13. It relies
on PIR.

Unfortunately, we are unable to use verifiable computation protocols in the pre-processing
model (e.g. [GGP10, CKV10, AIK10]) or SNARGs/SNARKs where the CRS depends on the
circuit to be computed or where its size is at least as big as the computation, e.g. [Gro10,
Lip12, GGPR13, PHGR13, Lip13]. These require the clients to participate in a pre-processing
phase where their computation is proportional to the size of the circuit, violating the perfor-
mance requirements of on-the-fly MPC. Moreover, with this pre-processing step the model
loses its dynamic nature, where users can compute many different functions on their inputs
and can choose these functions dynamically, “on-the-fly”. Indeed, using these solutions would
limit the parties to only compute functions for which they have already performed the corre-
sponding pre-processing work or computed the corresponding CRS.

Verification for Large Inputs: We can make the communication and verification complexities
depend merely polylogarithmically on the size of the relevant inputs x1, . . . , xN . This re-
quires a succint argument system that is a proof of knowledge. This is satisfied by Mi-
cali’s construction of CS proofs under Valiant’s analysis [Mic94, Val08], and by SNARKs
[BCCT12, BCCT13]. The complexity of these arguments depends polynomially on the size
of the statement being proven, but merely polylogarithmically on the size of the witness for
the statement. We thus move ci from the instance into the witness. To recognize the correct
ci, each party Pi remembers the digest of ci under a collision-resistant hash function family
H = {Hhk : {0, 1}∗ → {0, 1}κ}.

In the offline stage, every party Pi samples a hash key hki and computes the digest di =
Hhki

(ci). Party Pi then sends (ci, π
enc
i , hki, di) to the cloud. Each party Pi remembers its

own (hki, di) pair but can forget the potentially long xi, ci, π
enc
i . In the online stage, the

server broadcasts (hk1, d1), . . . , (hkN , dN) and proves the following NP statement: “there exist
c̃1, π̃

enc
1 , . . . , c̃N , π̃enc

N such that di = Hhki
(c̃i) and c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN))

and π̃enc
i is a valid proof”.

The construction is secure, since whenever the server convinces the clients, it actually “knows”
such c̃1, π̃

enc
1 , . . . , c̃N , π̃enc

N which can be efficiently extracted from the server (by the argu-
ments’ proof of knowledge property). For an honest party, the extracted c̃i must be the
one originally sent by the party (by the collision-resistance of H). For a corrupt party, the
extracted c̃i must be a valid ciphertext (by the soundness of π̃enc

i) and its plaintext can be
efficiently extracted using the secret key used by Pi in the decryption protocol in Step 3.

4.2.1 Formal Protocol

We now write a formal description of our construction of on-the-fly MPC, secure against mali-
cious adversaries, and providing correct verification for large inputs. Our construction requires the
following building blocks:

13The protocol has 2 rounds, but (as in the case of SNARGs and SNARKs) the first round is a challenge that
is independent of the language and the statement, and can therefore be precomputed by the clients in Step 1 of
our protocol. Each challenge can only be used for one proof, so the client must refresh the challenge after each
computation.

49

143
Approved for Public Release; Distribution Unlimited.

• A semantically-secure multikey fully-homomorphic family of encryption schemes E ={
E(N) = (Keygen,Enc, Dec, Eval)

}
N>0

.

• A family of collision-resistant hash functions H = {Hhk : {0, 1}∗ → {0, 1}κ}hk.

• A NIZK argument system Πenc = (Setupenc,Proveenc,Verifyenc,Simenc) for the NP relation
Renc = { ((pk, c) , (x, s)) | c = Enc(pk, x ; s) }.

• An adaptively extractable SNARK system Φ =
(
SetupΦ,ProveΦ,VerifyΦ,ExtΦ

)
for all of NP.

• An N -party MPC protocol, secure against malicious adversaries corrupting t < N parties,
for computing the family of decryption functions

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N]
⊥ otherwise

The protocol is defined as follows:

Input: All parties and the server receive as input the common reference string crsenc for the NIZK
proof system Πenc. If CS proofs are used as the SNARK system, the (description) of the
random-oracle hash function is also given to all parties and the server.

Step 1: For i ∈ [U], party Pi samples a key tuple (pki, ski, eki), encrypts its input xi, and computes
a NIZK showing that the ciphertext is well-formed:

(pki, ski, eki) := Keygen(1κ ; ri) , ci := Enc(pki, xi ; si)

πenc
i ← Proveenc((pki, ci) , (xi, si))

It also samples a hash key hki and computes the digest of the ciphertext: di = Hhki
(ci). It

additionally creates a verification reference string and private verification key: (vrsi, privi)←
SetupΦ(1κ).

Party Pi sends the tuple (pki, eki, ci, π
enc
i , hki, di, vrsi) to the server, who verifies all proofs

{πenc
i }i∈[U].

From this point forward, party Pi can forget its (potentially long) input xi, ciphertext ci, and
proof πenc

i . It need only remember its secret key and key-generation randomness (ski, ri), the
hash key and digest (hki, di), and its private verification key privi.

A function F , represented as a circuit C, is now selected on inputs {xi}i∈V for some V ⊆ U .
Let N = |V |. For ease of notation, we assume w.l.o.g. that V = [N].

Step 2: The server S computes c := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN)) and creates succinct
arguments {ϕi}i∈[N] for the NP language

L = { {(pki, eki, hki, di)}i∈[N] | ∃ (c̃1, π̃
enc
1) , . . . , (c̃N , π̃enc

N) such that

di = Hhki
(c̃i) and

Verifyenc((pki, c̃i) , π̃enc
i) = 1 and

c = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)) }

50

144
Approved for Public Release; Distribution Unlimited.

To compute ϕi, the server uses the verification reference string vrsi. If CS proofs are used as
the SNARK system, the server need only compute a single proof ϕ that can be verified by
all.

The server broadcasts (c, ϕ1, . . . , ϕN) to all parties P1, . . . , PN , together with the tuple
{(pki, eki, hki, di)}i∈[N].

Step 3: Party Pi runs VerifyΦ({(pki, eki, hki, di)}i∈[N] , ϕi) to verify the argument ϕi. If verification
is successful for all partiers, they run an MPC protocol Πdec

mal to compute the function

gc,pk1,ek1,...,pkN ,ekN
((sk1, r1) . . . , (skN , rN))

def=
{

Dec(sk1, . . . , skN , c) if (pki, ski, eki) = Keygen(1κ; ri) ∀i ∈ [N]
⊥ otherwise

4.2.2 Proof of Security

Theorem 4.2. Let E ,Πdec
mal,H,Πenc,Φ be as described in Section 4.2.1. Then the above con-

struction is an on-the-fly MPC protocol secure against malicious adversaries corrupting t < N
parties and possibly the server S.

Proof. We prove that the protocol is correct and secure, and that it satisfies the performance
requirements of an on-the-fly protocol.

Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the decryption MPC protocol Πdec

mal.

Performance: The zero-knowledge proofs πenc
i are independent of C and the size of c is inde-

pendent of |C| by compactness of homomorphic evaluation. Moreover, the proof ϕ has size
polylogarithmic in |C| and its verification depends only polylogarithmically on the size of the
ciphertexts ci (and therefore polylogarithmically on the size of the inputs xi as well). Thus,
the communication complexity of the protocol is polylogarithmic in |C|, and the computation
time of each party Pi is at most polylogarithmic in |C| and the total size of the inputs, and
polynomial in y and its input xi.

Security: We show security for the case when the server is corrupted; the case when the server is
honest is analogous. Let Amal be a real-world semi-malicious adversary corrupting t clients
and the server. Recall that for security, we only need to consider adversaries corrupting a
subset T of the parties P1, . . . , PN involved in the computation. Thus, we assume t < N , let
T ([N] be the set of corrupted clients, and let T = [N]\T .

We construct a simulator Smal as follows. The simulator receives the inputs of the corrupted
parties, {xi}i∈T and runs Amal on these inputs {xi}i∈T . It simulates the messages for all hon-
est parties in the protocol execution with Amal. In Step 1, it samples all key tuples correctly,
but encrypts 0 instead of the honest input xi (which it doesn’t know), and computes simulated
proofs πenc

i . In Step 2, it fixes an honest party h and extracts the witness {c̃i, π̃
enc
i }i∈[N] of

the argument ϕh. For all corrupted parties i ∈ T , the simulator extracts the corrupted input
x̃i from the proof π̃enc

i , submits these to the ideal functionality F , and obtains an output ỹ.
In Step 3, it runs the simulator Smal

Πdec
for the protocol Πdec

mal, returning ỹ when it calls the
ideal decryption functionality. More formally:

51

145
Approved for Public Release; Distribution Unlimited.

Step 1: The simulator creates the CRS for the NIZK Πenc, together with a trapdoor key
and an extraction key:

(crsenc, tkenc, extkenc)← Setupenc(1κ)

For non-computing parties i ∈ {N + 1, . . . , U} and for honest parties i ∈ T , the simulator
computes (pki, ·, eki) ← Keygen(1κ) and samples hki honestly. The simulator also runs
the verification setup honestly: (vrsi, privi)← SetupΦ(1κ).
The simulator computes an encryption of 0 and simulated zero-knowledge proofs:

ci ← Enc(pki, 0) , πenc
i ← Sim(tkenc , (pki, ci))

It computes the digest di = Hhki
(ci) honestly. For each party Pi, Smal sends (pki, eki, ci,

πenc
i , hki, di, vrsi) to Amal on behalf of Pi.

Step 2: The simulator receives (c, ϕ1, . . . , ϕN) from Amal, together with the tuples
{(pki, eki, hki, di)}i∈[N]. The simulator verifies ϕi for all honest parties i ∈ T and for
a fixed honest party h ∈ T , uses the SNARG extractor to extract witness {c̃i, π̃

enc
i }i∈[N]

from ϕh:

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
It outputs ⊥ if for any i ∈ [N], verification fails for ϕi or π̃enc

i , or if di 6= Hhki
(c̃i). It also

outputs ⊥ if c 6= Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)), or if c̃i 6= ci for some honest
i ∈ T .

Step 3: The simulator runs the decryption simulator Smal
Πdec

for protocol Πdec
mal (interacting

with Amal). When Smal
Πdec

queries the ideal decryption functionality with secret key and

randomness pairs
{

s̃ki, r̃i

}
i∈T

, the simulator checks that Keygen(1κ ; r̃i) = (pki, s̃ki, eki)

for all i ∈ T . If the check fails, it outputs ⊥. Otherwise, it decrypts c̃i with the secret
key s̃ki to obtain the corrupted input x̃i (if Dec

(
s̃ki, c̃j

)
= ⊥, it returns ⊥):

x̃i := Dec
(
s̃ki, c̃j

)
Finally, it submits inputs {x̃i}i∈T to the ideal functionality F , and obtains output ỹ =
f(x̃1, . . . , x̃N), where x̃i = xi for honest parties i ∈ T . It returns ỹ to the simulator
Smal

Πdec
.

Output: The simulator receives the output of the corrupted parties from Smal
Πdec

, and returns these
as its output.

We prove that IDEALF ,Smal(~x)
c
≈ REALΠmal,Amal(~x) via a hybrid argument.

Hybrid 0: This is a real-world execution of the protocol.

Hybrid 1: We change how Step 3 is performed. Instead of executing the protocol Πdec
mal where

honest parties use their individual secret keys, we run the simulator Smal
Πdec

(interacting with

52

146
Approved for Public Release; Distribution Unlimited.

Amal). When Smal
Πdec

queries the ideal decryption functionality with secret keys and randomness{
s̃ki, r̃i

}
i∈T

, we return

ỹ = gc,pk1,ek1,...,pkN ,ekN

((
s̃k1, r̃1) . . . , (s̃kN , r̃N

))
where s̃ki = ski and r̃i = ri for honest parties i ∈ T . We define the output of the corrupted
parties to be the output of Smal

Πdec
, and the output of the honest parties to be ỹ.

We claim that Hybrid 0 is computationally indistinguishable from Hybrid 1 by the security
of Πdec

mal. Indeed, the security of the decryption protocol Πdec
mal guarantees that as long

as we correctly emulate the ideal decryption functionality, the joint output of all parties
is computationally indistinguishable in a real-world execution of the protocol with adversary
Amal (Hybrid 0), and in an ideal-world execution of the protocol with adversary Smal

Πdec
(Hybrid

1). We correctly emulate the ideal decryption functionality, by definition.

Hybrid 2: Hybrid 2 is the same as Hybrid 1 except that we use the extractor ExtΦ to extract a
witness {(c̃i, π̃

enc
i)}i∈[N] from ϕh:

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
We define the output of the protocol to be ⊥ if for any i ∈ [N], verification fails for π̃enc

i or
di 6= Hhki

(c̃i). We also output ⊥ if c 6= Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN)), where c is
the ciphertext returned by Amal in Step 2. By the adaptive extractability property of Φ, we
know that this event happens with negligible probability. Therefore, Hybrid 1 and Hybrid 2
are statistically close.

Note that we require Φ to satisfy adaptive extractability because the adversary is free to
choose the statement of the proof after it sees vrsh.

Hybrid 3: In Hybrid 3, we additionally let the output of the protocol be ⊥ if c̃i 6= ci for any
honest i ∈ T .

We claim that Hybrid 2 and 3 are statistically close by the collision-resistance of H. Indeed,
Hybrids 2 and 3 are identical except in the case when all previous checks pass but there exists
j ∈ T such that c̃j 6= cj . Let ε be the probability, conditioned on all other checks passing,
that there exists such a j ∈ T . Suppose, for the sake of contradiction, that ε is non-negligible.
Then we construct an adversary B that breaks the collision-resistance of H. The reduction B
works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It creates the NIZK CRS honestly: (crsenc, ·)← Setupenc(1κ), and runs Amal on inputs
{xi}i∈T and crsenc as the CRS.

3. For all non-computing parties and honest parties, it samples key tuples
(pki, ski, eki) ← Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si).
It creates honest proofs πenc

i ← Proveenc((pki, ci) , (xi, si)). It also runs the verifica-
tion setup honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

53

147
Approved for Public Release; Distribution Unlimited.

4. When it receives a hash key hk from the collision-resistance challenger, the reduction
guesses an honest index i∗ ← T uniformly at random and sets hki∗ = hk. For all other
i 6= i∗, it samples hki honestly. Finally, for all non-computing and honest parties, it
computes the digest di = Hhki

(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
7. Finally, it submits ci∗ and c̃i∗ to the collision-resistance challenger as its collision.

If all previous checks pass, then in both hybrids we have that H(cj) = H(c̃j) = dj . Therefore
the probability that B submits a valid collision to the collision challenger is ε/

∣∣T ∣∣. If ε is
non-negligible, then B breaks the collision-resistance property of the hash family H.

Hybrid 4: In Hybrid 4, we additionally let the output of the protocol be ⊥ if Dec(s̃ki, c̃i) = ⊥ for
any corrupt i ∈ T , where s̃ki is the secret key output by the decryption protocol simulator
Smal

Πdec
and c̃i is extracted from the succinct argument ϕh, as in Hybrids 2 and 3.

We claim that Hybrid 3 and Hybrid 4 are statistically close by the soundness of the NIZK
Πenc. Indeed, Hybrids 3 and 4 are identical except in the case when all previous checks pass
but there exists j ∈ T such that Dec(s̃kj , c̃j) = ⊥. By correctness of decryption, this happens if
and only if @ (x̃j , s̃j) such that Enc(pkj , x̃j ; s̃j) = c̃j , or in other words, if (pkj , c̃j) /∈ Lenc. Let
ε be the probability, conditioned on all other checks passing, that there exists an index j ∈ T
such that (pkj , c̃j) /∈ Lenc. Suppose, for the sake of contradiction, that ε is non-negligible.
Then we construct an adversary B that breaks the soundness of Πenc. The reduction B works
as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It receives the CRS from the soundness challenger, and runs Amal on inputs {xi}i∈T and

the CRS.

3. For all non-computing parties and honest parties, it samples key tuples (pki, ski, eki)←
Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si). It creates honest
proofs πenc

i ← Proveenc((pki, ci) , (xi, si)). It also runs the verification setup honestly
to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
54

148
Approved for Public Release; Distribution Unlimited.

7. It runs the simulator Smal
Πdec

(interacting with Amal). When Smal
Πdec

queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) = Keygen(1κ ; r̃i) for all i ∈ [N]. If this check fails, it returns ⊥. Otherwise,
it chooses a corrupt i∗ ← T uniformly at random and submits π̃enc

i∗ as its proof forgery.

If all previous checks pass, then in both hybrids we have that Verify ((pki, c̃i) , π̃enc
i) = 1

for all i ∈ [N] (see Hybrid 2). Therefore, the probability that B submits a valid forgery to the
soundness challenger is ε/ |T |. If ε is non-negligible, then B breaks the soundness property of
the NIZK Πenc.

Hybrid 5: We now change how we compute ỹ, the value returned to the simulator Smal
Πdec

when it
queries the decryption ideal functionality. Instead of computing
ỹ = gc,pk1,ek1,...,pkN ,ekN

((
s̃k1, r̃1) . . . , (s̃kN , r̃N

))
, we first check if (pki, s̃ki, eki) =

Keygen(1κ ; r̃i) for all i ∈ T . If this check fails, we return ⊥; otherwise we decrypt each
malicious c̃i and evaluate f on the resulting inputs:

ỹ =
{

f(x̃1, . . . , x̃N) If (pki, s̃ki, eki) = Keygen(1κ ; r̃i) ∀i ∈ T
⊥ Otherwise

where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T

We claim that Hybrid 5 and Hybrid 4 are statistically close. In the case when (pki, s̃ki, eki) 6=
Keygen(1κ ; r̃i) for some i ∈ T , both hybrids output ⊥. We focus on the case when this check
passes for all parties, so that s̃ki is guaranteed to be a valid secret key for its corresponding
public and evaluation keys. In both hybrids, we know that c = Eval(C, (c̃1, pk1, ek1), . . . ,
(c̃N , pkN , ekN)) (see Hybrid 2). By soundness of Πenc, we know that all c̃i’s are fresh
encryptions, so by correctness of multikey evaluation we know that Dec(s̃k1, . . . , s̃kN , c) =
f(x̃1, . . . , x̃N), where we define s̃ki = ski for all honest i ∈ T and x̃i := Dec(s̃ki, c̃i) for all
i ∈ [N]. Furthermore, since c̃i = ci for all honest i ∈ T (see Hybrid 3), we know that x̃i = xi

for all i ∈ T by correctness of decryption.

Hybrid 6: In Hybrid 6, we change how we compute the proofs πenc
i . Instead of computing real

proofs, we use the NIZK simulator to create simulated proofs:

{πenc
i ← Sim(tkenc , (pki, ci))}i∈T

We claim that Hybrid 6 is computationally indistinguishable from Hybrid 5 by the unbounded
zero-knowledge property of the proof system Πenc. Suppose, for the sake of contradiction, that
there exists an algorithm D that distinguishes between hybrids 5 and 6. We construct an
adversary B that breaks zero-knowledge of Πenc. The reduction B works as follows:

1. The reduction chooses arbitrary inputs {xi}.
2. It receives the CRS from the zero-knowledge challenger, and runs Amal on inputs {xi}i∈T

and the CRS.

55

149
Approved for Public Release; Distribution Unlimited.

3. For all non-computing parties and honest parties, it samples key tuples (pki, ski, eki)←
Keygen(1κ), and encrypts the input correctly: ci ← Enc(pki, xi ; si). It creates proofs
πenc

i by calling its oracle with statement (pki, ci) and witness (xi, si). It also runs the ver-
ification setup honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

4. It samples hki honestly and computes the digest di = Hhki
(ci).

5. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

6. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
7. It runs the simulator Smal

Πdec
(interacting with Amal). When Smal

Πdec
queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) 6= Keygen(1κ ; r̃i). If this check fails, it returns ⊥; otherwise it returns
ỹ = f(x̃1, . . . , x̃N) where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

8. At the end of the protocol, it forwards Amal’s output to D as the output of the corrupt
parties, and gives ỹ to D as the output of the honest parties.

When B’s oracle is the prover oracle P(·), then B perfectly emulates Hybrid 5, whereas if the
oracle is the simulation oracle SIMtk(·), B perfectly emulates Hybrid 6. Therefore, if D can
distinguish between Hybrids 5 and 6, then B breaks the zero-knowledge property of Πenc.

Hybrids 7.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 7.k we change cik so that
instead of encrypting xik it now encrypts 0. More formally, in Hybrid 7.k we have:{

cij ← Enc(pkij , 0)
}

j≤k
,

{
cij ← Enc(pkij , xij)

}
j>k

For ease of notation we let Hybrid 6 be Hybrid 7.0. We claim that the view of Amal in Hybrid
7.k is indistinguishable from its view in Hybrid 7.(k− 1) by the semantic security of E under
public key pkik

. Indeed, now that we run the simulator Smal
Πdec

in Step 3 instead of the real
decryption protocol, the secret key skik is only used to encrypt cik . So suppose, for the sake
of contradiction, that there exists an algorithm D that distinguishes between hybrids 7.k and
7.(k − 1). We construct an adversary B that breaks the semantic security of E under public
key pkik

. The reduction B works as follows:

1. The reduction chooses arbitrary {xi}.
2. It creates the NIZK CRS honestly: (crsenc, tkenc) ← Setupenc(1κ), and runs Amal on

inputs {xi}i∈T and crsenc as the CRS.

3. It receives (pk, ek) from the semantic security challenger and sets pkik
= pk and ekik = ek.

Gives m0 = 0 and m1 = xik to the challenger and receives c = Enc(pk,mb). Sets cik = c.
For all i ∈ T , i 6= ik, computes (pki, ·, eki) ← Keygen(1κ) honestly. For j < k, computes
cij ← Enc(pkij , 0) and for j > k, computes cij ← Enc(pkij , xij).

56

150
Approved for Public Release; Distribution Unlimited.

4. For all non-computing and honest parties, it creates simulated proofs πenc
i ←

Sim(tkenc , (pki, ci)) using the trapdoor tkenc. It also runs the verification setup
honestly to generate a verification reference string (vrsi, ·)← SetupΦ(1κ).

5. It samples hki honestly and computes the digest di = Hhki
(ci).

6. It sends {pki, eki, ci, π
enc
i , hki, di}i∈T to Amal.

7. When it receives a ciphertext c and proofs ϕ1, . . . , ϕN from Amal, along with the set
{pki, eki, hki, di}, it runs the extractor

{c̃i, π̃
enc
i }i∈[N] ← ExtΦ

(
{(pki, eki, hki, di)}i∈[N] , ϕh

)
8. It runs the simulator Smal

Πdec
(interacting with Amal). When Smal

Πdec
queries the ideal de-

cryption functionality with secret key and randomness pairs
{

s̃ki, r̃i

}
i∈T

, it checks that

(pki, s̃ki, eki) 6= Keygen(1κ ; r̃i). If this check fails, it returns ⊥; otherwise it returns
ỹ = f(x̃1, . . . , x̃N) where x̃i := Dec(s̃ki, c̃i) for i ∈ T and x̃i = xi for i ∈ T .

9. At the end of the protocol, it forwards Amal’s output to D as the output of the corrupt
parties, and gives ỹ to D as the output of the honest parties.

When b = 0, B perfectly emulates Hybrid 7.k, whereas if b = 1, B perfectly emulates Hybrid
7.(k − 1). Therefore, if D can distinguish between Hybrids 7.k and 7.(k − 1), then B can
distinguish between an encryption of m0 and an encryption of m1, contradicting the semantic
security of E .

We have proved that the joint output in Hybrid 0 is computationally indistinguishable from
the joint output in Hybrid 7.(N − t). Notice that the joint output in Hybrid 7.(N − t) is precisely
IDEALF ,Smal(~x), and the joint output in Hybrid 0 is defined to be REALΠsm,Amal(~x). We conclude
that IDEALF ,Smal(~x)

c
≈ REALΠmal,Amal(~x), as desired.

4.2.3 Efficient NIZKs to Prove Plaintext Knowledge

The protocol described in Section 4.2.1 requires a NIZK argument system for the relation NP
relation Renc = { ((pk, c) , (x, s)) | c = Enc(pk, x ; s) }. While it is known how to construct
NIZK argument systems for all of NP [GOS06, GOS12], using this construction requires expensive
NP reductions. In this section, we show how to construct an efficient gap Σ-protocol for Renc when
the encryption scheme is the NTRU-based multikey FHE scheme from Section 3.4. By Theorem 2.2
this suffices to construct an efficient NIZK argument system for Renc in the random oracle model.
Our construction follows the ideas of Asharov et al. [AJW11, AJL+12].

Recall that in the aforementioned FHE scheme, a ciphertext has the form c = [hs + 2e + m]q
for public key h, message m ∈ {0, 1}, and ring elements s, e, sampled from B-bounded distribution
χ. We construct a gap Σ-protocol for proving that “c encrypts 0 under h”. That is, we show a
protocol for relation

Renc
0 =

{
((h, c) , (s, e)) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ B

}
with corresponding language Lenc

0 . By Theorem 2.1, we can then construct a gap Σ-protocol for
Renc using an OR protocol to prove that “c ∈ Lenc

0 or c− 1 ∈ Lenc
0 ”.

57

151
Approved for Public Release; Distribution Unlimited.

Gap Σ-protocol for Encryptions of 0. Our construction of a gap Σ-protocol for Renc
0 uses

the same parameters as the encryption scheme: degree n, polynomial φ(x) = xn + 1, modulus q,
and distribution χ = DZn,r over the ring R = Z[x]/〈φ(x)〉. It is additionally parametrized by a
distribution χ̃ = DZn,er over R, such that 2ω(log κ)r ≤ r̃ ≤ q/4

√
n − r. To simplify notation, we

recall from Lemma 2.7 that χ is B-bounded and χ̃ is B̃-bounded for B = r
√

n and B̃ = r̃
√

n. By
our choice of r̃, this means that B̃ + B ≤ q/4.

To formally describe our protocol, we must first define relations Rzk and Rsound. We set Bzk =
Renc

0 and set Bsound to be essentially the same as Renc
0 , differing only in the requirement set for

‖s‖∞ and ‖e‖∞:

Rsound =
{

((h, c) , (s, e)) | c = [hs + 2e]q ∧ ‖s‖∞ , ‖e‖∞ ≤ 4
(
B̃ + B

) }
Note that since B̃ ≥ B, we have Rzk ⊆ Rsound. We can now describe our construction:

• P1((h, c), (s, e)) : Samples s̃, ẽ← χ̃ and outputs a = [hs̃ + 2ẽ]q and st = (s̃, s).

• V1((h, c)) : Outputs a random bit b← {0, 1}.

• P2(st, b) : Parses st = (s̃, s) and outputs z = [s̃ + bs]q.

• V2((h, c), a, b, z) : Computes ε = [(a + bc)− hz]q and outputs 1 if and only if ‖z‖∞ ≤ B̃ + B,

‖ε‖∞ ≤ 2
(
B + B̃

)
, and ε is even.

Theorem 4.3. Let Rzk, Rsound be the NP relations described above. The construction 〈P, V 〉 with
P = (P1, P2) and V = (V1, V2) is a gap Σ-protocol for (Rzk, Rsound).

Proof. We show that the above construction satisfies the completeness, special soundness, and
HVZK properties.

Completeness: Let ((h, c), (s, e)) ∈ Lzk, and let (a, b, z) be a transcript for protocol 〈P, V 〉. Then

ε = [(a + bc)− hz]q = [hs̃ + 2ẽ + bhs + 2be− hs̃− hbs]q = [2(ẽ + be)]q = 2(ẽ + be)

where the last inequality holds by the fact that B̃ + B ≤ q/4. It is clear that ε is even, and
its coefficients are bounded by 2(B̃ + B). Furthermore, z = s̃ + bs, so ‖z‖∞ ≤ B̃ + B, as
required.

Special Soundness: Let (h, c) be a public key and ciphertext pair, and let (a, 0, z0) and (a, 1, z1)
be two accepting transcripts. The extractor Ext outputs (s∗, e∗), where s∗ = z1 − z0 and
e∗ = [c− hs∗]q.

We now argue that ((h, c), (s∗, e∗)) ∈ Rsound. By construction, we have that c = [hs∗ + 2e∗]q.
It remains to show the bound on the size of the coefficients of s∗ and e∗. Since (a, 0, z0) and
(a, 1, z1) are accepting transcripts, we know that ‖z0‖∞ , ‖z1‖∞ ≤ B̃ + B, so that ‖s∗‖∞ ≤
2

(
B̃ + B

)
.

We now bound e∗. Let ε0 = [a− hz0]q and ε1 = [(a + c)− hz1]q. Since (a, 0, z0) and (a, 1, z1)

are accepting transcripts, we know that ‖ε0‖∞ , ‖ε1‖∞ ≤ 2
(
B̃ + B

)
and both ε0 and ε1 are

58

152
Approved for Public Release; Distribution Unlimited.

even. Furthermore, ε1 − ε0 = [(a + c)− hz1 − (a− hz0)]q = [c− h(z1 − z0)]q = e∗. This
means that e∗ is even since both ε0 and ε1 are even, and we also have that ‖e∗‖∞ ≤ ‖ε0‖∞+

‖ε1‖∞ ≤ 4
(
B̃ + B

)
, as desired.

Honest-Verifier Zero-Knowledge: Let ((h, c), (s, e)) ∈ Lzk and let b ∈ {0, 1}. The simulator
Sim chooses z′, e′ ← χ̃, sets a′ = hz′ + 2e′ + bc, and outputs (a′, b, z′). We argue that the
output of Sim is statistically close to the transcript (a, b, z) of an execution of the protocol
〈P, V 〉. In a real transcript, we have a = hs̃ + 2ẽ and z = s̃ + σs. In the simulated transcript,
we have a′ = h(z′ + bs) + 2(e′ + be). If b = 0, then the distributions are identical because
s̃, ẽ, z′, e′ are all sampled from the same distribution χ̃. On the other hand, if b = 1, then the
distributions are statistically close by Corollary 2.9.

Consequences of Having a Gap. We have shown how to construct efficient NIZK arguments
for the relation Renc for the NTRU-based multikey FHE scheme from Section 3.4. However, there
is a gap in the relations for which soundness and zero-knowledge hold: zero-knowledge holds for an
honest prover with a statement in Rzk, but an honest verifier is only convinced that the statement
is in Rsound ⊇ Rzk. We must show that this gap does not affect the correctness of our protocol.
It suffices to prove that the scheme is fully homomorphic when the error in fresh ciphertexts is
bounded by B∗

def= 4(B̃ + B).
Our analysis in Section 3.4 does not immediately guarantee this, as it sets B = poly(n). Since

we must have n = poly(κ) for efficiency of the scheme, this means B = poly(κ). However B∗ is
super-polynomial in κ. Nevertheless, we can easily modify our parameters and analysis to guarantee
that the scheme remains fully homomorphic with ciphertext noise that is super-polynomial in κ.

The proof of Lemma 3.6 shows that the leveled homomorphic scheme ELH described in Sec-
tion 3.4.2 is multikey homomorphic for N keys and circuits of depth D as long as

(nB∗)2N+2 <
2nε

2(8n(nB∗)2N+2)D

which yields the requirement ND = O (nε/(log n + log B∗)). We can then follow the proof of
Theorem 3.9 and show that there exists a multikey fully homomorphic encryption scheme for
N = O

(√
(nε/ log n(log n + log B∗))

)
. If we set B̃ = 2log2 κ ·B for B = poly(n) and n ≥ κ, this is

guaranteed if N = O

(√
(nε/ log3 n)

)
since

nε/(log3 n) = O(nε/(log n · (log n + log2 κ))) = O(nε/(log n · (log n + log B∗)))

(In)Security in the Standard Model. We have shown a NIZK argument for relation Renc.
Though secure in the random oracle model, we remark that care must be taken if we want to
hope for security in the standard model. More specifically, since our gap Σ-protocol has only
constant soundness, we need to use parallel repetition for soundness amplification. For efficiency,
we would like to repeat the protocol only polylog(κ) many times as this already achieves negligible
soundness. However, Dachman-Soled et al. [DJKL12, BDG+13] have shown that if we use such a
small number of repetitions, the resulting NIZK cannot be proven sound (in the standard model)

59

153
Approved for Public Release; Distribution Unlimited.

via a black-box reduction to a (super-polynomially hard) falsifiable assumption. Also see remarks
after Theorem 2.2.

4.3 Impossibility of a 2-Round Protocol

We have shown that there exists an on-the-fly MPC protocol with a 5-round online phase. We
now ask whether we can achieve the optimal solution of having a completely non-interactive online
phase. In this section we answer this question negatively: we show that the existence of such a
protocol (secure against semi-honest adversaries)14 implies general circuit obfuscation as a virtual
black-box with single-bit output, which we know to be impossible [BGI+01]. Our techniques are
inspired by those of van Dijk and Jules [vDJ10].

We begin by reviewing the definition of general circuit obfuscation [BGI+01].

Definition 4.1 (Circuit Obfuscation [BGI+01]). A probabilistic algorithm O is a circuit obfuscator
if the following three conditions hold:

Functionality: For every circuit C, the string O(C) describes a circuit that computes the same
function as C.

Polynomial Slowdown: There is a polynomial p such that for every circuit C, |O(C)| ≤ p(|C|).

“Virtual Black-Box” Property: For any PPT adversary A, there is a PPT simulator S such
that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣∣ ≤ negl(|C|)

Barak et al. [BGI+01] show that assuming one-way functions exist, there does not exist any
algorithm O satisfying Definition 4.1, even if we do not require that O run in polynomial time.
Thus, our results imply that assuming one-way functions exist, there does not exist any on-the-fly
MPC protocol with a non-interactive online phase.

We now show the connection between on-the-fly MPC and obfuscation. We consider an on-
the-fly MPC protocol with a non-interactive online phase, and assume that only one function is
evaluated and the function is chosen a-priori, before the start of the protocol (i.e. it does not
depend on the offline stage messages). Let N be the number of inputs of the circuit; without loss
of generality, we assume that the computing parties are P1, . . . , PN . Note that considering such a
restricted protocol only makes our impossibility result stronger. A protocol like this can be modeled
by efficient and possibly randomized algorithms: In1, . . . , InU ,Compute, Out1, . . . ,OutN , where:

• (di, ci) ← Ini(xi): On input xi, the algorithm Ini outputs two elements, ci to be sent to the
server S and di to be kept by party Pi.

• (z1, . . . , zN) ← Compute(C, c1, . . . , cN) : On input a circuit C and c1, . . . , cN , which are the
messages the server received from parties P1, . . . , PN , Compute outputs N elements z1, . . . , zN .
The server sends back zi to party Pi.

14Considering semi-honest adversaries instead of semi-malicious or malicious adversaries only makes our result
stronger.

60

154
Approved for Public Release; Distribution Unlimited.

• y ← Outi(zi, di) : On input zi which was received from the server, and the auxiliary informa-
tion di output by Ini, Outi computes the output y.

We know from the work of Halevi, Lindell, and Pinkas [HLP11] that in the non-interactive
setting, the server can always evaluate the circuit multiple times, keeping some parties inputs but
plugging in fake inputs of its choosing for the other parties. Thus we must relax the definition of
security so that when the server is corrupted, the simulator is allowed to submit queries of the form
(S, ~x), where S is a non-empty subset of the honest parties and ~x is any input vector of size n−|S|.
The trusted functionality evaluates the function on ~x and the honest inputs in S. Furthermore,
our result holds even when the real-world adversary is only allowed to output 1 bit.15

Theorem 4.4. If there exists an on-the-fly MPC protocol with a non-interactive online phase that
computes all efficiently computable functions with 2 inputs, and is secure against semi-honest ad-
versaries (with the relaxed definition of security), then there exists a circuit obfuscator O satisfying
Definition 4.1.

Proof. We start by defining a family of “meta-circuits”
{
F (m)

}
m∈N. For a fixed m ∈ N, F (m)

is such that given a circuit C of size m and bit-string x, it evaluates C on x and outputs C(x),
i.e. F (m)(C, x) = C(x). van Dijk and Juels [vDJ10] show to construct a family of meta-circuits
such that for all m ∈ N, |F (m)| = O(m2).

We now show how to construct a circuit obfuscator O using an on-the-fly MPC protocol Π =
(In1, . . . , InU ,Compute, Out1,Out2) with the properties described in the theorem statement. Given
a circuit C of size m, O computes (·, c1) ← In1(C), samples random coins ρ, σ, τ , and outputs a
circuit G that on input x:

• Computes (c2, d2) := In2(x ; ρ).

• Computes (·, z2) := Compute(F (m), c1, c2 ;σ)

• Computes and outputs y := Out2(z2, d2 ; τ).

We now show that this obfuscator satisfies the functionality, polynomial slowdown, and virtual
black-box properties from Definition 4.1.

Functionality: The correctness property of the on-the-fly MPC protocol guarantees that G(x) =
F (m)(C, x) = C(x) for all x.

Polynomial Slowdown: Using van Dijk and Juel’s construction [vDJ10], we have that |F (m)| =
O(m2). Since all algorithms of the on-the-fly MPC protocol run in polynomial time, we have
that there exists a polynomial p such that |G| = p(|C|).

Virtual Black-Box: To prove the virtual black-box property, we observe that given an attacker
A trying to break the obfuscation, we can construct a real-world semi-honest adversary B
attacking the on-the-fly MPC protocol, corrupting the server and party P2. The honest party
receives input C and B receives a dummy value x̃ for P2, which it ignores. Instead it receives
c1 from the honest party, builds G as specified and runs A on G. When A outputs a bit b, B

15Considering a restricted class of adversaries for the on-the-fly MPC protocol only makes our impossibility result
stronger.

61

155
Approved for Public Release; Distribution Unlimited.

completes Steps 2 and 3 in the protocol as specified, and outputs b. We emphasize that any
action taken by A is valid for a semi-honest adversary, so B is semi-honest.

Security of Π says that there exists simulator S such that for all inputs C, x̃, we have
IDEALF ,S(C, x̃)

c
≈ REALΠ,B(C, x̃), where in the ideal world, S is given access to an ora-

cle as described above. In the setting we are considering, the only valid subset that S can
provide in a query to this oracle is {1}. Thus, S has oracle access to F (m)(C, ·) = C(·). We
can build a simulator S ′ with oracle access to C(·) that on input |C|16, chooses an arbitrary
x̃ and runs S(x̃) (which runs B, which runs A), anwers S’s queries with its own oracle, and
outputs S’s output.

Since B outputs whatever A outputs and S ′ outputs whatever S outputs, the fact that
IDEALF ,S(C, x̃)

c
≈ REALΠ,B(C, x̃) implies that S ′(|C|)

c
≈ A(G). The theorem statement fol-

lows.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In STOC, pages 284–293, 1997.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP
(1), volume 6198 of Lecture Notes in Computer Science, pages 152–163. Springer, 2010.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold fhe. In Pointcheval and Johansson [PJ12], pages
483–501.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold fhe. IACR Cryptology
ePrint Archive, 2011:613, 2011.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages
106–115. IEEE Computer Society, 2001.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable

16In most applications it is ok to leak the size of the honest input. Indeed this is implied in most constructions,
including our construction from Section 4.1.

62

156
Approved for Public Release; Distribution Unlimited.

collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for snarks and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, STOC, pages 111–120. ACM, 2013.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs
for lattice-based cryptosystems. In Daniele Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 201–218. Springer, 2010.

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai,
Adriana López-Alt, and Daniel Wichs. Why ”fiat-shamir for proofs” lacks a proof. In
TCC, pages 182–201, 2013.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Paterson [Pat11], pages
169–188.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 278–291. Springer,
1993.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Janos Simon, editor, STOC, pages 103–112.
ACM, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Kilian
[Kil01], pages 1–18.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. In ITCS, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[BLLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In Martijn Stam, editor, IMA
Int. Conf., volume 8308 of Lecture Notes in Computer Science, pages 45–64. Springer,
2013.

[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-box

63

157
Approved for Public Release; Distribution Unlimited.

zero knowledge. J. Comput. Syst. Sci., 72(2):321–391, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, ACM Conference on Computer and
Communications Security, pages 62–73. ACM, 1993.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Safavi-Naini and Canetti [SNC12], pages 868–886.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In Ostrovsky [Ost11], pages 97–106.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Rogaway [Rog11], pages 505–524.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In
Moni Naor, editor, ITCS, pages 1–12. ACM, 2014.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint,
Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the
integers. In Johansson and Nguyen [JN13], pages 315–335.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In EUROCRYPT, pages 280–299, 2001.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In Rabin [Rab10], pages 483–501.

[CL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct np proofs from an extractability
assumption. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, edi-
tors, CiE, volume 5028 of Lecture Notes in Computer Science, pages 175–185. Springer,
2008.

[CLO+13] Ashish Choudhury, Jake Loftus, Emmanuela Orsini, Arpita Patra, and Nigel P. Smart.
Between a rock and a hard place: Interpolating between mpc and fhe. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture Notes in
Computer Science, pages 221–240. Springer, 2013.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully

64

158
Approved for Public Release; Distribution Unlimited.

homomorphic encryption over the integers. In Hugo Krawczyk, editor, Public Key
Cryptography, volume 8383 of Lecture Notes in Computer Science, pages 311–328.
Springer, 2014.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In Rogaway
[Rog11], pages 487–504.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compres-
sion and modulus switching for fully homomorphic encryption over the integers. In
Pointcheval and Johansson [PJ12], pages 446–464.

[Cra12] Ronald Cramer, editor. Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume
7194 of Lecture Notes in Computer Science. Springer, 2012.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith.
Scalable multiparty computation with nearly optimal work and resilience. In David
Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages
241–261. Springer, 2008.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In Gilbert [Gil10], pages
445–465.

[DJKL12] Dana Dachman-Soled, Abhishek Jain, Yael Tauman Kalai, and Adriana López-Alt.
On the (in)security of the fiat-shamir paradigm, revisited. IACR Cryptology ePrint
Archive, 2012:706, 2012.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure mpc for dishonest majority - or: Break-
ing the spdz limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS, volume 8134 of Lecture Notes in Computer Science, pages 1–18. Springer,
2013.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic func-
tions. J. ACM, 50(6):852–921, 2003.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Safavi-Naini and Canetti [SNC12],
pages 643–662.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers
for efficiently samplable, seed-dependent sources. In Cramer [Cra12], pages 618–635.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

65

159
Approved for Public Release; Distribution Unlimited.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO, volume 196 of
Lecture Notes in Computer Science, pages 10–18. Springer, 1984.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 112–131. Springer, 1997.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Johansson and Nguyen [JN13], pages 1–17.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49. IEEE Computer Society, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
mpc from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC, volume
8349 of Lecture Notes in Computer Science, pages 74–94. Springer, 2014.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In Rabin [Rab10], pages 465–482.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Johansson and Nguyen [JN13], pages
626–645.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Ostrovsky [Ost11], pages 107–109.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Paterson [Pat11], pages 129–148.

[GHL+11] Craig Gentry, Shai Halevi, Vadim Lyubashevsky, Christopher Peikert, Joseph Silver-
man, and Nigel Smart. Personal communication, 2011.

[GHPS12] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Ring switching in bgv-
style homomorphic encryption. In Ivan Visconti and Roberto De Prisco, editors, SCN,
volume 7485 of Lecture Notes in Computer Science, pages 19–37. Springer, 2012.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully ho-
momorphic encryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,

66

160
Approved for Public Release; Distribution Unlimited.

editors, Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In Pointcheval and Johansson [PJ12], pages 465–482.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes
circuit. In Safavi-Naini and Canetti [SNC12], pages 850–867.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, pages 102–113. IEEE Computer Society, 2003.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In Cynthia Dwork, editor, STOC, pages 113–122.
ACM, 2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier cs-proofs. Cryptology ePrint Archive:
Report 2011/456, 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 339–358. Springer, 2006.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11, 2012.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 321–340. Springer, 2010.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in

67

161
Approved for Public Release; Distribution Unlimited.

Computer Science, pages 75–92. Springer, 2013.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, STOC,
pages 99–108. ACM, 2011.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Rogaway [Rog11], pages 132–150.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public
key cryptosystem. In Joe Buhler, editor, ANTS, volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer, 1998.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge proto-
cols. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 408–423. Springer, 1998.

[JN13] Thomas Johansson and Phong Q. Nguyen, editors. Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science. Springer, 2013.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732. ACM, 1992.

[Kil95] Joe Kilian. Improved efficient arguments (preliminary version). In Don Coppersmith,
editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 311–324.
Springer, 1995.

[Kil01] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science. Springer, 2001.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. Cryptology ePrint Archive, Report 2011/272, 2011.
http://eprint.iacr.org/.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Cramer [Cra12], pages 169–189.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT (1), volume 8269 of Lecture Notes in Computer Science, pages 41–60.
Springer, 2013.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Gilbert [Gil10], pages 1–23.

[LTV11] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-assisted mul-

68

162
Approved for Public Release; Distribution Unlimited.

tiparty computation from fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2011:663, 2011.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, STOC, pages 1219–1234. ACM, 2012.

[Mic94] Silvio Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453. IEEE, 1994.

[MSS13] Steven Myers, Mona Sergi, and Abhi Shelat. Black-box proof of knowledge of plaintext
and multiparty computation with low communication overhead. In TCC, pages 397–
417, 2013.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer,
2003.

[Ost11] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

[Pat11] Kenneth G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture
Notes in Computer Science. Springer, 2011.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy, pages
238–252. IEEE Computer Society, 2013.

[PJ12] David Pointcheval and Thomas Johansson, editors. Advances in Cryptology - EURO-
CRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume
7237 of Lecture Notes in Computer Science. Springer, 2012.

[Rab10] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223
of Lecture Notes in Computer Science. Springer, 2010.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.

69

163
Approved for Public Release; Distribution Unlimited.

J. ACM, 56(6), 2009.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
volume 6841 of Lecture Notes in Computer Science. Springer, 2011.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute clouds. In ACM
Conference on Computer and Communications Security, pages 199–212, 2009.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Kilian [Kil01], pages 566–598.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

[SS11a] Peter Scholl and Nigel P. Smart. Improved key generation for gentry’s fully homo-
morphic encryption scheme. In Liqun Chen, editor, IMA Int. Conf., volume 7089 of
Lecture Notes in Computer Science, pages 10–22. Springer, 2011.

[SS11b] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems over
ideal lattices. In Paterson [Pat11], pages 27–47.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer, 2010.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations. Des.
Codes Cryptography, 71(1):57–81, 2014.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2008.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Gilbert [Gil10], pages 24–43.

[vDJ10] Marten van Dijk and Ari Juels. On the impossibility of cryptography alone for privacy-
preserving cloud computing. In Proceedings of the 5th USENIX conference on Hot top-
ics in security, HotSec’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

70

164
Approved for Public Release; Distribution Unlimited.

Lattice-Based FHE as Secure as PKE

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

We show that (leveled) fully homomorphic encryption (FHE) can be based on the hardness

of Õ(n1.5+ε)-approximation for lattice problems (such as GapSVP) under quantum reductions

for any ε > 0 (or Õ(n2+ε)-approximation under classical reductions). This matches the best
known hardness for “regular” (non-homomorphic) lattice based public-key encryption up to the
ε factor. A number of previous methods had hit a roadblock at quasipolynomial approximation.
(As usual, a circular security assumption can be used to achieve a non-leveled FHE scheme.)

Our approach consists of three main ideas: Noise-bounded sequential evaluation of high
fan-in operations; Circuit sequentialization using Barrington’s Theorem; and finally, successive
dimension-modulus reduction.

1 Introduction

Fully homomorphic encryption (FHE) allows us to convert an encryption of a message Enc(m) into
an encryption of a related message Enc(f(m)) for any efficient f , using only public information
and without revealing anything about m itself. FHE has numerous theoretical and practical ap-
plications, the canonical one being to the problem of outsourcing computation to a remote server
without compromising one’s privacy.

Until 2008, FHE was considered practically science fiction as no constructions or even viable
approaches were known. A breakthrough by Gentry [Gen09b, Gen10, Gen09a] presented the first
plausible candidate construction. The security of Gentry’s scheme relied on much stronger as-
sumptions than standard (non homomorphic) public-key encryption (PKE), namely the hardness
of problems on specially chosen ideal lattices as well as a new assumption called the sparse sub-
set sum assumption. This state of affairs coincided with many researchers’ intuition that FHE,
being much more versatile, should naturally be harder to achieve and should require stronger as-
sumptions than regular public-key encryption. Brakerski and Vaikuntanathan [BV11] subsequently
constructed an FHE scheme1 based on the worst-case hardness of approximating lattice problems
such as GapSVP (a promise version of the shortest vector problem on lattices) which have been
studied extensively and are by now considered standard cryptographic assumptions. However, they
required that the problem is hard to approximate to within a subexponential factor (in the dimen-
sion of the underlying lattice). This is in contrast to standard lattice-based public-key encryption

∗Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.
†MIT and University of Toronto, vinodv@mit.edu. Supported by an NSERC Discovery Grant, DARPA Grant

number FA8750-11-2-0225, Connaught New Researcher Award and an Alfred P. Sloan Fellowship.
1Here, and in the rest of the introduction, when we say FHE, we mean a leveled FHE scheme that can evaluate

circuits of any a-priori bounded polynomial depth. The only known way to achieve non-leveled FHE schemes is to
make a circular security assumption, in addition.

1

165
Approved for Public Release; Distribution Unlimited.

which can be based on the hardness of approximating the problem to within polynomial factors
(explicitly Õ(n1.5) using quantum reductions [Reg05] or Õ(n2) using classical reductions [Pei09]).
Closing this gap has been a central goal in the study of FHE from both a theoretical and a practical
perspective (since relying on a weaker assumption allows us to use shorter parameters resulting in
better efficiency). Starting with [BGV12], several works using different approaches [Bra12, GSW13]
have reduced the required factor of approximation to nO(logn), which seemed to be a barrier for
known methods.

In this work, we match the best known approximation factors up to any ε > 0 and show that
“science fiction” FHE can be as secure as any other lattice-based public-key encryption scheme.
Furthermore, the keys and ciphertexts in our scheme (with the exception of the evaluation key
which is only used for homomorphic evaluation) are identical to Regev’s original lattice-based
PKE [Reg05], with parameters that are optimal up to a factor of 1 + ε.

Our results are summarized in the following theorem.

Theorem 1.1. For every ε > 0, there exists a leveled fully homomorphic encryption scheme based
on the DLWEn,q,α assumption (n-dimensional decisional LWE modulo q, with discrete Gaussian

noise with parameter α), where α = 1/Õ(nε ·
√
n log(q)).

Thus, the scheme is secure based on either the quantum worst-case hardness of GapSVP
Õ(n1.5+ε)

,

or the classical worst-case hardness of GapSVP
Õ(n2+ε)

.

High Level Overview. Our starting point is a new LWE-based FHE scheme by Gentry, Sahai
and Waters [GSW13]. They present an encryption scheme where the public key is identical to
Regev’s scheme, but the ciphertexts are square matrices rather than vectors. It was then possible
to add and multiply ciphertexts using (roughly) matrix addition and multiplication. As in previous
LWE-based FHE schemes, the ciphertext contains a “noise” element that grows with homomorphic
operations and must be kept under a certain threshold in order for the ciphertext to be decryptable.
The scheme is instantiated by a dimension n and modulus q, which correspond to the parameters
of the LWE problem. The initial noise level is poly(n) and the scheme is decryptable so long as
the noise remains under (say) q/8. In order to base the scheme on the hardness of polynomial
approximation to lattice problems, we would like to characterize the class of functions that can be
homomorphically evaluated using q = poly(n). The analysis of Gentry, Sahai and Waters [GSW13]
shows that the evaluation of each Boolean gate increases the noise by a poly(n) factor, and thus
the class of functions that can be evaluated setting q = poly(n) is NC0.

Our first observation is that the asymmetric (namely, non-commutative) nature of matrix mul-
tiplication gives rise to an interesting phenomenon in the GSW scheme: when multiplying two
ciphertexts with noise levels e1 and e2, the noise in the output turns out to be e1 + poly(n) · e2.
That is, the noise grows in an asymmetric manner. This means that if we want to multiply `
ciphertexts, for example, which all start with the same noise level, we can consecutively multiply
them one after the other, and the final noise will only grow by a ` · poly(n) factor. This is in
contrast to the conventional wisdom that favors the use of a multiplication tree, which in this case
would have resulted in a poly(n)log ` noise blowup. This observation already allows us to evaluate
AC0 circuits in a setting where the modulus q = poly(n). (Using an additional trick, this can be
extended to AC0[⊕], namely AC0 circuits augmented with XOR gates).

Our second idea is to push this technique forward by “sequentializing” larger circuit classes. A
particularly potent tool in this direction of thought is Barrington’s Theorem [Bar89] which allows
us to transform any NC1 circuit into a polynomial length, width-5 permutation branching program.

2

166
Approved for Public Release; Distribution Unlimited.

Homomorphic evaluation of a length-` branching program essentially requires homomorphically
multiplying ` 5-by-5 encrypted permutation matrices, in contrast to the simple product operation
on bits that we just accomplished. We show that this is in fact possible, namely a method of
homomorphically multiplying ` permutation matrices that only increases the noise by an ` ·poly(n)
factor. This gives us a way to evaluate any NC1 circuit in a setting where the modulus q =
poly(n). In a high level, our technique here is reminiscent of Ishai and Paskin’s method of evaluating
branching programs on encrypted data [IP07].

Evaluating NC1 circuits with low noise blowup is a highly sought-after goal in the study of FHE
schemes. The reason is Gentry’s bootstrapping theorem [Gen09b], which shows how to convert a
scheme with some homomorphic properties into a fully homomorphic one, assuming that it can
evaluate its own decryption circuit. Since the decryption circuit of the scheme in question lies
in NC1, we can apply the bootstrapping theorem and obtain and FHE scheme with q = poly(n),
thus basing its security on the worst-case hardness of approximating lattice problems to within a
(somewhat large) polynomial factor.

To obtain the optimal approximation factor (up to an arbitrarily small ε), we employ our third
idea, namely a variant of the dimension-modulus reduction technique, originating in [BV11]. Our
noise analysis of the NC1 scheme shows that in order to obtain parameters that are optimal up
to ε, the decryption circuit of our scheme must have depth at most ε · log(n)/2, which seems
unachievable. After all, an NC1 circuit with n inputs and depth less than log n cannot even look
at all the inputs! To solve this conundrum, we apply the dimension-modulus reduction technique,
which allows us to “shrink” the ciphertext into a “smaller copy” of the same scheme. We show that
by applying this method consecutively several times (as opposed to a single time as was done in
[BV11]), we can reduce the ciphertext to a small enough size that decrypting it becomes possible
in depth ε log(n)/2. This allows us to obtain an FHE scheme based on the worst-case hardness of
approximating GapSVP within a factor of Õ(n2+ε) by classical algorithms, or a factor of Õ(n1.5+ε)
by quantum algorithms.

Organization of the Paper. We start with some background and preliminaries: the reader
should consult section 2.1 for background on Gaussian distributions, section 2.2 for the learning
with error problem, and section 2.5 for homomorphic encryption. Our main result is described in
Section 3 where we construct a (leveled) FHE scheme secure under the polynomial LWE assumption.
We conclude in Section 4 by showing how to show how to reduce and optimize the assumption to
match the best known LWE assumption for lattice-based PKE.

2 Preliminaries

Matrices are denoted by bold-face capital letters, and vectors are denoted by bold-face small letters.
All logarithms are taken to base 2, unless otherwise specified. For an integer q, we define the set
Zq , (−q/2, q/2] ∩ Z. For any x ∈ Q, we let y = [x]q denote the unique value y ∈ (−q/2, q/2] such
that y = x (mod q) (i.e. y is congruent to x modulo q).

We let κ denote a security parameter. When we speak of a negligible function negl(κ), we
mean a function that grows slower than 1/κc for any constant c > 0 and sufficiently large values of
κ. When we say that an event happens with overwhelming probability, we mean that it happens
with probability at least 1− negl(κ) for some negligible function negl(κ). We denote y = Õκ(x) if
y = O(x ·polylog(κ)), and y = Õ(x) if y = Õx(x). The notation Θ̃κ(·), Ω̃κ(·) is defined analogously.

3

167
Approved for Public Release; Distribution Unlimited.

The security parameter underlies all of our constructions. The parameters n, k etc. should all
be considered to be a function of the security parameter κ, which is chosen according to the level of
confidence desired by the user of the scheme. (The dimension of the LWE problem, defined below,
should be considered to be polynomially related to the security parameter.)

2.1 Gaussians and Discrete Gaussians

In this work we will only consider one-dimensional Gaussians, and one-dimensional discrete Gaus-
sians over the integers.

For r > 0, the (one-dimensional) Gaussian function ρr : R→ (0, 1] is defined as

ρr(x) , exp(−π|x|2/r2).

The (spherical) continuous Gaussian distribution Dr is the distribution with density function pro-
portional to ρr. The (one-dimensional, integer-coset) discrete Gaussian DZ−c,r is the discrete
distribution supported on Z− c for c ∈ R, whose probability mass function is proportional to ρr.

Gaussian Rounding. To achieve the tightest results, we will need to use a simple Gaussian
rounding procedure. The following is an immediate corollary of [BLP+13, Lemma 2.3].

Corollary 2.1. There exists a randomized procedure b·eG such that given x ∈ R, it holds that
y←bxeG is such that y − x ∼ DZ−x,1.

In fact, a slightly smaller standard deviation is achievable, but we use 1 for the sake of simplicity.

Sum of Discrete Gaussians. We wish to bound the absolute value of a sum of discrete
Gaussians. The following are immediate corollaries from [Reg09, Corollary 3.10] and [GPV08,
Lemma 3.1].

Proposition 2.2. Let κ ∈ N be a security parameter. Then with all but negl(κ) probability, if
x ∼ Dr, then |x| ≤ r · ω(

√
log κ). Similarly, if x ∼ DZn−c,r then with all but negligible probability,

|x| ≤ max{r, ω(
√

log κ)} · ω(
√

log κ).

Proposition 2.3. Let κ ∈ N be a security parameter. Let n ∈ N, let z ∈ {0, 1}n and c ∈ Rn be
arbitrary, and let e ∼ DZn−c,r. Then with all but negligible probability

|〈z, e〉| ≤
√
n ·max{r, ω(

√
log κ)} · ω(

√
log κ) = Õκ(

√
n) · r .

Proposition 2.4. Let κ ∈ N be a security parameter. Let n ∈ N, let c ∈ Rn be arbitrary, let
e ∼ DZ−c,r, and let z ∈ {0, 1}n be possibly dependent on e. Then with all but negligible probability

|〈z, e〉| ≤ n ·max{r, ω(
√

log κ)} · ω(
√

log κ) = Õκ(n) · r .

2.2 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Z,

let As,χ be the distribution obtained by choosing a vector a
$← Znq uniformly at random and a

noise term e
$← χ, and outputting (a, [〈a, s〉+ e]q) ∈ Znq × Zq. Decisional LWE (DLWE) is defined

as follows.

4

168
Approved for Public Release; Distribution Unlimited.

Definition 2.5 (DLWE). For an integer q = q(n) and an error distribution χ = χ(n) over Z, the
(average-case) decision learning with errors problem, denoted DLWEn,m,q,χ, is to distinguish (with

non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Znq), from

m samples chosen according to the uniform distribution over Znq ×Zq. We denote by DLWEn,q,χ the
variant where the adversary gets oracle access to As,χ, and is not a-priori bounded in the number
of samples.

There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between
DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We sometimes write DLWEn,m,q,α
(resp. DLWEn,q,α) to indicate this instantiation (it will be clear from the context when we use a
distribution χ and when a Gaussian parameter α). We now state a corollary of the results of [Reg05,
Pei09] (in conjunction with the search to decision reduction of Micciancio and Mol [MM11] and
Micciancio and Peikert [MP11]). These results also extend to additional forms of q (see [MM11,
MP11]).

Corollary 2.6 ([Reg05, Pei09, MM11, MP11]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(n/α) on
any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. We refer the reader to [Reg05, Pei09] for more information.

The best known algorithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time.
In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security

parameter κ is assumed to be polynomially related to the dimension n.

2.3 Vector Decomposition and Key Switching

We show how to decompose vectors in a way that makes their norm smaller, and yet preserves
certain inner products. Our notation is generally adopted from [BGV12].

Vector Decomposition. We often break vectors into their bit representations as defined below:

• BitDecompq(x): For x ∈ Zn, let wi,j ∈ {0, 1} be such that x[i] =
∑dlog qe−1

j=0 2j · wi,j (mod q).
Output the vector

(w1,dlog qe−1, . . . , w1,0, . . . , wn,dlog qe−1, . . . , wn,0) ∈ {0, 1}n·dlog qe .

• PowersOfTwoq(y): For y ∈ Zn, output[
(2dlog qe−1y[1], . . . , 2y[1],y[1], . . . , 2dlog qe−1 · y[n], . . . , 2y[n],y[n])

]
q
∈ Zn·dlog qe

q .

5

169
Approved for Public Release; Distribution Unlimited.

We will usually omit the subscript q when it is clear from the context.

Claim 2.7. For all q ∈ N and x,y ∈ Zn, it holds that

〈x,y〉 = 〈BitDecompq(x),PowersOfTwoq(y)〉 (mod q) .

Additionally, we define the procedure Flatten following [GSW13], along with the procedure
Combine. Let g = (2dlog(q)e−1, 2dlog(q)e−2 . . . , 4, 2, 1) ∈ Zdlog qe and let G := g ⊗ In ∈ Zn×(n·dlog qe)

denote the tensor product of g with the n-by-n identity matrix In.

• Combineq(z): For z ∈ Zn·dlog qe, output [G · z]q ∈ Znq .

• Flattenq(z): For z ∈ Zn·dlog qe, output BitDecompq(Combine(z)) ∈ {0, 1}n·dlog qe.

Claim 2.8. For all q ∈ N, and x, z ∈ Zn·dlog qe, it holds that

〈PowersOfTwo(x), z〉 = 〈PowersOfTwo(x),Flatten(z)〉 (mod q) .

2.4 Partial Randomization Using LWE

We describe a procedure that allows us to partially randomize vectors while preserving their inner
product with an LWE secret s. This procedure will be useful to us when trying to manipulate
ciphertexts that are a result of a homomorphic operation (and thus may have arbitrary dependence
on the public parameters).

Let n, q, α be parameters for the DLWE problem, let χ = DZ,αq. Let s ∈ Znq be some (arbitrary)
vector.

• RandParam(s): Let m , (n + 1) · (log q + O(1)). Sample A
$← Zm×nq and e

$← χm. Compute
b:= [A · s + e]q, and define

Prand:= [b‖ −A] ∈ Zm×(n+1)
q .

Output Prand.

We note that this is identical to the public key generation process in Regev’s encryption scheme.

• Rand(Prand, c): For c ∈ Zn+1
q , sample r

$← {0, 1}m, and compute

crand:=
[
c + rTPrand

]
q
.

Output crand.

The properties of this process are summarized below.
First, we state the security of our procedure, namely that Prand does not reveal information

about s. The proof is straightforward and omitted.

Lemma 2.9. If s is uniformly sampled and Prand←RandParam(s), then under the DLWEn,q,α as-
sumption, Prand is computationally indistinguishable from uniform.

Next, we state that the inner product of the randomized vector with (1, s) does not change by
much.

6

170
Approved for Public Release; Distribution Unlimited.

Lemma 2.10. Let s ∈ Znq be arbitrary, and let Prand←RandParam(s). Let c ∈ Zn+1
q be arbitrary,

and crand←Rand(Prand, c), then there exists δ such that

〈c, (1, s)〉 − 〈crand, (1, s)〉 = δ (mod q) ,

and |δ| ≤ Õκ(
√
n log(q)) · αq with all but negl(κ) probability.

Proof. We start by noting that

〈rTPrand, (1, s)〉 = 〈r, e〉 (mod q) ,

where e is the noise used to generate Prand. Using Proposition 2.3, the result follows.

Finally, we state the randomization property of our procedure.

Lemma 2.11. Let q ≤ 2n. Let s ∈ Znq be arbitrary, and let Prand←RandParam(s). Let f
$←

D
(n+1)·dlog(q)e
Z,t for some t, and let c ∈ Zn+1

q be arbitrary (possibly dependent on f). Finally, let
crand←Rand(Prand, c), then∣∣〈BitDecompq(crand), f〉

∣∣ ≤ Õκ(
√
n log(q)) · t ,

with all but negl(κ) probability.

Proof. By the leftover hash lemma, the last n coordinates of crand are distributed uniformly, and
independently of f , c. By Proposition 2.3, this part of crand contributes Õκ(

√
n log(q)) · t to the

inner product (with all but negligible probability).
The first coordinate of crand may have dependence on f , but it only decomposes to O(log q) bits,

and therefore by Proposition 2.4, its contribution to the inner product is at most Õκ(log(q)) · t with
all but negligible probability. Recalling that q ≤ 2n, this is at most Õκ(

√
n log(q)) · t.

The union bound completes the proof.

2.5 Homomorphic Encryption and Bootstrapping

We now define homomorphic encryption and introduce Gentry’s bootstrapping theorem. Our defi-
nitions are mostly taken from [BV11, BGV12].

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows (κ is the security parameter):

• Key generation (pk, evk, sk)←HE.Keygen(1κ): Outputs a public encryption key pk, a public
evaluation key evk and a secret decryption key sk.2

• Encryption c←HE.Encpk(µ): Using the public key pk, encrypts a single bit message µ ∈
{0, 1} into a ciphertext c.

• Decryption µ←HE.Decsk(c): Using the secret key sk, decrypts a ciphertext c to recover the
message µ ∈ {0, 1}.

• Homomorphic evaluation cf←HE.Evalevk(f, c1, . . . , c`): Using the evaluation key evk, ap-
plies a function f : {0, 1}` → {0, 1} to c1, . . . , c`, and outputs a ciphertext cf .

2We adopt the terminology of [BV11] that treats the evaluation key as a separate entity from the public key.

7

171
Approved for Public Release; Distribution Unlimited.

A homomorphic encryption scheme is said to be secure if it is semantically secure (note that
the adversary is given both pk and evk).

Homomorphism w.r.t depth-bounded circuits and full homomorphism are defined next:

Definition 2.12 (compactness and full homomorphism). A homomorphic encryption scheme is
compact if its decryption circuit is independent of the evaluated function. A compact scheme is
(pure) fully homomorphic if it can evaluate any efficiently computable function. The scheme is
leveled fully homomorphic if it takes 1L as additional input in key generation, and can only evaluate
depth L Boolean circuits.

Gentry’s bootstrapping theorem shows how to go from limited amount of homomorphism to
full homomorphism. This method has to do with the augmented decryption circuit.

Definition 2.13. Consider a homomorphic encryption scheme HE. Let (sk, pk, evk) be properly
generated keys and let C be the set of properly decryptable ciphertexts. Then the set of augmented
decryption functions, {fc1,c2}c1,c2∈C is defined by fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2). Namely,
the function that uses its input as secret key, decrypts c1, c2 and returns the NAND of the results.

The bootstrapping theorem is thus as follows.

Theorem 2.14 (bootstrapping [Gen09b, Gen09a]). A scheme that can homomorphically evaluate
its family of augmented decryption circuits can be transformed into a leveled fully homomorphic
encryption scheme with the same decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weak circular secure (remains secure even
against an adversary who gets encryptions of the bits of the secret key), then it can be made into a
pure fully homomorphic encryption scheme.

3 Our FHE Scheme

In this section, we describe an FHE scheme secure under a polynomial LWE assumption which,
using known reductions [Reg05, Pei09], translates to the worst-case hardness of solving various
lattice problems to within polynomial approximation factors. We start with the basic encryption
scheme in Section 3.1, and describe “proto-homomorphic” addition and multiplication subroutines
in Section 3.2. Departing from the “conventional wisdom” in FHE, our circuit evaluation procedure
in Section 3.3 will not be a naive combination of these proto-homomorphic operations, but rather
a carefully designed procedure that manages the noise growth effectively.

Finally, in Section 3.4, we put this all together to get our FHE scheme under the decisional
LWE assumption DLWEn,q,α with α = n−c for some constant c > 0. This polynomial factor is
rather large: thus, in Section 4, we apply a carefully designed variant of the dimension-modulus
reduction procedure of [BV11] to obtain our final FHE scheme that is secure under the hardness of
DLWEn,q,α with α ≤ 1/Õκ(nε ·

√
n log(q)) which is weakest LWE hardness assumption that underlies

the (non-homomorphic) lattice-based PKE schemes [AD97, Reg04, Reg05, Pei09, BLP+13].

3.1 The Basic Encryption Scheme

Our basic encryption scheme closely follows the Gentry-Sahai-Waters FHE scheme [GSW13]. We
refer the reader to Section 2.3 for the description of the vector decomposition routines PowersOfTwo,
BitDecomp and Flatten used in the scheme below.

8

172
Approved for Public Release; Distribution Unlimited.

System Parameters. Let n be the LWE dimension and q be an LWE modulus. Define N :=
(n + 1) · dlog qe. Let d denote the maximal homomorphism depth that is allowed by the scheme.
Let χ be an error distribution over Z. Typically χ will be a discrete Gaussian DZ,αq for α =

1/Õκ(
√
n log(q) · 4d). Recall that we identify Zq with the set (−q/2, q/2] ∩ Z.

• NCCrypt.Keygen(1n, q, 4d): Sample a vector s
$← Znq . Let m , (n+ 1) · (log q+O(1)). Sample

A
$← Zm×nq and e

$← χm. Compute b:= [A · s + e]q, and define

P:= [b‖ −A] ∈ Zm×(n+1)
q .

Output sk = s and pk = evk = P.

We describe public-key as well as secret-key encryption algorithms. Looking ahead, we remark
that a secret-key encryption of µ is somewhat less “noisy” than a public-key encryption of µ.

• NCCrypt.PubEnc(pk, µ): To encrypt a bit µ ∈ {0, 1}, using the public key pk = P, we let

R
$← {0, 1}N×m, and output the ciphertext

C = Flatten (BitDecomp(R ·P) + µ · I) ∈ {0, 1}N×N .

• NCCrypt.SecEnc(sk, µ): A symmetric encryption of a bit µ ∈ {0, 1}, using the secret key

sk = s, is performed by sampling A
$← ZN×nq and e

$← χN , computing b:= [A · s + e]q, and
defining

C = Flatten (BitDecomp ([b‖ −A]) + µ · I) ∈ {0, 1}N×N .

• NCCrypt.Dec(sk,C): Let c be the second row of C. We use standard Regev decryption on c.

Namely, we output µ∗ = 0 if
∣∣∣[〈c,PowersOfTwo(1, s)〉]q

∣∣∣ < q/8, and µ∗ = 1 otherwise.

Correctness. In order to show correctness of this scheme, we analyze the noise magnitude of
ciphertexts produced by both the public-key and secret-key encryption algorithms. As we will
show shortly, for ciphertexts C produced by either encryption algorithm, we have

C · PowersOfTwo(1, s) = µ · PowersOfTwo(1, s) + e (mod q)

for a noise vector e of “small magnitude”. This motivates our definition of the noise in the ciphertext
C with respect to a secret key vector s and a message µ as follows.

Definition 3.1. For every C ∈ {0, 1}N×N , s ∈ Znq and µ ∈ Z, we define

noises,µ(C) , ‖(C− µI) · PowersOfTwo(1, s) (mod q)‖∞

The significance of this definition is captured by the following claims. The first claim shows
that any ciphertext with small noise is decrypted correctly.

Lemma 3.2. For every C ∈ {0, 1}N×N , s ∈ Znq and µ ∈ Z such that noises,µ(C) < q/8,

NCCrypt.Dec(s,C) = µ

9

173
Approved for Public Release; Distribution Unlimited.

Proof. Since noises,µ(C) < q/8, we have

C · PowersOfTwo(1, s) = η + µ · PowersOfTwo(1, s) (mod q)

where ‖η‖∞ < q/8. Thus, for the second row of C it holds that

〈c,PowersOfTwo(1, s)〉 = η + 2dlog(q)e−2 · µ (mod q)

where |η| < q/8. Thus, when µ = 0,∣∣∣[〈c,PowersOfTwo(1, s)〉]q
∣∣∣ = |η| < q/8

When µ = 1, ∣∣∣[〈c,PowersOfTwo(1, s)〉]q
∣∣∣ ≥ q/4− |η| ≥ q/8

since q/4 ≤ 2dlog(q)e−2 < q/2. This shows correctness of decryption for ciphertexts with small
noise.

The next claim demonstrates parameter settings for which the (public key and secret key)
encryption algorithms produce ciphertexts with small noise.

Lemma 3.3. Let n be the LWE dimension, q be the LWE modulus and χ = DZ,αq be the discrete
Gaussian distribution. Then, for every s ∈ Znq and µ ∈ {0, 1},

• for Cpub ← NCCrypt.PubEnc(pk, µ), we have noises,µ(Cpub) = Õκ(αq ·
√
m).

• for Csec ← NCCrypt.SecEnc(sk, µ), we have noises,µ(Csec) = Õκ(αq).

with all but negligible (in κ) probability over the coins of NCCrypt.Keygen.
In particular, we have correctness of decryption for the public key encryption for α < 1/Ω̃κ(

√
m),

and for the secret key encryption for α < 1/Ω̃κ(1).

Proof. We first show the analysis for the public-key encryption.

Cpub · PowersOfTwo(1, s) = Flatten

(
BitDecomp(R ·P) + µ · I

)
· PowersOfTwo(1, s)

=

(
BitDecomp(R ·P) + µ · I

)
· PowersOfTwo(1, s)

= R ·P · (1, s)T + µ · PowersOfTwo(1, s)

= R · e + µ · PowersOfTwo(1, s)

Thus, by Proposition 2.3,

noise(Cpub) = ‖R · e‖∞ = Õκ(
√
m · αq)

This is less than q/8 by the choice of α < 1/Ω̃κ(
√
m).

The analysis for the secret key encryption follows analogously, except that

Csec · PowersOfTwo(1, s) = e + µ · PowersOfTwo(1, s)

Thus,
noise(Csec) = ‖e‖∞ = Õκ(αq)

which is less than q/8 by the choice of α < 1/Ω̃κ(1).

10

174
Approved for Public Release; Distribution Unlimited.

Security. Semantic security of the scheme follows from the decisional LWE assumption DLWEn,q,α,
similarly to Regev’s encryption scheme (see [Reg05, BV11, GSW13] for similar arguments).

Complexity of Decryption. Our decryption algorithm is essentially the same as the decryption
algorithm in Regev’s encryption scheme, the complexity of which has been thoroughly studied in
the context of FHE. The following is an immediate corollary from [BV11, Lemma 4.1].

Proposition 3.4. There exists a constant cdec such that the decryption circuit of the scheme
NCCrypt, with parameters n, q, has depth at most cdec · log(n log q).

3.2 Proto-Homomorphic Operations

We now describe proto-homomorphic addition and multiplication algorithms which will be used
in Section 3.3 for homomorphic circuit evaluation. Departing from the “conventional wisdom” in
FHE, our circuit evaluation procedure will not be a naive combination of homomorphic addition
and multiplication, but a carefully designed procedure that manages the noise growth effectively.
To further stress the fact that we do not intend for these procedures to be used independently, we
call them proto-homomorphic operations.

Proto-Homomorphic Addition. This is a simple addition of the ciphertext matrices.

• NCCrypt.ProtoAdd(C1,C2): Output C+ := Flatten(C1 + C2).

Jumping ahead, we note that in our use of NCCrypt.ProtoAdd in Section 3.3, both C1 and C2

will be encryptions of bits, and at most one of them will be an encryption of 1. The following claim
analyzes the noise growth in homomorphic addition.

Claim 3.4.1 (Noise Growth in NCCrypt.ProtoAdd.). For every s ∈ Znq , µ1, µ2 ∈ Z and C1,C2 ∈
{0, 1}N×N , we have

noises,µ1+µ2(NCCrypt.ProtoAdd(C1,C2)) ≤ noises,µ1(C1) + noises,µ2(C2)

Proof. Let C+ ← NCCrypt.ProtoAdd(C1,C2). We note that

C+ · PowersOfTwo(1, s) = Flatten(C1 + C2) · PowersOfTwo(1, s)

= (C1 + C2) · PowersOfTwo(1, s)

= C1 · PowersOfTwo(1, s) + C2 · PowersOfTwo(1, s)

= (e1 + e2) + (µ1 + µ2) · I

Thus, by the definition of noises,µ1+µ2 , we have

noises,µ1+µ2(C+) ≤ noises,µ1(C1) + noises,µ2(C2)

11

175
Approved for Public Release; Distribution Unlimited.

Homomorphic Multiplication. This is essentially a multiplication of the ciphertext matrices,
except that we randomize the first ciphertext.

• NCCrypt.ProtoMult(evk,C1,C2):

– Randomize C1 ∈ {0, 1}N×N into a matrix C̃1 ∈ {0, 1}N×N by replacing each row c in
C1 by the row

c̃← BitDecomp(Rand(pk,Combine(c)))

where Rand is the LWE randomization procedure from Section 2.4.

– Output C× ← Flatten
(
C̃1 ·C2

)
.

Jumping ahead, we remark that when we use NCCrypt.ProtoMult in our homomorphic circuit
evaluation in Section 3.3, the first ciphertext will be an “evaluated ciphertext” (namely, a result
of previous homomorphic evaluations), whereas the second ciphertext will be a “fresh ciphertext”
(namely an output of the secret key encryption algorithm).

The first new idea in this work is that while the order of the arguments does not matter in
homomorphic addition, the homomorphic multiplication algorithm NCCrypt.ProtoMult is inherently
asymmetric, since it is essentially the (non-commutative) matrix multiplication operation. This
asymmetry turns out to be the key to achieving improved noise growth, as Claim 3.4.2 below will
demonstrate.

Claim 3.4.2 (Noise Growth in NCCrypt.ProtoMult.). For every s ∈ Znq , µ1, µ2 ∈ {0, 1} and C1 ∈
{0, 1}N×N and C2 ← NCCrypt.SecEnc(sk, µ2), we have

noises,µ1µ2(NCCrypt.ProtoMult(C1,C2)) ≤ |µ2| · noises,µ1(C1) + Õκ(αq ·
√
n log q)

with all but negligible probability over the randomness of NCCrypt.Keygen, NCCrypt.SecEnc and
NCCrypt.ProtoMult.

Remark. In words, Claim 3.4.2 says that if µ2 ∈ {0, 1} (as will be the case in our homomorphic
circuit evaluation in Section 3.3), the noise in C× is at most the noise in C1, plus a fixed additive
term. What’s more, if µ2 = 0, then the noise in C× is independent of that in C1! These two facts
are the key new ideas that enable our main result.

Proof. (of Claim 3.4.2.) Let C× ← NCCrypt.ProtoMult(evk,C1,C2). Note that

C× · PowersOfTwo(1, s) = Flatten(C̃1 ·C2) · PowersOfTwo(1, s)

= C̃1 · (C2 · PowersOfTwo(1, s))

= C̃1 · (e2 + µ2 · PowersOfTwo(1, s))

= C̃1 · e2 + µ2 · C̃1 · PowersOfTwo(1, s)

= C̃1 · e2 + µ2 · (ẽ1 + µ1 · PowersOfTwo(1, s))

= (C̃1 · e2 + µ2 · ẽ1) + µ1µ2 · PowersOfTwo(1, s) (1)

Since e2 ← DN
Z,αq and each row of C̃1 ∈ {0, 1}N×N is the result of Rand, by Lemma 2.11, we have∥∥∥C̃1 · e2

∥∥∥
∞
≤ Õκ(αq ·

√
n log q) (2)

12

176
Approved for Public Release; Distribution Unlimited.

with all but negligible probability.
Also, by lemma 2.10, we have

‖ẽ1‖∞ ≤ ‖e1‖∞ + Õκ(αq ·
√
n log q) (3)

with all but negligible probability.
Putting together Eq. (1),(2) and (3), we have

noises,µ1µ2(C×) ≤
∥∥∥C̃1 · e2

∥∥∥
∞

+ |µ2| · ‖ẽ1‖∞ ≤ |µ2| · noises,µ1(C1) + Õκ(αq ·
√
n log q)

which finishes the proof.

3.3 Homomorphic Evaluation of Circuits

We now describe how to homomorphically evaluate a Boolean circuit Ψ with two-input NAND gates
that takes ` inputs, and has depth d. In particular, our scheme will be able to evaluate circuits
of depth c · log n (for any constant c) under a polynomial LWE assumption, namely DLWEn,q,χ
where χ = DZ,α and α = 1/nΘ(c). Since the depth of the decryption circuit is cdec · log(n log(q)) ≤
2cdec · log(n) (for some constant cdec > 0), the scheme is bootstrappable, and by the bootstrapping
theorem (Theorem 2.14), we get a leveled FHE scheme under the same assumption.

To evaluate a circuit, our scheme first turns it into a width-5 permutation branching pro-
gram [BDFP86, Bar89], a model of computation that we describe below.

Width-5 Permutation Branching Programs. A permutation branching program Π of length
L with input space {0, 1}` is a sequence of L tuples of the form

(
var(t), σt,0, σt,1

)
where

• var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t).

• σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1 as bijective
functions from the set {1, 2, 3, 4, 5} to itself.

The computation of the program Π on input x = (x1, . . . , x`) proceeds as follows. The state of
the computation at any point in time t is a number ζt ∈ {1, 2, 3, 4, 5}. Computation starts with the
initial state ζ0 = 1. The state ζt is computed recursively as

ζt = σt,var(t)(ζt−1)

Finally, after L steps, our state is ζL. The output of the computation is 1 if ζL = 1, and 0 otherwise.
To manage the growth of noise in homomorphic evaluation, we need to work with bits rather

than numbers. Thus, we prefer to represent the state ζt ∈ {1, 2, 3, 4, 5} by a 0-1 vector vt which is
the unit vector uζt in 5 dimensions.

The computation then proceeds as follows. The idea is that vt[i] = 1 if and only if σt,var(t)(ζt−1) =
i. Turning this around, vt[i] = 1 if and only if either:

• vt−1[σ−1
t,0 (i)] = 1 and xvar(t) = 0; or

• vt−1[σ−1
t,1 (i)] = 1 and xvar(t) = 1.

13

177
Approved for Public Release; Distribution Unlimited.

The following formula captures this condition. For t = 1, . . . , L, and i ∈ {1, 2, 3, 4, 5}, we have:

vt[i] := vt−1[σ−1
t,0 (i)] · (1− xvar(t)) + vt−1[σ−1

t,1 (i)] · xvar(t)
= vt−1[γt,i,0] · (1− xvar(t)) + vt−1[γt,i,1] · xvar(t) (4)

where γt,i,0 , σ−1
t,0 (i) and γt,i,1 , σ−1

t,1 (i) are constants that are publicly computable given the
description of the branching program. It is this form that we will work with in our homomorphic
evaluation.

The important property that we will use is that circuits of depth d can be simulated by branching
programs of depth L = 4d.

Theorem 3.5 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit Ψ that acts on `
inputs and has depth d can be computed by a width-5 permutation branching program Π of length
4d. Given the description of the circuit Ψ, the description of the branching program Π can be
computed in poly(`, 4d) time.

Homomorphic Evaluation NCCrypt.Eval(Ψ,C1, . . . ,C`). The homomorphic evaluation proce-
dure will first convert the depth-d circuit Ψ into a width-5 permutation branching program Π of
length L = 4d.

• [Initialization] We will maintain the encrypted state of the computation of the branching
program for every step t. We denote this by Vt = (Vt,1,Vt,2,Vt,3,Vt,4,Vt,5), where each
Vt[i] ∈ {0, 1}N×N will be an encryption of vt[i].

– We initialize the state as follows. Compute V0,i := v0[i] · I.

Note that V0,i is in fact a valid encryption of the bit v0[i] with zero noise.

– We also compute encryptions of the complements of the input bits, for convenience.
That is, set C̄k := I−Ck. Note that C̄k is an encryption of x̄k = 1− xk with the same
noise as Ck.

• [Evaluation] The evaluation proceeds iteratively for t = 1, . . . , L, where L is the length of
the branching program Π. Assuming that we have Vt−1 := (Vt−1,1,Vt−1,2, . . . ,Vt−1,5), the
encryption of the state of the branching program computation at time t − 1, we compute
Vt := (Vt,1,Vt,2, . . . ,Vt,5) by homomorphically evaluating Eq. (4) above.

That is, for i ∈ {1, 2, 3, 4, 5}, we compute

Vt,i := NCCrypt.ProtoAdd

(
NCCrypt.ProtoMult

(
Vt−1,γ0 ,C̄var(t)

)
, (5)

NCCrypt.ProtoMult
(
Vt−1,γ1 ,Cvar(t)

))
(6)

• [Output] Upon finishing the evaluation stage, we have VL := (VL,1,VL,2, . . . ,VL,5). Output
VL,1 as the result of the homomorphic evaluation.

We now show that the scheme correctly evaluates circuits.

14

178
Approved for Public Release; Distribution Unlimited.

Lemma 3.6 (Correctness of Homomorphic Evaluation). Let n be the LWE dimension, q the LWE
modulus, Ψ be any Boolean circuit of depth d, and

α ≤ 1/Θ̃κ(4d ·
√
n log q)

For every x1, . . . , x` ∈ {0, 1}, every Boolean circuit Ψ of depth at most d, and every secret key
sk, letting Ck ← NCCrypt.SecEnc(sk, xk) be the secret key encryptions of the inputs, and CΨ ←
NCCrypt.Eval(evk,Ψ,C1, . . . ,Ck) be the evaluated ciphertext, we have:

NCCrypt.Dec(sk,CΨ) = Ψ(x1, . . . , x`)

with overwhelming probability over the coin tosses of all the algorithms. NCCrypt.Eval runs in time
poly(4d, `, n, log q).

Note that we stated the correctness of homomorphic evaluation on ciphertexts produced by
the secret-key encryption algorithm NCCrypt.SecEnc. A similar lemma can be shown in the case
of public-key encryption, if α is smaller by a factor of

√
n log q. However, in our “optimal FHE”

scheme in Section 4, we will only need to invoke this lemma with secret-key encryption.

Proof. It is easy to see that each step of the homomorphic evaluation algorithm, given by Eq. (5),
simulates the execution of the branching program, given by Eq. (4). It remains to bound the noise
growth during NCCrypt.Eval. We show this by induction.

In the sequel, we will abbreviate the noise function noises,µ(C) to noise(C) since the secret key
is fixed throughout the evaluation, and the message µ is clear from the context.

Clearly, noise(V0,i) = 0, since they V0,i are just the messages, with no noise. Assume, as the
inductive hypothesis, that for all i ∈ {1, 2, 3, 4, 5},

noise(Vt−1,i) = (t− 1) · Õκ(αq ·
√
n log q)

We will now bound noise(Vt,i) for all i ∈ {1, 2, 3, 4, 5}. Note that

noise
(
Vt,i

)
≤ noise

(
NCCrypt.ProtoMult

(
Vt−1,γ0 , C̄var(t)

))
+ noise

(
NCCrypt.ProtoMult

(
Vt−1,γ1 ,Cvar(t)

))
≤ |1− xvar(t)| · noise(Vt−1,γ0) + |xvar(t)| · noise(Vt−1,γ1) + Õκ(αq ·

√
n log q)

where the second inequality holds by Claim 3.4.2 since all the ciphertexts encrypt bits, Cvar(t) is a
fresh secret-key encryption, and C̄var(t) contains exactly the same noise as Cvar(t).

Since exactly one of xvar(t) and 1− xvar(t) is non-zero, we have

noise
(
Vt,i

)
≤ max(noise(Vt−1,γ0), noise(Vt−1,γ1)) + Õκ(αq ·

√
n log q)

≤ t · Õκ(αq ·
√
n log q)

by the inductive hypothesis.
Thus, in particular,

noise(VΨ) = noise
(
VL,1

)
≤ 4d · Õκ(αq ·

√
n log q) < q/8

by our setting of the parameter α.

15

179
Approved for Public Release; Distribution Unlimited.

3.4 Achieving Fully Homomorphic Encryption

We know by Lemma 3.4 that the depth of the decryption circuit of NCCrypt is cdec · log(n log q) =
cdec logN for some constant cdec > 0. Setting the depth d = c logN for some constant c > cdec
in Lemma 3.6 and α ≤ 1/Θ̃κ(4d ·

√
n log q) gives us a bootstrappable encryption scheme. By the

bootstrapping theorem (Theorem 2.14), this can be turned into a leveled FHE scheme, without
additional assumptions. We state this theorem below:

Theorem 3.7. Let n be the LWE dimension, q be the LWE modulus, N := (n + 1) · dlog qe,
and let c > cdec be a large enough constant (where cdec is the decryption depth constant from
Proposition 3.4), and

α ≤ 1/Θ̃κ((n log q)2c+1/2)

Then, there is a leveled FHE scheme that is secure under the decisional LWE assumption DLWEn,q,α.

In the next section, we will use a variant of the dimension-modulus reduction of [BV11], the
effect of which will be to reduce the constant c above to a very small ε→ 0, thus achieving a value
of α that matches the best known lattice-based PKE schemes.

4 Successive Dimension-Modulus Reduction

In this section we revisit the dimension-modulus reduction technique from [BV11] and show that
by successive application of this technique, we can achieve comparable lattice approximation factor
to the best known factor for public key encryption.

We start by revisiting [BV11]’s dimension-modulus reduction in Section 4.1, and then proceed in
Section 4.2 to present a bootstrappable homomorphic encryption scheme that is based on Õ(n1+ε ·√
n log(q))-approximate GapSVP.

4.1 Dimension-Modulus Reduction (Revisited)

In the functions below, q is an integer and χ is a distribution over Z:

• SwitchKeyGenq:p,χ(s, t): For a “source” key s ∈ Zns and “target” key t ∈ Znt , we define a set of
parameters that allow to switch ciphertexts under s into ciphertexts under (1, t).

Let n̂s , ns · dlog qe be the dimension of PowersOfTwoq(s). Sample a uniform matrix As:t
$←

Zn̂s×ntp and a noise vector es:t
$← χn̂s . The function’s output is a matrix

Ps:t = [bs:t‖ −As:t] ∈ Zn̂s×(nt+1)
p ,

where
bs:t:=

[
As:t · t + es:t + b(p/q) · PowersOfTwoq(s)eG

]
p
∈ Zn̂sp .

Here, b·eG is the Gaussian rounding procedure from Corollary 2.1.

• SwitchKeyq(Ps:t, cs): To switch a source ciphertext cs ∈ Znsq from a secret key s to (1, t), output

ct:=
[
PT

s:t · BitDecompq(cs)
]
p
∈ Znt+1

p .

16

180
Approved for Public Release; Distribution Unlimited.

Lemma 4.1 (correctness). Let s ∈ Zn, t ∈ Zk be some vectors. Let χ be the discrete Gaussian
DZ,αp, and let Ps:t←SwitchKeyGenq:p,χ(s, t) and Prand←RandParamDZ,βq(s). Let cs ∈ Znq and let
c′s←Rand(Prand, cs). Finally, set ct←SwitchKey(Ps:t, c

′
s). Then there exists δ such that

(p/q) · 〈cs, s〉 − δ = 〈ct, (1, t)〉 (mod p) ,

and |δ| < Õκ(
√
n log(q)) ·αp with all but negl(κ) probability (over the coins in the experiment, and

regardless of the generation of s, t, cs).

Proof. We expand the expression for 〈ct, (1, t)〉:

〈ct, (1, t)〉 = 〈PT
s:t · BitDecompq(c

′
s), (1, t)〉

= 〈BitDecompq(c
′
s),Ps:t · (1, t)〉

= 〈BitDecompq(c
′
s), es:t + b(p/q) · PowersOfTwoq(s)eG〉 .

It follows that δ = δ1 + δ2 where

δ1 = 〈BitDecompq(c
′
s), es:t〉 ,

which, by Lemma 2.11, is bounded by |δ1| ≤ Õκ(
√
n log(q))αp with all but negl(κ) probability; and

δ2 =
〈
BitDecompq(c

′
s), b(p/q) · PowersOfTwoq(s)eG

〉
− (p/q) · 〈c′s, s〉

=
〈
BitDecompq(c

′
s), b(p/q) · PowersOfTwoq(s)eG − (p/q) · PowersOfTwoq(s)

〉
.

Applying Lemma 2.11, we get that |δ2| ≤ Õκ(
√
n log(q)) with all but negl(κ) probability.

Security follows in a straightforward manner, the proof is omitted.

Lemma 4.2 (security). Let s ∈ Zns be any vector. If we generate t
$← Zkp and P←SwitchKeyGenq:p,χ(s, t),

then P is computationally indistinguishable from uniform over Zn̂s×(nt+1)
p , assuming the decisional

LWE assumption DLWEk,p,χ.

4.2 A Bootstrappable Scheme

Let q : N → N be a monotone function such that q(n) ≤ 2n for all n, and α : N → R. Let χ(n)
denote the discrete Gaussian distribution DZ,α(n)q(n). Finally, let ε > 0.

The typical value of α(n) will be 1/Õκ(
√
n log(q) · nε), where κ is the security parameter. As

to the function q(n), we will be interested in two ranges of parameters: In the first we will set
q(n) such that α(n) · q(n) ≈

√
n (i.e. we set q such that q(n) = Õκ(n1+ε

√
log(q)). This is the

minimal q that allows to apply worst-case to average-case reductions for LWE. The second case is
where q(n) = 2n/2, which is the minimal q that allows to apply classical worst-case to average case
reductions to the GapSVP problem.

The scheme DimReduced is defined as follows.

17

181
Approved for Public Release; Distribution Unlimited.

• DimReduced.Keygen(1k): Define n , (k log(q(k)))2cdec/ε (namely, nε = 4cdec·log(k log(q(k)))), where

cdec is as in Proposition 3.4. Assume for convenience that n = k(1+ε)L for some L ∈ N (otherwise
round n to the next power up). Further define ki = k(1+ε)i , so k0 = k and kL = n, and define
qi = q(ki). For convenience we denote p , q0.

Let (ncsk, ncevk, ncpk)←NCCrypt.Keygen(1n, q(n), 4cdec·log(k log(q(k)))+1). Define sL , ncsk ∈ ZnLqL .

For all i = 0, . . . , L− 1, sample si
$← Zniqi .

Next, we generate dimension-modulus switching parameters (see Section 4.1), and randomization
parameters (see Section 2.4) for all i ∈ [L]:

Pi:(i−1)←SwitchKeyGenqi:qi−1
((1, si), si−1) ,

and
Prand,i←RandParamDZ,α(ki)qi

(si) .

Finally, output the keys sk , (s0, sL), pk , ncpk, evk , (ncevk, {Pi:(i−1)}i∈[L], {Prand,i}i∈[L]).

We note that as ε approaches 0, n = kΘ(1/ε) becomes larger. If k is proportional to the security
parameter, then ε must be bounded by a constant to keep n polynomially bounded. We further
note that L = Θ(log(1/ε)/ε).

• DimReduced.PubEncpk(µ) / DimReduced.SecEncsk(µ): The asymmetric and symmetric encryp-
tion procedures are identical to NCCrypt. Since DimReduced’s public key and secret key contain
those of NCCrypt, this can be done in a straightforward manner.

• DimReduced.Evalevk(f,C1, . . . ,Ct): To perform homomorphic evaluation, we first compute

Cf←NCCrypt.Evalncevk(f,C1, . . . ,Ct) .

We then consider cf ∈ {0, 1}ndlog(qL)e, which is the second row of Cf . We set cL:=CombineqL(cf).

We then compute, in order for i = L− 1, . . . , 0, the ciphertexts crand,i+1←Rand(Prand,i+1, ci+1),
and then ci←SwitchKey(P(i+1):i, crand,i+1). Finally, c0 ∈ Zkp is output as the final ciphertext.

• DimReduced.Decsk(c): We recall that c ∈ Zkp. We output µ∗ = 0 if
∣∣∣[〈c, (1, s0)〉]p

∣∣∣ < p/8, and

µ∗ = 1 otherwise.

Security is stated in the next lemma and follows immediately using a hybrid argument and using
the security properties of the scheme NCCrypt, the ciphertext randomization procedure (Lemma 2.9)
and the dimension-modulus reduction procedure (Lemma 4.2). The formal proof is omitted.

Lemma 4.3. The scheme DimReduced is secure under the DLWEk,q(k),α(k) assumption.

Correctness poses a more challenging task. We want to prove that DimReduced can homomorphi-
cally evaluate an augmented decryption circuit. Proving this when α(n) is small (e.g. α(n) = 1/n3)
is fairly easy. However, since we wish to achieve optimal parameters, the analysis is more involved
and appears in the following lemma.

We define τ , 2dlog(qL)e−2/qL and notice that τ ∈ (1/4, 1/2].

18

182
Approved for Public Release; Distribution Unlimited.

Lemma 4.4. Let α(n) = 1/Õκ(
√
n log(q) · nε), and let q(n) ≥ Õ(

√
n/α(n)). Consider a set

of keys generated by (sk, pk, evk)←DimReduced.Keygen(1k), and recall that sk = (s0, sL). Let
Ki←DimReduced.SecEncsk(BitDecomp(s0)[i]). Namely, Ki is the symmetric encryption of the ith
bit of s0.

Let f be an augmented decryption circuit as per Definition 2.13. Namely, let c, c′ ∈ Zkp and
µ, µ′ ∈ {0, 1} be such that

[〈c, s0〉]p = µ · τp+ e ,

where |e| < p/8, and similarly for c′. The function f is the function that on input x, treats x as a
secret key and decrypts c, c′, and outputs the NAND of their decryptions.

Let
c0←DimReduced.Evalevk(f,K1,K2, . . .) ,

and note that this is syntactically well defined since f can be represented as a Boolean circuit of
depth cdec · log(k log(q(k))) + 1.

Then with all but negl(κ) probability,

[〈c0, s0〉]p = µ∗ · τp+ ef ,

where µ∗ = (µ ∧ µ′), |ef | < p/8 are as above.

Proof. Consider the process of execution of DimReduced.Evalevk(f,K1,K2, . . .). It starts by gener-
ating cL, where we are guaranteed by the correctness of NCCrypt that

[〈cL, sL〉]qL = µ∗ · τqL + eL ,

where

|eL| /qL ≤ Õκ(
√
n log(qL) · 4cdec·log(k log(q(k)))+1)α(n) = Õκ(nε ·

√
n log(qL)) · α(n) ,

and we will set α(n) = 1/(
√
n log(q) · nεpolylog(κ)) with sufficiently large polylogarithmic factor

to offset the one coming from the noise so that

|eL| /qL ≤ 1/polylog(κ) .

We then commence with L = O(1) levels of randomization followed by modulus-dimension
reduction. Let us consider the effect of these operations at level i.

Lemma 2.10 guarantees that in the randomization step, the relative noise grows by an additive
factor of at most Õκ(

√
ki log(qi)) · α(ki) = k−εi · Õκ(1)/polylog(κ). Again, the idea is to define α

with sufficiently large polylogarithmic factor to offset those coming from Õκ(·).
Lemma 4.1 guarantees that in the key switching step, the relative noise grows by an additive

factor of Õκ(
√
ki log(qi)) · α(ki−1). We recall that ki = k1+ε

i−1 and that q(n) < 2n. Therefore√
ki log(qi) ≤

√
(ki−1 log(qi−1))1+ε ≤

√
(ki−1 log(qi−1)) · kεi−1 .

Therefore, setting the polylogarithmic factors right, we get an additive relative error of at most
1/polylog(κ).

Putting all of these together, we get that

|ef | ≤ L/polylog(κ)� p/8 ,

and the result follows.

19

183
Approved for Public Release; Distribution Unlimited.

Finally, we derive the worst-case lattice approximation factor based on Corollary 2.6. We recall
that a bootstrappable homomorphic encryption scheme implies a leveled FHE scheme under the
same assumptions, and a pure FHE scheme with an additional circular security assumption.

Corollary 4.5. For all ε > 0, there exist:

• A bootstrappable homomorphic encryption scheme based on the worst-case quantum hardness
of solving GapSVP

Õ(n1.5+ε) and SIVP
Õ(n1.5+ε).

• A bootstrappable homomorphic encryption scheme based on the worst-case classical hardness
of solving GapSVP

Õ(n2+ε).

The first (quantum) case is derived from Lemma 4.4 by setting q(n) =
√
n/α(n) = poly(n), and

the second (classical) case is derived by setting q(n) = 2n/2.

Improving Key and Ciphertext sizes. The scheme DimReduced uses a ladder of LWE in-
stances, ranging from short (k, p) to polynomially larger (n, q). In the description above, the public
key of the scheme is derived from that of NCCrypt, and therefore depends on n and not on k.
Likewise, the “input ciphertexts” (the ones before homomorphic evaluation) also depend on n.

We note here that this can be fixed in such a way that only the evk depends on n, and the rest
of the parameters are exactly the same as Regev’s scheme with parameters (k, p). This is done in
a standard way (used e.g. in [BV11]) as follows.

We will generate the public key as a standard Regev public key with parameters (k, p), and
in the evaluation key we will encrypt the bits of the respective secret key using NCCrypt. This
will allow to perform homomorphic operations by evaluating the augmented decryption circuit.
Namely, the ciphertexts visible to the user of the scheme will always be short, but in the process of
homomorphic evaluation, larger ciphertexts are used to accommodate the homomorphic operation,
and once it is done dimension-modulus reduction will be used to shrink the output ciphertext back
to the original size. Since this is standard practice, we omit the technical description.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Frank Thomson Leighton and Peter W. Shor, editors, STOC, pages
284–293. ACM, 1997.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang J. Paul. Bounds for width
two branching programs. SIAM J. Comput., 15(2):549–560, 1986.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS, pages 309–
325. ACM, 2012. Invited to ACM Transactions on Computation Theory.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. CoRR, abs/1306.0281, 2013. Preliminary
version in STOC 2013.

20

184
Approved for Public Release; Distribution Unlimited.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.
Invited to SIAM Journal on Computing.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116–137, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. IACR
Cryptology ePrint Archive, 2013:340, 2013. Preliminary version in CRYPTO 2013.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
575–594. Springer, 2007.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complex-
ity of lwe search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO, volume
6841 of Lecture Notes in Computer Science, pages 465–484. Springer, 2011.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. IACR Cryptology ePrint Archive, 2011:501, 2011. Extended abstract in Euro-
crypt 2012.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, STOC, pages 333–342. ACM, 2009.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005. Full
version in [Reg09].

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

21

185
Approved for Public Release; Distribution Unlimited.

http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig

Machine Learning Classification over Encrypted Data

Raphaël Bost∗ Raluca Ada Popa†‡ Stephen Tu‡ Shafi Goldwasser‡

Abstract

Machine learning classification is used in numerous settings nowadays, such as medical or genomics predictions,
spam detection, face recognition, and financial predictions. Due to privacy concerns, in some of these applications, it is
important that the data and the classifier remain confidential.

In this work, we construct three major classification protocols that satisfy this privacy constraint: hyperplane
decision, Naïve Bayes, and decision trees. We also enable these protocols to be combined with AdaBoost. At the basis
of these constructions is a new library of building blocks for constructing classifiers securely; we demonstrate that this
library can be used to construct other classifiers as well, such as a multiplexer and a face detection classifier.

We implemented and evaluated our library and classifiers. Our protocols are efficient, taking milliseconds to a few
seconds to perform a classification when running on real medical datasets.

1 Introduction
Classifiers are an invaluable tool for many tasks today, such as medical or genomics predictions, spam detection, face
recognition, and finance. Many of these applications handle sensitive data [WGH12, SG11, SG13], so it is important
that the data and the classifier remain private.

Consider the typical setup of supervised learning, depicted in Figure 1. Supervised learning algorithms consist of
two phases: (i) the training phase during which the algorithm learns a model w from a data set of labeled examples,
and (ii) the classification phase that runs a classifier C over a previously unseen feature vector x, using the model w to
output a prediction C(x,w).

In applications that handle sensitive data, it is important that the feature vector x and the model w remain secret to
one or some of the parties involved. Consider the example of a medical study or a hospital having a model built out of
the private medical profiles of some patients; the model is sensitive because it can leak information about the patients,
and its usage has to be HIPAA1 compliant. A client wants to use the model to make a prediction about her health (e.g.,
if she is likely to contract a certain disease, or if she would be treated successfully at the hospital), but does not want
to reveal her sensitive medical profile. Ideally, the hospital and the client run a protocol at the end of which the client
learns one bit (“yes/no”), and neither party learns anything else about the other party’s input. A similar setting arises for
a financial institution (e.g., an insurance company) holding a sensitive model, and a customer wanting to estimate rates
or quality of service based on her personal information.

Throughout this paper, we refer to this goal shortly as privacy-preserving classification. Concretely, a client has a
private input represented as a feature vector x, and the server has a private input consisting of a private modelw. The way
the model w is obtained is independent of our protocols here. For example, the server could have computed the model
w after running the training phase on plaintext data as usual. Only the classification needs to be privacy-preserving: the
client should learn C(x,w) but nothing else about the model w, while the server should not learn anything about the
client’s input or the classification result.
∗Direction Générale de l’Armement - Maitrise de l’Information. Work done while visiting MIT CSAIL. The views and conclusions contained

herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the DGA or the French Government.
†ETH Zürich
‡MIT CSAIL
1Health Insurance Portability and Accountability Act of 1996

1

186
Approved for Public Release; Distribution Unlimited.

server

data
set

training
phase

model w classification
C

client

feature
vector x

prediction
C(w,x)

Figure 1: Model overview. Each shaded box indicates private data that should be accessible to only one party: the
dataset and the model to the server, and the input and prediction result to the client. Each straight non-dashed rectangle
indicates an algorithm, single arrows indicate inputs to these algorithms, and double arrows indicate outputs.

Machine learning algorithm Classifier
Perceptron Hyperplane decision
Least squares Hyperplane decision
Fischer linear discriminant Hyperplane decision
Support vector machine Hyperplane decision
Naive Bayes Naïve Bayes
Decision trees (ID3/C4.5) Decision trees

Table 1: Machine learning algorithms and their classifiers, defined in Section 3.1.

In this work, we construct efficient privacy-preserving protocols for three of the most common classifiers: hyperplane
decision, Naïve Bayes, and decision trees, as well as a more general classifier combining these using AdaBoost. These
classifiers are widely used – even though there are many machine learning algorithms, most of them end up using one
of these three classifiers, as described in Table 1.

While generic secure multi-party computation [Yao82, GMW87, HKS+10, MNPS04, BDNP08] can implement
any classifier in principle, due to their generality, such schemes are not efficient for common classifiers. As described in
Section 10.5, on a small classification instance, such tools ([HKS+10, BDNP08]) ran out of memory on a powerful
machine with 256GB of RAM; also, on an artificially simplified classification instance, these protocols ran ≈ 500 times
slower than our protocols ran on the non-simplified instance.

Hence, protocols specialized to the classification problem promise better performance. However, most existing work
in machine learning and privacy [LP00, DHC04, WY04, ZW05, BDMN05, VKC08, GLN12] focuses on preserving
privacy during the training phase, and does not address classification. The few works on privacy-preserving classification
either consider a weaker security setting in which the client learns the model [BLN13] or focus on specific classifiers
(e.g., face detectors [EFG+09, SSW09, AB06, AB07]) that are useful in limited situations.

Designing efficient privacy-preserving classification faces two main challenges. The first is that the computation
performed over sensitive data by some classifiers is quite complex (e.g., decision trees), making it hard to support
efficiently. The second is providing a solution that is more generic than the three classifiers: constructing a separate
solution for each classifier does not provide insight into how to combine these classifiers or how to construct other
classifiers. Even though we contribute privacy-preserving protocols for three of the most common classifiers, various
settings use other classifiers or use a combination of these three classifiers (e.g., AdaBoost). We address these challenges
using two key techniques.

Our main technique is to identify a set of core operations over encrypted data that underlie many classification
protocols. We found these operations to be comparison, argmax, and dot product. We use efficient protocols for each
one of these, either by improving existing schemes (e.g., for comparison) or by constructing new schemes (e.g., for
argmax).

Our second technique is to design these building blocks in a composable way, with regard to both functionality and
security. To achieve this goal, we use a set of sub-techniques:

• The input and output of all our building blocks are data encrypted with additively homomorphic encryption. In
addition, we provide a mechanism to switch from one encryption scheme to another. Intuitively, this enables a
building block’s output to become the input of another building block;

• The API of these building blocks is flexible: even though each building block computes a fixed function, it allows

2

a choice of which party provides the inputs to the protocol, which party obtains the output of the computation,
and whether the output is encrypted or decrypted;

• The security of these protocols composes using modular sequential composition [Can98].

We emphasize that the contribution of our building blocks library goes beyond the classifiers we build in this paper:
a user of the library can construct other privacy-preserving classifiers in a modular fashion. To demonstrate this point,
we use our building blocks to construct a multiplexer and a classifier for face detection, as well as to combine our
classifiers using AdaBoost.

We then use these building blocks to construct novel privacy-preserving protocols for three common classifiers.
Some of these classifiers incorporate additional techniques, such as an efficient evaluation of a decision tree with fully
homomorphic encryption (FHE) based on a polynomial representation requiring only a small number of multiplications
and based on SIMD FHE slots (see Section 7.2). All of our protocols are secure against passive adversaries (see
Section 3.2.3).

We also provide an implementation and an evaluation of our building blocks and classifiers. We evaluate our
classifiers on real datasets with private data about breast cancer, credit card approval, audiology, and nursery data; our
algorithms are efficient, running in milliseconds up to a few seconds, and consume a modest amount of bandwidth.

The rest of the paper is organized as follows. Section 2 describes related work, Section 3 provide the necessary
machine learning and cryptographic background, Section 4 presents our building blocks, Sections 5–8 describe our
classifiers, and Sections 9–10 present our implementation and evaluation results.

2 Related work
Our work is the first to provide efficient privacy-preserving protocols for a broad class of classifiers.

Secure two-party computation protocols for generic functions exist in theory [Yao82, GMW87, LP07, IPS08, LP09]
and in practice [HKS+10, MNPS04, BDNP08]. However, these rely on heavy cryptographic machinery, and applying
them directly to our problem setting would be too inefficient as exemplified in Section 10.5.

Previous work focusing on privacy-preserving machine learning can be broadly divided into two categories: (i)
techniques for privacy-preserving training, and (ii) techniques for privacy-preserving classification (recall the distinction
from Figure 1). Most existing work falls in the first category, which we discuss in Section 2.1. Our work falls in the
second category, where little work has been done, as we discuss in Section 2.2. We also mention work related to the
building blocks we use in our protocols in Section 2.3.

It is worth mentioning that our work on privacy-preserving classification is complementary to work on differential
privacy in the machine learning community (see e.g. [CMS11]). Our work aims to hide each user’s input data to the
classification phase, whereas differential privacy seeks to construct classifiers/models from sensitive user training data
that leak a bounded amount of information about each individual in the training data set.

2.1 Privacy-preserving training
A set of techniques have been developed for privacy-preserving training algorithms such as Naïve Bayes [VKC08,
WY04, ZW05], decision trees [BDMN05, LP00], linear discriminant classifiers [DHC04], and more general kernel
methods [LLM06].

Grapel et al. [GLN12] show how to train several machine learning classifiers using a somewhat homomorphic
encryption scheme. They focus on a few simple classifiers (e.g. the linear means classifier), and do not elaborate on more
complex algorithms such as support vector machines. They also support private classification, but in a weaker security
model where the client learns more about the model than just the final sign of the classification. Indeed, performing
the final comparison with fully homomorphic encryption (FHE) alone is inefficient, a difficulty we overcome with an
interactive setting.

3

188
Approved for Public Release; Distribution Unlimited.

2.2 Privacy-preserving classification
Little work has been done to address the general problem of privacy-preserving classification in practice; previous work
focuses on a weaker security setting (in which the client learns the model) and/or only supports specific classifiers.

In Bos et al. [BLN13], a third party can compute medical prediction functions over the encrypted data of a patient
using fully homomorphic encryption. In their setting, everyone (including the patient) knows the predictive model, and
their algorithm hides only the input of the patient from the cloud. Our protocols, on the other hand, also hide the model
from the patient. Their algorithms cannot be applied to our setting because they leak more information than just the bit
of the prediction to the patient. Furthermore, our techniques are notably different; using FHE directly for our classifiers
would result in significant overheads.

Barni et al. [BFK+09, BFL+09] construct secure evaluation of linear branching programs, which they use to
implement a secure classifier of ECG signals. Their technique is based on finely-tuned garbled circuits. By comparison,
our construction is not limited to branching programs (or decision trees), and our evaluation shows that our construction
is twice as fast on branching programs. In a subsequent work [BFL+11], Barni et al. study secure classifiers based on
neural networks, which is a generalization of the perceptron classifiers, and hence also covered by our work.

Other works [EFG+09, SSW09, AB06, AB07] construct specific face recognition or detection classifiers. We focus
on providing a set of generic classifiers and building blocks to construct more complex classifiers. In Section 10.1.2, we
show how to construct a private face detection classifier using the modularity of our techniques.

2.3 Work related to our building blocks
Two of the basic components we use are private comparison and private computation of dot products. These items have
been well-studied previously; see [Yao82, DGK07, DGK09, Veu11, LT05, AB06, KSS09] for comparison techniques
and [AD01, GLLM04, Kil05, AB06] for techniques to compute dot products. Section 4.1 discusses how we build on
these tools.

3 Background and preliminaries

3.1 Classification in machine learning algorithms
The user’s input x is a vector of d elements x = (x1, . . . , xd) ∈ Rd, called a feature vector. To classify the input xmeans
to evaluate a classification function Cw : Rd 7→ {c1, ..., ck} on x. The output is ck∗ = Cw(x), where k∗ ∈ {1 . . . k};
ck∗ is the class to which x corresponds, based on the model w. For ease of notation, we often write k∗ instead of ck∗ ,
namely k∗ = Cw(x).

We now describe how three popular classifiers work on regular, unencrypted data. These classifiers differ in the
model w and the function Cw. For more details, we refer the reader to [BN06].
Hyperplane decision-based classifiers. For this classifier, the model w consists of k vectors in Rd (w = {wi}ki=1).
The classifier is (cf. [BN06]):

k∗ = argmax
i∈[k]

〈wi, x〉, (1)

where 〈wi, x〉 denotes inner product between wi and x.
We now explain how Eq. (1) captures many common machine learning algorithms. A hyperplane based classifier

typically works with a hypothesis spaceH equipped with an inner product 〈·, ·〉. This classifier usually solves a binary
classification problem (k = 2): given a user input x, x is classified in class c2 if 〈w, φ(x)〉 ≥ 0, otherwise it is labeled
as part of class c1. Here, φ : Rd 7→ H denotes the feature mapping from Rd toH [BN06]. In this work, we focus on
the case when H = Rd and note that a large class of infinite dimensional spaces can be approximated with a finite
dimensional space (as in [RR07]), including the popular gaussian kernel (RBF). In this case, φ(x) = x or φ(x) = Px
for a randomized projection matrix P chosen during training. Notice that Px consists solely of inner products; we will
show how to support private evaluation of inner products later, so for simplicity we drop P from the discussion. To
extend such a classifier from 2 classes to k classes, we use one of the most common approaches, one-versus-all, where
k different models {wi}ki=1 are trained to discriminate each class from all the others. The decision rule is then given by

4

189
Approved for Public Release; Distribution Unlimited.

c1 c2 c3

c4 c5

x1 > w1 x1 w1

x2 w2x2 > w2 x3 w3

x4 w4x4 > w4

Figure 2: Decision tree

(cf. [BN06]) to be Eq. (1). This framework is general enough to cover many common algorithms, such as support vector
machines (SVMs), logistic regression, and least squares.
Naïve Bayes classifiers. For this classifier, the model w consists of various probabilities: the probability that each
class ci occurs, namely {p(C = ci)}ki=1, and the probabilities that an element xj of x occurs in a certain class ci. More
concretely, the latter is the probability of the j-th component xj of x to be v when x belongs to category ci; this is
denoted by {{{p(Xj = v|C = ci)}v∈Dj

}dj=1}ki=1, where Dj is Xj’s domain2. The classification function, using a
maximum a posteriori decision rule, works by choosing the class with the highest posterior probability:

k∗ = argmax
i∈[k]

p(C = ci|X = x)

= argmax
i∈[k]

p(C = ci, X = x)

= argmax
i∈[k]

p(C = ci, X1 = x1, . . . , Xd = xd)

where the second equality follows from applying Bayes’ rule (we omitted the normalizing factor p(X = x) because it
is the same for a fixed x).

The Naïve Bayes model assumes that p(C = ci, X = x) has the following factorization:

p(C = ci, X1 = x1, . . . , Xd = xd)

= p(C = ci)
d∏
j=1

p(Xj = xj |C = ci),

namely, each of the d features are conditionally independent given the class. For simplicity, we assume that the domain
of the features values (the xi’s) is discrete and finite, so the p(Xj = xj |C = ci)’s are probability masses.
Decision trees. A decision tree is a non-parametric classifier which works by partitioning the feature vector space one
attribute at a time; interior nodes in the tree correspond to partitioning rules, and leaf nodes correspond to class labels.
A feature vector x is classified by walking the tree starting from the root, using the partitioning rule at each node to
decide which branch to take until a leaf node is encountered. The class at the leaf node is the result of the classification.

Figure 2 gives an example of a decision tree. The model consists of the structure of the tree and the decision criteria
at each node (in this case the thresholds w1, . . . , w4).

2Be careful to distinguish between Xj , the probabilistic random variable representing the values taken by the j-th feature of user’s input, and xj ,
the actual value taken by the specific vector x.

5

190
Approved for Public Release; Distribution Unlimited.

3.2 Cryptographic preliminaries
3.2.1 Cryptosystems

In this work, we use three additively homomorphic cryptosystems. A public-key encryption scheme HE is additively
homomorphic if, given two encrypted messages HE.Enc(a) and HE.Enc(b), there exists a public-key operation ⊕
such that HE.Enc(a) ⊕ HE.Enc(b) is an encryption of a + b. We emphasize that these are homomorphic only for
addition, which makes them efficient, unlike fully homomorphic encryption [Gen09], which supports any function. The
cryptosystems we use are:
1. the QR (Quadratic Residuosity) cryptosystem of Goldwasser-Micali [GM82],
2. the Paillier cryptosystem [Pai99], and
3. a leveled fully homomorphic encryption (FHE) scheme, HELib [Hal13]

3.2.2 Cryptographic assumptions

We prove that our protocols are secure based on the semantic security [Gol04] of the above cryptosystems. These
cryptosytems rely on standard and well-studied computational assumptions: the Quadratic Residuosity assumption, the
Decisional Composite Residuosity assumption, and the Ring Learning With Error (RLWE) assumption.

3.2.3 Adversarial model

We prove security of our protocols using the secure two-party computation framework for passive adversaries (or honest-
but-curious [Gol04]) defined in Appendix B.1.To explain what a passive adversary is, at a high level, consider that a
party called party A is compromised by such an adversary. This adversary tries to learn as much private information
about the input of the other party by watching all the information party A receives; nevertheless, this adversary cannot
prevent party A from following the prescribed protocol faithfully (hence, it is not an active adversary).

To enable us to compose various protocols into a bigger protocol securely, we invoke modular sequential composition
(see Appendix B.2).

3.3 Notation
All our protocols are between two parties: parties A and B for our building blocks and parties C (client) and S (server)
for our classifiers.

Inputs and outputs of our building blocks are either unencrypted or encrypted with an additively homomorphic
encryption scheme. We use the following notation. The plaintext space of QR is F2 (bits), and we denote by [b] a bit b
encrypted under QR; the plaintext space of Paillier is ZN where N is the public modulus of Paillier, and we denote by
JmK an integer m encrypted under Paillier. The plaintext space of the FHE scheme is F2. We denote by SKP and PKP ,
a secret and a public key for Paillier, respectively. Also, we denote by SKQR and PKQR, a secret and a public key for
QR.

For a constant b, a← b means that a is assigned the value of b. For a distribution D, a← D means that a gets a
sample from D.

4 Building blocks
In this section, we develop a library of building blocks, which we later use to build our classifiers. We designed this
library to also enable constructing other classifiers than the ones described in our paper. The building blocks in this
section combine existing techniques with either new techniques or new optimizations.

6

191
Approved for Public Release; Distribution Unlimited.

Type Input A Input B Output A Output B Implementation
1 PKP , PKQR, a SKP ,SKQR, b [a < b] – Sec. 4.1.1
2 PKP , SKQR, JaK, JbK SKP ,PKQR – [a ≤ b] Sec. 4.1.2
3 PKP , SKQR, JaK, JbK SKP ,PKQR a ≤ b [a ≤ b] Sec. 4.1.2
4 PKP , PKQR, JaK, JbK SKP ,SKQR [a ≤ b] – Sec. 4.1.3
5 PKP , PKQR,JaK, JbK SKP ,SKQR [a ≤ b] a ≤ b Sec. 4.1.3

Table 2: The API of our comparison protocol and its implementation. There are five types of comparisons each having a different
setup.

4.1 Comparison
We now describe our comparison protocol. In order for this protocol to be used in a wide range of classifiers, its setup
needs to be flexible: namely, it has to support a range of choices regarding which party gets the input, which party
gets the output, and whether the input or output are encrypted or not. Table 2 shows the various ways our comparison
protocol can be used. In each case, each party learns nothing else about the other party’s input other than what Table 2
indicates as the output.

We implemented each row of Table 2 by modifying existing protocols. We explain only the modifications here, and
defer full protocol descriptions to Appendix A and proofs of security to Appendix C.1.

There are at least two approaches to performing comparison efficiently: using specialized homomorphic
encryption [DGK07, DGK09, EFG+09, Veu11], or using garbled circuits [BHKR13]. We compared empirically
the performance of these approaches and concluded that the former is more efficient for comparison of encrypted values,
and the second is more efficient for comparison of unencrypted values.

4.1.1 Comparison with unencrypted inputs (Row 1)

To compare unencrypted inputs, we use garbled circuits implemented with the state-of-the-art garbling scheme of
Bellare et al. [BHKR13], the short circuit for comparison of Kolesnikov et al. [KSS09] and a well-known oblivious
transfer (OT) scheme due to Naor and Pinkas [NP01]. Since most of our other building blocks expect inputs encrypted
with homomorphic encryption, one also needs to convert from a garbled output to homomorphic encryption to enable
composition. We can implement this easily using the random shares technique in [KSS13].

The above techniques combined give us the desired comparison protocol. Actually, we can directly combine them
to build an even more efficient protocol: we use an enhanced comparison circuit that also takes as input a masking bit.
Using a garbled circuit and oblivious transfer, A will compute (a < b)⊕ c where c is a bit randomly chosen by B. B
will also provide an encryption [c] of c, enabling A to compute [a < b] using the homomorphic properties of QR.

4.1.2 Comparison with encrypted inputs (Rows 2, 3)

Our classifiers also require the ability to compare two encrypted inputs. More specifically, suppose that party A wants
to compare two encrypted integers a and b, but party B holds the decryption key. To implement this task, we slightly
modify Veugen’s [Veu11] protocol: it uses a comparison with unencrypted inputs protocol as a sub-procedure, and we
replaced it with the comparison protocol we just described above. This yields a protocol for the setup in Row 2. To
ensure that A receives the plaintext output as in Row 3, B sends the encrypted result to A who decrypts it. Appendix A
provides the detailed protocol.

4.1.3 Reversed comparison over encrypted data (Row 4, 5)

In some cases, we want the result of the comparison to be held by the party that does not hold the encrypted data. For
this, we modify Veugen’s protocol to reverse the outputs of party A and party B: we achieve this by exchanging the role
of party A and party B in the last few steps of the protocol, after invoking the comparison protocol with unencrypted
inputs. We do not present the details in the paper body because they are not insightful, and instead include them in
Appendix A.

7

192
Approved for Public Release; Distribution Unlimited.

This results in a protocol whose specification is in Row 4. To obtain Row 5, A sends the encrypted result to B who
can decrypt it.

4.1.4 Negative integers comparison and sign determination

Negative numbers are handled by the protocols above unchanged. Even though the Paillier plaintext size is “positive”, a
negative number simply becomes a large number in the plaintext space due to cyclicity of the space. As long as the
values encrypted are within a preset interval (−2`, 2`) for some fixed `, Veugen’s protocol and the above protocols
work correctly.

In some cases, we need to compute the sign of an encrypted integer JbK. In this case, we simply compare to the
encryption of 0.

4.2 argmax over encrypted data
In this scenario, party A has k values a1, . . . , ak encrypted under party B’s secret key and wants party B to know the
argmax over these values (the index of the largest value), but neither party should learn anything else. For example, if
A has values J1K, J100K and J2K, B should learn that the second is the largest value, but learn nothing else. In particular,
B should not learn the order relations between the ai’s.

Our protocol for argmax is shown in Protocol 1. We now provide intuition into the protocol and its security.
Intuition. Let’s start with a strawman. To prevent B from learning the order of the k values {ai}ki=1, A applies a

random permutation π. The i-th element becomes Ja′iK = Jaπ(i)K instead of JaiK.
Now, A and B compare the first two values Ja′1K and Ja′2K using the comparison protocol from row 4 of Table 2.

B learns the index, m, of the larger value, and tells A to compare Ja′mK to Ja′3K next. After iterating in this manner
through all the k values, B determines the index m of the largest value. A can then compute π−1(m) which represents
the argmax in the original, unpermuted order.

Since A applied a random permutation π, B does not learn the ordering of the values. The problem, though, is that
A learns this ordering because, at every iteration, A knows the value of m up to that step and π. One way to fix this
problem is for B to compare every pair of inputs from A, but this would result in a quadratic number of comparisons,
which is too slow.

Instead, our protocol preserves the linear number of comparisons from above. The idea is that, at each iteration,
once B determines which is the maximum of the two values compared, B should randomize the encryption of this
maximum in such a way that A cannot link this value to one of the values compared. B uses the Refresh procedure for
the randomization of Paillier ciphertexts. In the case where the “refresher” knows the secret key, this can be seen as a
decryption followed by a re-encryption. If not, it can be seen as a multiplication by an encryption of 0.

A difficulty is that, to randomize the encryption of the maximum Ja′mK, B needs to get this encryption – however,
B must not receive this encryption because B has the key SKP to decrypt it, which violates privacy. Instead, the idea is
for A itself to add noise ri and si to Ja′mK, so decryption at B yields random values, then B refreshes the ciphertext,
and then A removes the randomness ri and si it added.

In the end, our protocol performs k − 1 encrypted comparisons of l bits integers and 7(k − 1) homomorphic
operations (refreshes, multiplications and subtractions). In terms of round trips, we add k − 1 roundtrips to the
comparison protocol, one roundtrip per loop iteration.

Proposition 4.1. Protocol 1 is correct and secure in the honest-but-curious model.

Proof intuition. The correctness property is straightforward. Let’s argue security. A does not learn intermediary
results in the computation because of the security of the comparison protocol and because she gets a refreshed ciphertext
from B which A cannot couple to a previously seen ciphertext. B does learn the result of each comparison – however,
since A applied a random permutation before the comparison, B learns no useful information. See Appendix C for a
complete proof.

8

193
Approved for Public Release; Distribution Unlimited.

Protocol 1 argmax over encrypted data
Input A: k encrypted integers (Ja1K, . . . , JakK), the bit length l of the ai, and public keys PKQR and PKP
Input B: Secret keys SKP and SKQR, the bit length l
Output A: argmaxi ai

1: A: chooses a random permutation π over {1, . . . , k}
2: A: JmaxK← Jaπ(1)K
3: B: m← 1
4: for i = 2 to k do
5: Using the comparison protocol (Sec. 4.1.3), B gets the bit bi = (max ≤ aπ(i))

6: A picks two random integers ri, si ← (0, 2λ+l) ∩ Z
7: A: Jm′iK← JmaxK · JriK . m′i = max + ri
8: A: Ja′iK Jaπ(i)K · JsiK . a′i = aπ(i) + si
9: A sends Jm′iK and Ja′iK to B

10: if bi is true then
11: B: m← i
12: B: JviK← RefreshJa′iK . vi = a′i
13: else
14: B: JviK← RefreshJm′iK . vi = m′i
15: end if
16: B sends to A JviK
17: B sends to A JbiK
18: A: JmaxK← JviK · (g−1 · JbiK)ri · JbiK−si
19: . max = vi + (bi − 1) · ri − bi · ti
20: end for
21: B sends m to A
22: A outputs π−1(m)

4.3 Changing the encryption scheme
To enable us to compose various building blocks, we developed a protocol for converting ciphertexts from one encryption
scheme to another while maintaining the underlying plaintexts. We first present a protocol that switches between two
encryption schemes with the same plaintext size (such as QR and FHE over bits), and then present a different protocol
for switching from QR to Paillier.

Concretely, consider two additively homomorphic encryption schemes E1 and E2, both semantically secure with the
same plaintext space M . Let J.K1 be an encryption using E1 and J.K2 an encryption using E2. Consider that party B has
the secret keys SK1 and SK2 for both schemes and A has the corresponding public keys PK1 and PK2. Party A also
has a value encrypted with PK1, JcK1. Our protocol, protocol 2, enables A to obtain an encryption of c under E2, JcK2

without revealing anything to B about c.
Protocol intuition. The idea is for A to add a random noise r to the ciphertext using the homomorphic property of

E1. Then B decrypts the resulting value with E1 (obtaining x+ r ∈M) and encrypts it with E2, sends the result to A
which removes the randomness r using the homomorphic property of E2. Even though B was able to decrypt Jc′K1, B
obtains x+ r ∈M which hides x in an information-theoretic way (it is a one-time pad).

Note that, for some schemes, the plaintext space M depends on the secret keys. In this case, we must be sure that
party A can still choose uniformly elements of M without knowing it. For example, for Paillier, M = Z∗N ' Z∗p × Z∗q
where p and q are the private primes. However, in this case, A can sample noise in ZN that will not be in Z∗N with
negligible probability (1− 1

p)(1− 1
q) ≈ 1− 2√

N
(remember N is large – 1024 bits in our instantiation).

Proposition 4.2. Protocol 2 is secure in the honest-but-curious model.

In our classifiers, we use this protocol for M = {0, 1} and the encryption schemes are QR (for E1) and an FHE
scheme over bits (for E2). In some cases, we might also want to switch from QR to Paillier (e.g. reuse the encrypted

9

194
Approved for Public Release; Distribution Unlimited.

Protocol 2 Changing the encryption scheme
Input A: JcK1 and public keys PK1 and PK2

Input B: Secret keys SK1 and SK2

Output A: JcK2

1: A uniformly picks r ←M
2: A sends Jc′K1 ← JcK1 · JrK1 to B
3: B decrypts c′ and re-encrypts with E2

4: B sends Jc′K2 to A
5: A: JcK2 = Jc′K2 · JrK−1

2

6: A outputs JcK2

result of a comparison in a homomorphic computation), which has a different message space. Note that we can simulate
the homomorphic XOR operation and a message space M = {0, 1} with Paillier: we can easily compute the encryption
of b1 ⊕ b2 under Paillier when at most one of the bi is encrypted (which we explain in the next subsection). This is the
case in our setting because party A has the randomness r in the clear.

4.3.1 XOR with Paillier.

Suppose a party gets the bit b1 encrypted under Paillier’s encryption scheme, and that this party only has the public key.
This party knows the bit b2 in the clear and wants to compute the encryption of Jb1 ⊕ b2K.

To do so, we just have to notice that

b1 ⊕ b2 =

{
b1 if b2 = 0

1− b1 if b2 = 1

Hence, it is very easy to compute an encryption of b1 ⊕ b2 if we know the modulus N and the generator g (cf. Paillier’s
scheme construction):

Jb1 ⊕ b2K =

{
Jb1K if b2 = 0

gJb1K−1 mod N2 if b2 = 1

If we want to unveil the result to an adversary who knows the original encryption of b1 (but not the secret key), we
have to refresh the result of the previous function to ensure semantic security.

4.4 Computing dot products
For completeness, we include a straightforward algorithm for computing dot products of two vectors, which relies on
Paillier’s homomorphic property.

Protocol 3 Private dot product
Input A: x = (x1, . . . , xd) ∈ Zd, public key PKP
Input B: y = (y1, . . . , yd) ∈ Zd, secret key SKP
Output A: J〈x, y〉K

1: B encrypts y1, . . . , yd and sends the encryptions JyiK to A
2: A computes JvK =

∏
iJyiK

xi mod N2 . v =
∑
yixi

3: A re-randomizes and outputs JvK

Proposition 4.3. Protocol 3 is secure in the honest-but-curious model.

10

195
Approved for Public Release; Distribution Unlimited.

4.5 Dealing with floating point numbers
Although all our protocols manipulate integers, classifiers usually use floating point numbers. Hence, when developing
classifiers with our protocol library, we must adapt our protocols accordingly.

Fortunately, most of the operations involved are either additions or multiplications. As a consequence, a simple
solution is to multiply each floating point value by a constant K (e.g. K = 252 for IEEE 754 doubles) and thus support
finite precision. We must also consider the bit length for the comparisons. We show an example of a full analysis in
Section 6 for the Naïve Bayes classifier.

5 Private hyperplane decision
Recall from Section 3.1 that this classifier computes

k∗ = argmax
i∈[k]

〈wi, x〉.

Now that we constructed our library of building blocks, it is straightforward to implement this classifier securely: the
client computes the encryption of J〈wi, x〉K for all i ∈ [k] using the dot product protocol and then applies the argmax
protocol (Protocol 1) to the encrypted dot products.

Protocol 4 Private hyperplane decision
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public keys PKP and PKQR
Server’s (S) Input: {wi}ki=1 where ∀i ∈ [k], wi ∈ Zn, secret keys SKP and SKQR
Client’s Output: argmax

i∈[k]

〈wi, x〉

1: for i = 1 to k do
2: C and S run Protocol 3 for private dot product where C is party A with input x and S is party B with input wi.
3: C gets JviK the result of the protocol.

. vi ← 〈x,wi〉
4: end for
5: C and S run Protocol 1 for argmax where C is the A, and S the B, and Jv1K, . . . , JvkK the input ciphertexts. C gets

the result i0 of the protocol.
. i0 ← argmax

i∈[k]

vi

6: C outputs i0

Proposition 5.1. Protocol 4 is secure in the honest-but-curious model.

6 Secure Naïve Bayes classifier
Section 3.1 describes the Naïve Bayes classifier. The goal is for the client to learn k∗ without learning anything about
the probabilities that constitute the model, and the server should learn nothing about x. Recall that the features values
domain is discrete and finite.

As is typically done for numerical stability reasons, we work with the logarithm of the probability distributions:

k∗ = argmax
i∈[k]

log p(C = ci|X = x)

= argmax
i∈[k]

log p(C = ci) +
d∑
j=1

log p(Xj = xj |C = ci)

 (2)

11

196
Approved for Public Release; Distribution Unlimited.

6.1 Preparing the model
Since the Paillier encryption scheme works with integers, we convert each log of a probability from above to an integer
by multiplying it with a large number K (recall that the plaintext space of Paillier is large ≈ 21024 thus allowing for a
large K), thus still maintaining high accuracy. The issues due to using integers for bayesian classification have been
previously studied in [TRMP12], even though their setting was even more restricting than ours. However, they use a
similar idea to ours: shifting the probabilities logarithms and use fixed point representation.

As the only operations used in the classification step are additions and comparisons (cf. Equation (2)), we can just
multiply the conditional probabilities p(xj |ci) by a constant K so to get integers everywhere, while keeping the same
classification result.

For example, if we are able to compute the conditional probabilities using IEEE 754 double precision floating point
numbers, with 52 bits of precision, then we can represent every probability p as

p = m · 2e

where m binary representation is (m)2 = 1.d and d is a 52 bits integer. Hence we have 1 ≤ m < 2 and we can rewrite
m as

m =
m′

252
with m′ ∈ N ∩ [252, 253)

We are using this representation to find a constant K such that K · vi ∈ N for all i. As seen before, we can write the
vi’s as

vi = m′i · 2ei−52

Let e∗ = mini ei, and δi = ei − e∗ ≥ 0. Then,

vi = m′i · 2δi · 2e
∗−52

So let K = 252−e∗ . We have K · vi = m′i · 2δi ∈ N. An important thing to notice is that the vi’s can be very large
integers (due to δi), and this might cause overflows errors. However, remember that we are doing all this to store
logarithms of probabilities in Paillier cyphertexts, and as Paillier plaintext space is very large (more than 1024 bits in
our setting) and δi’s remain small3. Also notice that this shifting procedure can be done without any loss of precision as
we can directly work with the bit representation of the floating points numbers.

Finally, we must also ensure that we do not overflow Paillier’s message space when doing all the operations
(homomorphic additions, comparisons, . . .). If – as before – d is the number of features, the maximum number of bits
when doing the computations will be lmax = d+ 1 + (52 + δ∗) where δ∗ = max δi: we have to add the probabilities
for the d features and the probability of the class label (the d+ 1 term), and each probability is encoded using (52 + δ∗)
bits. Hence, the value l used for the comparison protocols must be chosen larger than lmax.

Hence, we must ensure that log2N > lmax + 1 + λ where λ is the security parameter and N is the modulus
for Paillier’s cryptosystem plaintext space (cf. Section 4.1.2). This condition is easily fulfilled as, for a good level of
security, we have to take log2N ≥ 1024 and we usually take λ ≈ 100.

Let Dj be the domain of possible values of xj (the j-th attribute of the feature vector x). The server prepares kd+ 1
tables as part of the model, where K is computed as described just before:
• One table for the priors on the classes P : P (i) = dK log p(C = ci)e.
• One table per feature j per class i, Ti,j : Ti,j(v) ≈ dK log p(Xj = v|C = ci)e, for all v ∈ Dj .

The tables remain small: P has one entry by category i.e. k entries total, and T has one entry by category and feature
value i.e. k · D entries where D =

∑ |Dj |. In our examples, this represents less than 3600 entries. Moreover, this
preparation step can be done once and for all at server startup, and is hence amortized.

3If the biggest δi is 10, the ratio between the smallest and the biggest probability is of order 22
10

= 21024 ...

12

197
Approved for Public Release; Distribution Unlimited.

6.2 Protocol
Let us begin with some intuition. The server encrypts each entry in these tables with Paillier and gives the resulting
encryption (the encrypted model) to the client. For every class ci, the client uses Paillier’s additive homomorphism to
compute JpiK = JP (i)K

∏d
j=1JTi,j(xj)K. Finally, the client runs the argmax protocol, Protocol 1, to get argmax pi. For

completeness, the protocol is shown in Protocol 5.

Protocol 5 Naïve Bayes Classifier
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public key PKP , secret key SKQR
Server’s (S) Input: The secret key SKP , public key PKQR and probability tables {log p(C = ci)}1≤i≤k and{
{log p(Xj = v|C = ci)}v∈Dj

}
1≤j≤d,1≤i≤k

Client’s Output: i0 such that p(x, ci0) is maximum

1: The server prepares the tables P and {Ti,j}1≤i≤k,1≤j≤d and encrypts their entries using Paillier.
2: The server sends JP K and {JTi,jK}i,j to the client.
3: For all 1 ≤ i ≤ k, the client computes JpiK = JP (i)K

∏d
j=1JTi,j(xj)K.

4: The client runs the argmax protocol (Protocol 1) with the server and gets i0 = argmaxi pi
5: C outputs i0

Proposition 6.1. Protocol 5 is secure in the honest-but-curious model.

Proof intuition. Given the security property of the argmax protocol, Protocol 1, and the semantic security of the
Paillier cryptosystem, the security of this classifier follows trivially, by invoking a modular composition theorem.

Efficiency. Note that the tables P and {Ti,j}1≤i≤k,1≤j≤d can be prepared in advance. Hence the cost of constructing
the tables can be amortized over many uses. To compute the encrypted probabilities pi’s, the client runs d homomorphic
operations (here multiplications) for each i, hence doing kd modular multiplications. Then the parties run a single
argmax protocol i.e. k − 1 comparisons and O(k) homomorphic operations. Thus, compared to non-encrypted
computation, the overhead comes only from the use of homomorphic encryption operations instead of plaintext
operations. Regarding the number of round trips, these are due to the argmax protocol: k − 1 runs of the comparison
protocol and k − 1 additional roundtrips.

7 Private decision trees
A private decision tree classifier allows the server to traverse a binary decision tree using the client’s input x such that
the server does not learn the input x, and the client does not learn the structure of the tree and the thresholds at each
node. A challenge is that, in particular, the client should not learn the path in the tree that corresponds to x – the position
of the path in the tree and the length of the path leaks information about the model. The outcome of the classification
does not necessarily leak the path in the tree

The idea is to express the decision tree as a polynomial P whose output is the result of the classification, the class
predicted for x. Then, the server and the client privately compute inputs to this polynomial based on x and the thresholds
wi. Finally, the server evaluates the polynomial P privately.

7.1 Polynomial form of a decision tree
Consider that each node of the tree has a boolean variable associated to it. The value of the boolean at a node is 1 if, on
input x, one should follow the right branch, and 0 otherwise. For example, denote the boolean variable at the root of the
tree by b1. The value of b1 is 1 if x1 ≤ w1 (recall Figure 2), and 0 otherwise.

We construct a polynomial P that, on input all these boolean variables and the value of each class at a leaf
node, outputs the class predicted for x. The idea is that P is a sum of terms, where each term (say t) corresponds

13

198
Approved for Public Release; Distribution Unlimited.

to a path in the tree from root to a leaf node (say c). A term t evaluates to c iff x is classified along that path
in T , else it evaluates to zero. Hence, the term corresponding to a path in the tree is naturally the multiplication
of the boolean variables on that path and the class at the leaf node. For example, for the tree in Figure 3, P is
P (b1, b2, b3, b4, c1, . . . , c5) = b1(b3 · (b4 · c5 + (1− b4) · c4) + (1− b3) · c3) +(1− b1)(b2 · c2 + (1− b2) · c1).

b1

b2

c1 c2

b3

c3 b4

c4 c5

0 1

0 1

1

1

0

0

Figure 3: Decision tree with booleans

We now present F , a recursive procedure for constructing P given a binary decision tree T :

c If T consists only of a leaf node with category index ci, F(T) = ci.

If T is empty, return F(T) = 0.

T1T0

b

0 1 Otherwise, T has an internal node using boolean b and T0 and T1 are its
left and right subtrees. Then F(T) = b · F(T1) + (1− b) · F(T0).

7.2 Private evaluation of a polynomial
Let us first explain how to compute the values of the boolean variables securely. Let n be the number of nodes in the
tree and nleaves be the number of leaves in the tree. These values must remain unknown to the server because they
leak information about x: they are the result of the intermediate computations of the classification criterion. For each
boolean variable bi, the server and the client engage in the comparison protocol to compare wi and the corresponding
attribute of x. As a result, the server obtains [bi] for i ∈ 1 . . . n; the server then changes the encryption of these values
to FHE using Protocol 2, thus obtaining [JbiK].

The server evaluates P on ([Jb1K], . . . , [JbnK]) using the homomorphic properties of FHE. In most cases, FHE
evaluation is very slow, but we succeed to make it efficient through a combination of techniques we now discuss. To
understand these techniques, recall that a typical FHE evaluation happens over a circuit whose gates are modular
addition and multiplication. The performance of FHE depends a lot on the depth of multiplications in this circuit.

First, we use a leveled FHE scheme: a scheme that supports only an a priori fixed multiplicative depth instead of an
arbitrary such depth. As long as this depth is small, such a scheme is much faster than a full FHE scheme.

Second, we ensure that the multiplicative depth is very small using a tree-based evaluation. If hmax is the maximum
height of the decision tree, then P has a term a1 · . . . · ahmax . If we evaluate this term naïvely with FHE, we multiply
these values sequentially. This yields a multiplicative depth of hmax, which makes FHE slow for common hmax values.
Instead, we construct a binary tree over these values and multiply them in pairs based on the structure of this tree. This
results in a multiplicative depth of log2 hmax (e.g., 4), which makes FHE evaluation significantly more efficient.

14

199
Approved for Public Release; Distribution Unlimited.

Finally, we use F2 as the plaintext space and SIMD slots for parallelism. FHE schemes are significantly faster when
the values encrypted are bits (namely, in F2); however, P contains classes (e.g., c1) which are usually more than a bit
in length. To enable computing P over F2, we represent each class in binary. Let l = dlog2 ke (k is the number of
classes) be the number of bits needed to represent a class. We evaluate P l times, once for each of the l bits of a class.
Concretely, the j-th evaluation of P takes as input b1, . . . , bn and for each leaf node ci, its j-th bit cij . The result is
P (b1, . . . , bn, c1j , c2j , . . . , cnleavesj), which represents the j-th bit of the outcome class. Hence, we need to run the FHE
evaluation l times.

To avoid this factor of l, the idea is to use a nice feature of FHE called SIMD slots (as described in [SV11]): these
allow encrypting multiple bits in a single ciphertext such that any operation applied to the ciphertext gets applied in
parallel to each of the bits. Hence, for each class cj , the server creates an FHE ciphertext [Jcj0, . . . , cjl−1K]. For each
node bi, it creates an FHE ciphertext [Jbi, . . . , biK] by simply repeating the bi value in each slot. Then, the server runs
one FHE evaluation of P over all these ciphertexts and obtains [Jco0, . . . , col−1K] where co is the outcome class. Hence,
instead of l FHE evaluations, the server runs the evaluation only once. This results in a performance improvement of
log k, a factor of 2 and more in our experiments. We were able to apply SIMD slots parallelism due to the fortunate fact
that the same polynomial P had to be computed for each slot.

Finally, evaluating the decision tree is done using 2n FHE multiplications and 2n FHE additions where n is the
number of criteria. The evaluation circuit has multiplication depth dlog2(n) + 1e.

7.3 Formal description
Protocol 6 describes the resulting protocol.

Protocol 6 Decision Tree Classifier
Client’s (C) Input: x = (x1, . . . , xn) ∈ Zn, secret keys SKQR,SKFHE
Server’s (S) Input: The public keys PKQR,PKFHE , the model as a decision tree, including the n thresholds {wi}ni=1.
Client’s Output: The value of the leaf of the decision tree associated with the inputs b1, . . . , bn.

1: S produces an n-variate polynomial P as described in section 7.1.
2: S and C interact in the comparison protocol, so that S obtains [bi] for i ∈ [1 . . . n] by comparing wi to the

corresponding attribute of x.
3: Using Protocol 2, S changes the encryption from QR to FHE and obtains [Jb1K], . . . , [JbnK].
4: To evaluate P , S encrypts the bits of each category ci using FHE and SIMD slots, obtaining

[Jci1, . . . , cilK]. S uses SIMD slots to compute homomorphically [JP (b1, . . . , bn, c10, . . . , cnleaves0), . . . ,
P (b1, . . . , bn, c1l−1, . . . , cnleavesl−1)K]. It rerandomizes the resulting ciphertext using FHE’s rerandomization
function, and sends the result to the client.

5: C decrypts the result as the bit vector (v0, . . . , vl−1) and outputs
∑l−1
i=0 vi · 2i.

Proposition 7.1. Protocol 6 is secure in the honest-but-curious model.

Proof intuition. The proof is in Appendix C, but we give some intuition here. During the comparison protocol, the
server only learns encrypted bits, so it learns nothing about x. During FHE evaluation, it similarly learns nothing about
the input due to the security of FHE. The client does not learn the structure of the tree because the server performs the
evaluation of the polynomial. Similarly, the client does not learn the bits at the nodes in the tree because of the security
of the comparison protocol.

The interactions between the client and the server are due to the comparisons almost exclusively: the decision tree
evaluation does not need any interaction but sending the encrypted result of the evaluation.

15

200
Approved for Public Release; Distribution Unlimited.

bool Linear_Classifier_Client::run()
{

exchange_keys();

// values_ is a vector of integers
// compute the dot product
mpz_class v = compute_dot_product(values_);
mpz_class w = 1; // encryption of 0

// compare the dot product with 0
return enc_comparison(v, w, bit_size_, false);

}

void Linear_Classifier_Server_session::
run_session()

{
exchange_keys();

// enc_model_ is the encrypted model vector
// compute the dot product
help_compute_dot_product(enc_model_, true);

// help the client to get
// the sign of the dot product
help_enc_comparison(bit_size_, false);

}

Figure 4: Implementation example: a linear classifier

Bit size A Computation B Computation Total Time Communication Interactions
10 14.11 ms 8.39 ms 105.5 ms 4.60 kB 3
20 18.29 ms 14.1 ms 117.5 ms 8.82 kB 3
32 22.9 ms 18.8 ms 122.6 ms 13.89 kB 3
64 34.7 ms 32.6 ms 134.5 ms 27.38 kB 3

Table 3: Comparison with unencrypted input protocols evaluation.

8 Combining classifiers with AdaBoost
AdaBoost is a technique introduced in [FS97]. The idea is to combine a set of weak classifiers hi(x) : Rd 7→ {−1,+1}
to obtain a better classifier. The AdaBoost algorithm chooses t scalars {αi}ti=1 and constructs a strong classifier as:

H(x) = sign

(
t∑
i=1

αihi(x)

)

If each of the hi(·)’s is an instance of a classifier supported by our protocols, then given the scalars αi, we can easily
and securely evaluate H(x) by simply composing our building blocks. First, we run the secure protocols for each of
hi, except that the server keeps the intermediate result, the outcome of hi(x), encrypted using one of our comparison
protocols (Rows 2 or 4 of Table 2). Second, if necessary, we convert them to Paillier’s encryption scheme with Protocol 2,
and combine these intermediate results using Paillier’s additive homomorphic property as in the dot product protocol
Protocol 3. Finally, we run the comparison over encrypted data algorithm to compare the result so far with zero, so that
the client gets the final result.

9 Implementation
We have implemented the protocols and the classifiers in C++ using GMP4, Boost, Google’s Protocol Buffers5, and
HELib [Hal13] for the FHE implementation.

The code is written in a modular way: all the elementary protocols defined in Section 4 can be used as black boxes
with minimal developer effort. Thus, writing secure classifiers comes down to invoking the right API calls to the
protocols. For example, for the linear classifier, the client simply calls a key exchange protocol to setup the various
keys, followed by the dot product protocol, and then the comparison of encrypted data protocol to output the result, as
shown in Figure 4.

4http://gmplib.org/
5https://code.google.com/p/protobuf/

16

201
Approved for Public Release; Distribution Unlimited.

http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/
https://code.google.com/p/protobuf/

Protocol Bit size
Computation

Total Time Communication Interactions
Party A Party B

Comparison 64 45.34 ms 43.78 ms 190.9 ms 27.91 kB 6
Reversed Comp. 64 48.78 ms 42.49 ms 195.7 ms 27.91 kB 6

Table 4: Comparison with encrypted input protocols evaluation.

Party A Computation Party B Computation Total Time Communication Interactions
30.80 ms 255.3 ms 360.7 ms 420.1 kB 2

Table 5: Change encryption scheme protocol evaluation.

10 Evaluation
To evaluate our work, we answer the following questions: (i) can our building blocks be used to construct other
classifiers in a modular way (Section 10.1), (ii) what is the performance overhead of our building blocks (Section 10.3),
and (iii) what is the performance overhead of our classifiers (Section 10.4)?

10.1 Using our building blocks library
Here we demonstrate that our building blocks library can be used to build other classifiers modularly and that it is
a useful contribution by itself. We will construct a multiplexer and a face detector. A face detection algorithm over
encrypted data already exists [AB06, AB07], so our construction here is not the first such construction, but it serves as
a proof of functionality for our library.

10.1.1 Building a multiplexer classifier

A multiplexer is the following generalized comparison function:

fα,β(a, b) =

{
α if a > b

β otherwise

We can express fα,β as a linear combination of the bit d = (a ≤ b):

fα,β(d) = d · β + (1− d) · α = α+ d · (β − α).

To implement this classifier privately, we compute JdK by comparing a and b, keeping the result encrypted with QR,
and then changing the encryption scheme (cf. Section 4.3) to Paillier.

Then, using Paillier’s homomorphism and knowledge of α and β, we can compute an encryption of fα,β(d):

Jfα,β(d)K = JαK · JdKβ−α.

10.1.2 Viola and Jones face detection

The Viola and Jones face detection algorithm [VJ01] is a particular case of an AdaBoost classifier. Denote by X an
image represented as an integer vector and x a particular detection window (a subset of X’s coefficients). The strong
classifier H for this particular detection window is

H(x) = sign

(
t∑
i=1

αihi(x)

)

where the ht are weak classifiers of the form hi(x) = sign (〈x, yi〉 − θi) .

17

202
Approved for Public Release; Distribution Unlimited.

Data set Model size
Computation Time per protocol Total

Comm. Interactions
Client Server Compare Dot product running time

Breast cancer (2) 30 46.4 ms 43.8 ms 194 ms 9.67 ms 204 ms 35.84 kB 7
Credit (3) 47 55.5 ms 43.8 ms 194 ms 23.6 ms 217 ms 40.19 kB 7

(a) Linear Classifier. Time per protocol includes communication.

Data set
Specs. Computation Time per protocol Total

Comm. Interactions
C F Client Server Prob. Comp. Argmax running time

Breast Cancer (1) 2 9 150 ms 104 ms 82.9 ms 396 ms 479 ms 72.47 kB 14
Nursery (5) 5 9 537 ms 368 ms 82.8 ms 1332 ms 1415 ms 150.7 kB 42

Audiology (4) 24 70 1652 ms 1664 ms 431 ms 3379 ms 3810 ms 1911 kB 166

(b) Naïve Bayes Classifier. C is the number of classes and F is the number of features. The Prob. Comp. column corresponds to the
computation of the probabilities p(ci|x) (cf. Section 6). Time per protocol includes communication.

Data set
Tree Specs. Computation Time per protocol FHE

Comm. Interactions
N D Client Server Compare ES Change Eval. Decrypt

Nursery (5) 4 4 1579 ms 798 ms 446 ms 1639 ms 239 ms 33.51 ms 2639 kB 30
ECG (6) 6 4 2297 ms 1723 ms 1410 ms 7406 ms 899 ms 35.1 ms 3555 kB 44

(c) Decision Tree Classifier. ES change indicates the time to run the protocol for changing encryption schemes. N is the number of
nodes of the tree and D is its depth. Time per protocol includes communication.

Table 6: Classifiers evaluation.

In our setting, Alice owns the image and Bob the classifier (e.g. the vectors {yi} and the scalars {θi} and {αi}).
Neither of them wants to disclose their input to the other party. Thanks to our building blocks, Alice can run Bob’s
classifier on her image without her learning anything about the parameters and Bob learning any information about her
image.

The weak classifiers can be seen as multiplexers; with the above notation, we have ht(x) = f1,−1(〈x, yt〉 − θt).
Using the elements of Section 10.1.1, we can easily compute the encrypted evaluation of every one of these weak

classifiers under Paillier, and then, as described in Section 8, compute the encryption of H(x).

10.2 Performance evaluation setup
Our performance evaluations were run using two desktop computers each with identical configuration: two Intel Core
i7 (64 bit) processors for a total 4 cores running at 2.66 GHz and 8 GB RAM. Since the machines were on the same
network, we inflated the roundtrip time for a packet to be 40 ms to mimic real network latency. We used 1024-bit
cryptographic keys, and chose the statistical security parameter λ to be 100. When using HELib, we use 80 bits of
security, which corresponds to a 1024-bit asymmetric key.

10.3 Building blocks performance
We examine performance in terms of computation time at the client and server, communication bandwidth, and also
number of interactions (round trips). We can see that all these protocols are efficient, with a runtime on the order of
milliseconds.

10.3.1 Comparison protocols

Comparison with unencrypted input. Table 3 gives the running time of the comparison protocol with unencrypted
input for various input size.

18

203
Approved for Public Release; Distribution Unlimited.

Comparison with encrypted input. Table 4 presents the performance of the comparison with encrypted inputs
protocols.

10.3.2 argmax

Figure 5 presents the running times and the communication overhead of the argmax of encrypted data protocol (cf.
Section 4.2). The input integers were 64 bit integers.

0

1000

2000

3000

4000

5000

6000

7000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 50

Ti
m

e
(m

s)

Elements

Party A
Party B

Communication
Tree

Figure 5: Argmax of encrypted data protocol evaluation. The bars represent the execution of the protocol when the comparisons are
executed one after each other, linearly. The line represents the execution when comparisons are executed in parallel, tree-wise.

10.3.3 Consequences of the latency on performances

It is worth noticing that for most blocks, most of the running time is spend communicating: the network’s latency has a
huge influence on the performances of the protocols (running time almost linear in the latency for some protocols). To
improve the performances of a classifier implemented with our blocks, we might want to run several instances of some
building blocks in parallel. This is actually what we did with the tree-based implementation of the argmax protocol,
greatly improving the performances of the protocol (cf. Figure 5).

10.4 Classifier performance
Here we evaluate each of the classifiers described in Sections 5–7. The models are trained non-privately using
scikit-learn6. We used the following datasets from the UCI machine learning repository [BL13]:
1. the Wisconsin Diagnostic Breast Cancer data set,
2. the Wisconsin Breast Cancer (Original) data set, a simplified version of the previous dataset,
3. Credit Approval data set,
4. Audiology (Standardized) data set,
5. Nursery data set, and

6http://scikit-learn.org

19

204
Approved for Public Release; Distribution Unlimited.

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://archive.ics.uci.edu/ml/datasets/Nursery
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org

6. ECG (electrocardiogram) classification data from Barni et al. [BFK+09]
These data sets are scenarios when we want to ensure privacy of the server’s model and client’s input.
Based on the suitability of each classifier, we used data sets 2 and 3 to test the hyperplane decision classifier, sets 1,

4 and 5 for the Naïve Bayes classifier, and sets 5 and 6 for the decision tree classifier.
Table 6 shows the performance results. Our classifiers run in at most a few seconds, which we believe to be practical

for sensitive applications. Note that even if the datasets become very large, the size of the model stays the same – the
dataset size only affects the training phase which happens on unencrypted data before one uses our classifiers. Hence,
the cost of our classification will be the same even for very large data sets.

For the decision tree classifier, we compared our construction to Barni et al. [BFK+09] on the ECG dataset (by
turning their branching program into a decision tree). Their performance is 2609 ms7 for the client and 6260 ms for the
server with communication cost of 112.2KB. Even though their evaluation does not consider the communication delays,
we are still more than three times as fast for the server and faster for the client.

10.5 Comparison to generic two-party tools
A set of generic secure two- or multi-party computation tools have been developed, such as TASTY [HKS+10] and
Fairplay [MNPS04, BDNP08]. These support general functions, which include our classifiers.

However, they are prohibitively slow for our specific setting. Our efficiency comes from specializing to classification
functionality. To demonstrate their performance, we attempted to evaluate the Naïve Bayes classifier with these. We
used FairplayMP to generate the circuit for this classifier and then TASTY to run the private computation on the circuit
thus obtained. We tried to run the smallest Naïve Bayes instance, the Nursery dataset from our evaluation, which has
only 3 possible values for each feature, but we ran out of memory during the circuit generation phase on a powerful
machine with 256GB of RAM.

Hence, we had to reduce the classification problem to only 3 classes (versus 5). Then, the circuit generation took
more than 2 hours with FairplayMP, and the time to run the classification with TASTY was 413196 msec (with no
network delay), which is ≈ 500 times slower than our performance (on the non-reduced classification problem with 5
classes). Thus, our specialized protocols improve performance by orders of magnitude.

11 Conclusion
In this paper, we constructed three major privacy-preserving classifiers as well as provided a library of building blocks
that enables constructing other classifiers. We demonstrated the efficiency of our classifiers and library on real datasets.

Acknowledgment
We thank Thijs Veugen, Thomas Schneider, and the anonymous reviewers for their helpful comments.

7In Barni et al. [BFK+09], the evaluation was run over two 3GHz computers directly connected via Gigabit Ethernet. We scaled the given results
by 3

2.3
to get a better comparison basis.

20

205
Approved for Public Release; Distribution Unlimited.

References
[AB06] Shai Avidan and Moshe Butman. Blind vision. In Computer Vision–ECCV 2006, pages 1–13. 2006.

[AB07] Shai Avidan and Moshe Butman. Efficient methods for privacy preserving face detection. In Advances in
Neural Information Processing Systems, page 57, 2007.

[AD01] Mikhail J Atallah and Wenliang Du. Secure multi-party computational geometry. In Algorithms and Data
Structures, pages 165–179. 2001.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework.
In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 128–138, 2005.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: A system for secure multi-party
computation. In CCS, pages 17–21, 2008.

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Secure evaluation of private linear branching programs with medical applications. In
Computer Security (ESORICS), pages 424–439. 2009.

[BFL+09] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Annika Paus, A-R Sadeghi, Thomas Schneider, and
Vladimir Kolesnikov. Efficient privacy-preserving classification of ecg signals. In Information Forensics
and Security, 2009. WIFS 2009. First IEEE International Workshop on, pages 91–95, 2009.

[BFL+11] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. Privacy-
preserving ECG classification with branching programs and neural networks. IEEE Transactions on
Information Forensics and Security (TIFS), 6(2):452–468, June 2011.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, pages 309–325, 2012.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In IEEE SP, pages 478–492, 2013.

[BL13] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[BLN13] Joppe W. Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis on encrypted medical data.
In Microsoft Tech Report 200652, 2013.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning. In Journal of
Electronic Imaging, volume 1, 2006.

[Can98] Ran Canetti. Security and composition of multi-party cryptographic protocols. JOURNAL OF
CRYPTOLOGY, 13:2000, 1998.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk
minimization. J. Mach. Learn. Res., 12, 2011.

[DGK07] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure comparison for on-line auctions.
In Information Security and Privacy, pages 416–430, 2007.

[DGK09] Ivan Damgard, Martin Geisler, and Mikkel Kroigard. A correction to efficient and secure comparison for
on-line auctions. 1(4):323–324, 2009.

[DHC04] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In Proceedings of the 4th SIAM International Conference on Data
Mining, volume 233, 2004.

21

206
Approved for Public Release; Distribution Unlimited.

[EFG+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk, and Tomas Toft.
Privacy-preserving face recognition. In Privacy Enhancing Technologies, pages 235–253, 2009.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, (1):119–139, 1997.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GLLM04] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private scalar product computation
for privacy-preserving data mining. In Information Security and Cryptology (ICISC), pages 104–120.
2004.

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. ML confidential: Machine learning on encrypted
data. In Information Security and Cryptology (ICISC), pages 1–21. 2012.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping secret
all partial information. In STOC, pages 365–377. ACM, 1982.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. Foundations of Cryptography - Basic Applications. Cambridge University Press, 2004.

[Hal13] Shai Halevi. Helib - an implementation of homomorphic encryption. https://github.com/shaih/HElib,
2013.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Tasty:
Tool for automating secure two-party computations. In CCS, pages 451–462, 2010.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer – efficiently.
In Advances in Cryptology – CRYPTO 2008, volume 5157, pages 572–591. 2008.

[Kil05] Eike Kiltz. Unconditionally secure constant round multi-party computation for equality, comparison, bits
and exponentiation. IACR Cryptology ePrint Archive, page 66, 2005.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. How to combine homomorphic
encryption and garbled circuits - improved circuits and computing the minimum distance efficiently. In 1st
International Workshop on Signal Processing in the EncryptEd Domain (SPEED’09), 2009.

[KSS13] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. A systematic approach to practically
efficient general two-party secure function evaluation protocols and their modular design. In Journal of
Computer Security, 2013.

[LLM06] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Cryptographically private support vector machines. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 618–624. ACM, 2006.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances in Cryptology (CRYPTO),
pages 36–54, 2000.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Advances in Cryptology (EUROCRYPT), volume 4515, pages 52–78. 2007.

[LP08] Yehuda Lindell and Benny Pinkas. Secure multi-party computation for privacy-preserving data mining. In
Crypto ePrint Archive, 2008.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. J.
Cryptol., 22:161–188, April 2009.

22

207
Approved for Public Release; Distribution Unlimited.

[LT05] Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’ problem based on
homomorphic encryption. In Applied Cryptography and Network Security, pages 456–466, 2005.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay-secure two-party computation
system. In USENIX Security Symposium, pages 287–302, 2004.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages 448–457, 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS, 2007.

[SG11] Anima Singh and John Guttag. Cardiovascular risk stratification using non-symmetric entropy-based
classification trees. In NIPS workshop on personalized medicine, 2011.

[SG13] Anima Singh and John Guttag. Leveraging hierarchical structure in diagnostic codes for predicting incident
heart failure. In ICML workshop on role of machine learning in transforming healthcare, 2013.

[SSW09] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient privacy-preserving face
recognition. In Information, Security and Cryptology (ICISC), pages 229–244. 2009.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011.

[TRMP12] Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, and Franz Pernkopf. Bayesian network
classifiers with reduced precision parameters. In Machine Learning and Knowledge Discovery in
Databases, pages 74–89. 2012.

[Veu11] Thijs Veugen. Comparing encrypted data. http://msp.ewi.tudelft.nl/sites/default/
files/Comparingencrypteddata.pdf, 2011.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In IEEE
Computer Vision and Pattern Recognition (CVPR), volume 1, pages I–511, 2001.

[VKC08] Jaideep Vaidya, Murat Kantarcıoğlu, and Chris Clifton. Privacy-preserving naive bayes classification. The
International Journal on Very Large Data Bases, 17(4):879–898, 2008.

[WGH12] Jenna Wiens, John Guttag, and Eric Horvitz. Learning evolving patient risk processes for c. diff
colonization. In ICML, 2012.

[WY04] Rebecca Wright and Zhiqiang Yang. Privacy-preserving bayesian network structure computation on
distributed heterogeneous data. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 713–718, 2004.

[Yao82] Andrew C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

[ZW05] Zhiqiang Yang1 Sheng Zhong and Rebecca N Wright. Privacy-preserving classification of customer data
without loss of accuracy. In SIAM International Conference on Data Mining (SDM), 2005.

23

208
Approved for Public Release; Distribution Unlimited.

http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparingencrypteddata.pdf

A Comparison protocols

A.1 Comparison with unencrypted inputs
Our protocol for comparing with encrypted inputs is Protocol 7 and here is some intuition. We follow the main idea
from Veugen [Veu11] (found in Section 2.1): compute 2l + b− a (over encrypted data) and check the l + 1-th bit (the
bit corresponding to the power 2l). If it is 1, it means that b ≥ a, else b < a.

We also assume that the encryption scheme is additively homomorphic. In [Veu11] (Section 2.1), Veugen presents a
solution for a similar problem except that A only gets the encrypted bit, not in the clear. So we modify his protocol in
Protocol 7.

In the description of protocol 7, N is the modulus associated with Paillier’s cryptosystem.

Protocol 7 Comparing encrypted data
Input A:JaK and JbK, the bit length l of a and b, the secret key SKQR, public key PKP
Input B:Secret key SKP , public key PKQR, the bit length l
Output A:(a ≤ b)

1: A: JxK← JbK · J2lK · JaK−1 mod N2

2: A chooses a random number r ← (0, 2λ+l) ∩ Z
3: A: JzK← JxK · JrK mod N2 . Blind x
4: A sends JzK to B
5: B decrypts JzK
6: A: c← r mod 2l

7: B: d← z mod 2l

8: With A, B privately computes the encrypted bit [t′] such that t = (d < c) using DGK
9: A encrypts rl and sends [rl] to B

10: B encrypts zl
11: B: [t]← [t′] · [zl] · [rl]
12: B: sends [t] to A
13: A decrypts and outputs t

We will show the correctness of the protocol and then give a proof of security in the honest-but-curious model using
modular composition. For the correctness, we just modify the proof of [Veu11].

Proposition A.1. Protocol 7 is correct and secure in the honest-but-curious model.

See proof in Appendix C.

A.2 Reversed encrypted comparison
We constructed Protocol 8 which is the same as Protocol 7, except that the roles of A and B are exchanged in Steps 8– 13.

24

209
Approved for Public Release; Distribution Unlimited.

Proposition A.2. Protocol 8 is secure in the honest-but-curious model.

The proof is in Appendix C.

Protocol 8 Reversed comparing encrypted data
Input A:JaK and JbK, public keys PKQR and PKP
Input B:Secret keys SKP and SKQR
Output B:(a ≤ b)

Run Steps 1– 7 of Protocol 7.
8: With B, A privately computes the encrypted bit [t′] such that t′ = (d < c) using DGK
9: B encrypts zl and sends [zl] to A

10: A encrypts rl
11: A: [t]← [t′] · [zl] · [rl]
12: A: sends [t] to B
13: B decrypts and outputs t

B Preliminaries for proofs

B.1 Secure two-party computation framework
All our protocols are two-party protocols, which we label as party A and party B. In order to show that they do private
computations, we work in the honest-but-curious (semi-honest) model as described in [Gol04].

Let f = (fA, fB) be a (probabilistic) polynomial function and Π a protocol computing f . A and B want to
compute f(a, b) where a is A’s input and b is B’s input, using Π and with the security parameter λ. The view of
party A during the execution of Π is the tuple VA(λ, a, b) = (1λ; a; rA;mA

1 , . . . ,m
A
t) where r is A’s random tape

and mA
1 , . . . ,m

A
t are the messages received by A. We define the view of B similarly. We also define the outputs of

parties A and B for the execution of Π on input (a.b) as OutputΠA(λ, a, b) and OutputΠB(λ, a, b), and the global output
as OutputΠ(λ, a, b) = (OutputΠA(λ, a, b),OutputΠB(λ, a, b)).

To ensure security, we have to show that whatever A can compute from its interactions with B can be computed
from its input and output, which leads us to the following security definition.

Definition B.1. The two-party protocol Π securely computes the function f if there exists two probabilistic polynomial
time algorithms SA and SB such that for every possible input a, b of f ,

{SA(1λ,a, fA(a, b)), f(a, b)} ≡c
{VA(λ, a, b),OutputΠ(λ, a, b)}

and

{SB(1λ,a, fB(a, b)), f(a, b)} ≡c
{VB(λ, a, b),OutputΠ(λ, a, b)}

where ≡c means computational indistinguishability against probabilistic polynomial time adversaries with negligible
advantage in the security parameter λ.

To simplify the notation (and the proofs), hereinafter we omit the security parameter. As we mostly consider
deterministic functions f , we can simplify the distributions we want to show being indistinguishable (see [Gol04]):
when f is deterministic, to prove the security of Π that computes f , we only have to show that

SA(a, fA(a, b)) ≡c VA(a, b)

SB(b, fB(a, b)) ≡c VB(a, b)

Unless written explicitly, we will always prove security using this simplified definition.

25

210
Approved for Public Release; Distribution Unlimited.

B.2 Modular Sequential Composition
In order to ease the proofs of security, we use sequential modular composition, as defined in [Can98]. The idea is
that the parties run a protocol Π and use calls to an ideal functionality f in Π (e.g. A and B compute f privately by
sending their inputs to a trusted third party and receiving the result). If we can show that Π respects privacy in the
honest-but-curious model and if we have a protocol ρ that privately computes f in the same model, then we can replace
the ideal calls for f by the execution of ρ in Π; the new protocol, denoted Πρ is then secure in the honest-but-curious
model.

We call hybrid model with ideal access to f1, . . . , fm or (f1, . . . , fm)-hybrid model the semi-honest model
augmented with an incorruptible trusted party T for evaluating functionalities f1, . . . , fm. The parties run a protocol Π
that contain calls to T for the evaluation of one of f1, . . . , fm. For each call, each party sends its input and wait until
the trusted party sends the output back. We emphasize on the fact that the parties must not communicate until receiving
T ’s output (we consider only sequential composition). Ideal calls to the trusted party can be done several times, even
for the same function, but each call is independent: T does not maintain state between two calls.

Let Π be a two-party protocol in the (f1, . . . , fm)-hybrid model. Let ρ1, . . . , ρm be real protocols (i.e. protocols in
the semi-honest model) computing f1, . . . , fm and define Πρ1,...,ρm as follows. All ideals calls of Π to the trusted party
for fi is replaced by a real execution of ρi: if party Pj has to compute fi with input xj , Pj halts, starts an execution of
ρi with the other parties, gets the result βj when ρi concludes, and continues as if βj was received from T .

Theorem B.2. [Can98] (Theorem 5) restated as in [LP08] (Theorem 3) – Let f1, . . . , fm be two-party probabilistic
polynomial time functionalities and ρ1, . . . , ρm protocols that compute respectively f1, . . . , fm in the presence of
semi-honest adversaries.

Let g be a two-party probabilistic polynomial time functionality and Π a protocol that securely computes g in the
(f1, . . . , fm)-hybrid model in the presence of semi-honest adversaries.

Then Πρ1,...,ρm securely computes g in the presence of semi-honest adversaries.

B.3 Cryptographic assumptions
Assumption 1. (Quadratic Residuosity Assumption – from [GM82]) Let N = p× q be the product of two distinct odd
primes p and q. Let QRN be the set of quadratic residues modulo N and QNRN be the set of quadratic non residues
(i.e. x ∈ QNRN if x is not a square modulo N and its Jacobi symbol is 1).
{(N,QRN) : |N | = λ} and {(N,QNRN) : |N | = λ} are computationally indistinguishable with respect to

probabilistic polynomial time algorithms.

Assumption 2. (Decisional Composite Residuosity Assumption – from [Pai99]) Let N = p × q, |N | = λ be the
product of two distinct odd primes p and q. A number z is said to be a N -th residue modulo N2 if there exists a number
y ∈ ZN2

z = yN mod N2

N -th residues are computationally indistinguishable from non N -th residues with respect to probabilistic polynomial
time algorithms.

For further explanations about the last assumption, used for the FHE scheme, we refer the reader to [BGV12].

Assumption 3. (RLWE) For security parameter λ, let f(x) = xd + 1 where d is a power of 2. Let q ≥ 2 be an integer.
Let R = Z[x]/(f(x)) and let Rq = R/qR. Let χ be a distribution over R. The RLWEd,q,χ problem is to distinguish
between two distributions: In the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution,
one first draws s← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting
bi = ai.s+ ei.

The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

26

211
Approved for Public Release; Distribution Unlimited.

C Proofs

C.1 Comparison protocols

Proof of Proposition A.1 . Correctness As a and b are l bits integers, x = 2l + b−a is a l+ 1 bits integer and its most
significant bit (the l + 1-th bit) is 1 iff a ≤ b. What protocol 7 actually does is computing this bit. The computations are
done over encrypted data, using Paillier’s encryption scheme. In the rest of the proof, we will do as if the data were not
encrypted under Paillier. The correctness will hold as long as we do not experience carry-overs modulo N . In particular,
this implies that l+ 1 + λ < log2N . For operations over bits using QR, we don’t have this problem as we are operating
on F2.

Again, since x is a l+ 1 bit number, its most significant bit is x÷ 2l where ÷ denotes the integer division. We have
x = 2l(x÷ 2l) + (x mod 2l) where 0 ≤ (x mod 2l) < 2l. As z = x+ r,

z = 2l(z ÷ 2l) + (z mod 2l)

= 2l((x÷ 2l) + (r ÷ 2l)) + ((x mod 2l) + (r mod 2l))

Hence, z ÷ 2l = x÷ 2l + r ÷ 2l if (x mod 2l) + (r mod 2l) < 2l and z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + 1 otherwise.
More generally, z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + t′ where t′ = 0⇔ (x mod 2l) + (r mod 2l) < 2l.

We can also notice that, if t′ = 0, z mod 2l = (x mod 2l) + (r mod 2l) and z mod 2l = (x mod 2l) + (r mod
2l)− 2l otherwise. As a consequence,

t′ = 0⇔ z mod 2l = (x mod 2l) + (r mod 2l)

⇔ z mod 2l ≥ (r mod 2l)

In the end, as x÷ 2l is either 0 or 1, we can compute everything modulo 2

x÷ 2l = (z ÷ 2l)− (r ÷ 2l)− t′ mod 2

= zl ⊕ rl ⊕ t′

Security We suppose that the encrypted bit [t′] is ideally computed (using calls to a trusted party in the hybrid model).
We show that the protocol is secure in this model and conclude using the sequential modular composition theorem.

A’s view is VA = (JaK, JbK, l, SKQR,PKP ; r, coins; [t]) where SKQR is the secret key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem, and coins are the random coins used for the encryptions of 2l, r and
rl. Given (JaK, JbK, l, SKQR,PKP , a ≤ b), we build the simulator SA:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick r̃ ← (0, 2λ+l) ∩ Z.

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l, SKQR,PKP ; r̃, c̃oins; [t̃])

The distributions VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP) and SA(JaK, JbK,SKQR,PKP , a ≤ b) are exactly the same
because the randomness is taken from the same distribution in both cases, and the QR cyphertext encrypts the same bit.

B’s view is VB = (PKQR,SKP , l, JzK; coins; [t′], [rl]) where coins are the random coins used for the encryption of
zl. The simulator SB(PKQR,SKP , l) runs as follows:
1. Pick z̃ ← (0, 2λ+l) ∩ Z.
2. Encrypt z̃ under Paillier: Jz̃K.
3. Generate [t̃′] and [r̃l], two encryptions of random bits under QR

4. Let c̃oins be random coins for one QR encryption.

5. Output (PKQR,SKP , l, Jz̃K; c̃oins; [t̃′], [r̃l])

27

212
Approved for Public Release; Distribution Unlimited.

The random tapes coins and c̃oins are generated in the exact same manner and independently from any other
parameter, so

(PKQR,SKP , Jz̃K; c̃oins; [t̃′][r̃l])

= (PKQR,SKP , Jz̃K; coins; [t̃′][r̃l])

Recall that z = x + r mod N where x is an l bits integer and r is an l + λ bits integer. But as we chose
l + 1 + λ < log2N , we have z = x+ r. The distribution of z̃ is statistically indistinguishable from the distribution of
z (the distributions are distinguishable with an advantage of 2−λ at most).

We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence, as the distribution of z̃ and z is
independent from t̃′ and r̃l,

(PKQR,SKP , Jz̃K; coins; [t̃′], [r̃l])

≡s (PKQR,SKP , JzK; coins; [t̃′], [r̃l])

By semantic security of QR,

(PKQR,SKP , l, JzK; coins; [t̃′], [r̃l])

≡c (PKQR,SKP , l, JzK; coins; [t′], [rl])

and

SB(PKQR,SKP , l)

≡c VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP)

We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem B.2 to prove security in the semi-honest
model.

Proof of Proposition A.2. The proof of security is similar to the one of Proposition A.1. Again we first suppose that [t′]
is ideally computed (hybrid model).

A’s view is VA = (JaK, JbK, l,PKQR,PKP ; r, coins; [t′], [zl]) where PKQR is the public key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem and coins is the random tape used for the Paillier encryptions of r and
2l, and the QR encryption of rl.

Given (JaK, JbK,PKQR,PKP), we build the simulator SA:
1. Pick r̃ ← (0, 2λ+l) ∩ Z.
2. Generate [t̃′] and [z̃l], two encryptions of random bits under QR

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l,PKQR,PKP ; r̃, c̃oins; [z̃l])

For both cases (A’s view and the simulator SA), r and r̃ are taken from the same uniform distribution over
(0, 2λ+l) ∩ Z, and coins and c̃oins are random tapes of the same length, so

SA(JaK, JbK,PKQR,PKP)

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

By semantic security of the QR cryptosystem, we conclude with the computational indistinguishability of SA and VA
distributions:

SA(JaK, JbK,PKQR,PKP)

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

≡c (JaK, JbK, l,PKQR,PKP ; r, coins; [zl])

= VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP)

28

213
Approved for Public Release; Distribution Unlimited.

B’s view is VB = (SKQR,SKP , JzK, [t]; coins) where SKQR is the secret key for the QR cryptosystem, SKP is
the secret key for Paillier’s cryptosystem, and coins are the random coins necessary for the QR encryption of zl. The
simulator SB(SKQR,SKP , a ≤ b) runs as follows:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick z̃ ← (0, 2λ+l) ∩ Z.
3. Encrypt z̃ under Paillier: Jz̃K.

4. Let c̃oins be random coins for one QR encryption.

5. Output (SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

Once again, the distributions of coins and c̃oins are identical:

(SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

= (SKQR,SKP , l, Jz̃K, [t̃]; coins)

Recall that z = x + r where x is an l bits integer and r is an l + λ bits integer. The distribution of z̃ is statistically
indistinguishable from the distribution of z. We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence,
as the distribution of z̃ and z is independent from t̃′,

(SKQR,SKP , l, Jz̃K, [t̃]; coins)

≡s (SKQR,SKP , l, JzK, [t̃]; coins)

Moreover, by construction, (SKQR, [t̃]) = (SKQR, [a < b]) and

(SKQR,SKP , l, JzK, [t̃]; coins)
= (SKQR,SKP , l, JzK, [a < v]; coins).

Finally, we have

SB(SKQR,SKP , a ≤ b)
≡s VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP).

Again, we conclude the proof of security using modular sequential composition. We replace the ideal calls for
computing the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem B.2 to prove security in the
semi-honest model.

C.1.1 Argmax

Proof of Proposition 4.1. Correctness To prove correctness, we have to show that the following invariant holds: at
the end of the loop for iteration i, m is the maximum of {aπ(j)}1≤j≤i and aπ(i0) = m.

If this holds, at the end of the loop iterations aπ(i0) is the maximum of {aπ(j)}1≤j≤k = {aj}1≤j≤k, hence
i0 = argmaxj aπ(j) and π−1(i0) = argmaxj aj .

At initialization (line 4), the invariant trivially holds as the family {aπ(j)}1≤j≤i contains only one element.
Suppose the property is true for iteration i− 1. Let us distinguish two cases:

• If bi is true (i.e. m ≤ aπ(i)), max{aπ(j)}1≤j≤i−1 ≤ aπ(i), as the invariant holds for the previous iteration, and then
max{aπ(j)}1≤j≤i = aπ(i).
Then i0 is set to i, vi = a′i and bi = 1. As a consequence, m is set by A to

vi + (bi − 1).ri − bi.si = a′i − si = aπ(i)

We have clearly that aπ(i0) = aπ(i) = m and m = max{aπ(j)}1≤j≤i, the invariant holds at the end of the i-th
iteration in this case.

29

214
Approved for Public Release; Distribution Unlimited.

• If bi is false (m > aπ(i)), max{aπ(j)}1≤j≤i−1 > aπ(i) and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1 = m.
Then i0 is not changed, vi is set to m′i and bi = 0. As a consequence,

vi + (bi − 1).ri − bi.si = m′i − ri = m

m is unchanged. As both m and i0 stayed the same and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1, the invariant
holds at the end of the i-th iteration in this case.

Security We prove security in the hybrid model where line 5 of the protocol is ideally executed: we ask a trusted party
T to compute the function f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP) in the f -hybrid model where

f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP)

=
(fA(x, y, l,SKQR,PKQR,SKP ,PKP);

fB(JxK, JyK, l, SKQR,PKQR,SKP ,PKP))

and f computes the function of Protocol 8, i.e. fA returns nothing and fB returns the bit x ≤ y.
We will conclude using Theorem B.2.

A’s view is

VA =({JaiK}ki=1, l,PKQR,PKP ;

π, {ri}ki=2, {si}ki=2, coins;

{JviK}ki=2, {JbiK}ki=2, π(argmax
i

ai))

where coins is the random tape for encryptions. To simulate A’s real view, the simulator SA does the following on input
(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai):
1. Picks a random permutation π̃ of {1, . . . , k}
2. Picks k − 1 random integers r̃2, . . . , r̃k in (0, 2)l+λ ∩ Z
3. Picks k − 1 random integers s̃2, . . . , s̃k in (0, 2)l+λ ∩ Z
4. Generates k − 1 random Paillier encryptions Jṽ2K, . . . , JṽkK.
5. Generates k − 1 random bits b̃i
6. Generate a random tape for 2(k − 1) Paillier encryptions c̃oins
7. Outputs

({JaiK}ki=1, l,PKQR,PKP ;

π̃, {r̃i}ki=2, {s̃i}ki=2, c̃oins;

{JṽiK}ki=2, {Jb̃iK}ki=2, π̃(argmax
i

ai))

We define the following hybrids:
• H0 = VA(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP)

• H1 = ({JaiK}ki=1, l,PKQR,PKP ;
π, {ri}ki=2, {si}ki=2, coins;
{JṽiK}ki=2, {Jb̃iK}ki=2, π(argmaxi ai))

• H2 = ({JaiK}ki=1, l,PKQR,PKP ;

π, {r̃i}ki=2, {s̃i}ki=2, c̃oins;
{JṽiK}ki=2, {Jb̃iK}ki=2, π(argmaxi ai))

• H3 = SA(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai)

30

215
Approved for Public Release; Distribution Unlimited.

By semantic security of Paillier’s cryptosystem,

({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JviK}ki=2, {JbiK}ki=2, π(argmax
i

ai))

≡c
({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JṽiK}ki=2, {Jb̃iK}ki=2π(argmax
i

ai))

and H0 ≡c H1 as π(argmaxi ai) = i0
Given that the r̃i, s̃i and c̃oins are generated according to the same distribution as ri, si (uniform over (0, 2)l+λ ∩Z)

and coins (random tape for 2(k − 1) Paillier encryptions), and that they are completely independent from the ṽi or π,
the hybrids H1 and H2 are equal.

Similarly, the distribution of (π, π(argmaxi ai)) and
(π̃, π̃(argmaxi ai)) are exactly the same. As π and π̃ are independent from the other parameters, we also haveH2 = H3.

Hence, we showed that

VA({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP)

≡c SA({JaiK}ki=1, l,PKQR,PKP , argmax
i

ai).

B’s view is

VB = (SKP ,SKQR, l; coins; {bi}ki=2, {Jm′iK}ki=2, {Ja′iK}ki=2)

where coins are the random coins for k − 1 Paillier cyphertext refresh. The simulator SB(SKP ,SKQR, l) runs as
follows:
1. Generates a random permutation π̃ of {1, . . . , k}
2. Set JãiK = JiK
3. Run the protocol with the JãiK as input data, π̃ as the permutation, and same parameters otherwise. Let

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2) be B’s view of this run.
4. Outputs

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2)

Let p : {ai}1≤i≤k 7→ {1, . . . , k} be the function that associates ai to its rank among the ai (in ascendent order).
Let us fix the permutation π for a while and define the following hybrids:
0. H0 = VB({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP)

1. H1 = VB({Jp(a1)K}ki=1, l, SKQR,PKQR,SKP ,PKP)

We will show that these hybrids are statistically equal for every permutation π.
As p(.) is a map that does not change the order of the ai, we have that for all i, j, ai ≤ aj ⇔ p(ai) ≤ p(aj). As

a consequence, for a given permutation π, the bits bi do not change if we replace the ai by p(ai). Similarly, the way
the a′i and m′i are generated for H0 and H1 is the same: blinding by adding random noise from (0, 2λ+l ∩ Z). Thus,
H0 ≡s H1.

Now, we want to show that H1 ≡s SB(SKP ,SKQR, l) - we do not fix π anymore. Let π0 be the permutation such
that p(ai) = π0(i). We can then rewrite H1 as

H1 = VB(Jπ0(1)K, . . . , Jπ0(k)K, l, SKQR,PKQR,SKP ,PKP)

As π̃ and π ◦ π0 are statistically indistinguishable, we have H1 ≡s SB(SKP ,SKQR, l): recall that SB’s output is the
view of B when the protocol is run with the set {ai = i} as input set and π̃ as the permutation. Hence

VB(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP)

≡s SB(SKP ,SKQR, l)

31

216
Approved for Public Release; Distribution Unlimited.

We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bits bi by the provable secure Protocol 8 and invoke Theorem B.2 to prove security in the semi-honest
model.

C.2 Changing the encryption scheme

Proof of Proposition 4.2. In this protocol the computed function is probabilistic, and we have to show security according
to the full definition (cf. section B.1). The function is f :

f(JcK1,PK1,PK2,SK1,SK2) = (JcK2, ∅)

For the sake of simplicity, we do not take into account the randomness used for the encryptions of r for A and c′ for B.
As before, the distribution of these coins for one party is completely independent of the other elements to be taken in
account in the simulations, so we just do not mention them in security proof.

A’s view is VA = (PK1,PK2, JcK1; r; Jc′K2). A’s output is JcK2. The simulator SA(PK1,PK2, JcK1) runs as follows:
1. Picks uniformly at random r̃ ←M and c̃′ ←M .
2. Generates the encryption Jc̃′K2 of c̃′ under E2.
3. Outputs (PK1,PK2, JcK1; r̃; Jc̃′K2).

r and r̃ are taken from the same distribution, independently from any other parameter, so

{(PK1,PK2, JcK1; r̃; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
= {(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}

(c′ depends on r but does not appear in the previous distributions). By semantic security of scheme E2 we have that

{(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
≡c {(PK1,PK2, JcK1; r; Jc′K2); JcK2}

and so

{SA(JcK1,PK1,PK2), f(JcK1,PK1,PK2,SK1,SK2)}
≡c {VA(JcK1,PK1,PK2,SK1,SK2),Output(JcK1,PK1,PK2,SK1,SK2)}

B’s view is VB = (SK1,SK2; Jc+ rK1). We build a simulator SB(SK1,SK2):
1. Picks a random c̃←M .
2. Encrypt c̃ under E1.
3. Outputs (SK1,SK2, Jc̃K1).

Again, the distribution of c̃ and c + r are identical, so the real distribution {(SK1,SK2; Jc + rK1); JcK2} and the
ideal distribution {(SK1,SK2; Jr̃K1); f(JcK1,PK1,PK2,SK1,SK2)} are statistically indistinguishable.

C.3 Computing dot products
Proof of Proposition 4.3. As B does not receive any message, its view only consists in its input and its random tape
used for the encryptions. Hence the simulator SB simply generate random coins and

SB(y,SKP) = (y,SKP ; coins) = VB(x, y, SKP ,PKP).

where rand are the random coins.

A’s view is VA = (x,PKP ; rA; Jy1K, . . . , JynK). On input (x,PKP , JvK), the simulator SA does the following:

32

217
Approved for Public Release; Distribution Unlimited.

1. Generates n encryptions of 0 using Paillier: c1, . . . , cn.

2. Generates the random coins necessary for a Paillier re-randomization and put them in c̃oins.

3. Outputs (x,PKP ; c̃oins; c1, . . . , cn).

coins and c̃oins come from the same distribution, independently from other parameters. Thus,

{(x,PKP ; c̃oins; c1, . . . , cn); J〈x, y〉K}
= {(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}

and by semantic security of Paillier,

{(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}
≡c {(x,PKP ; coins; Jy1K, . . . , JynK); JvK}

i.e., when f is f(x, y,SKP ,PKP) = (J〈x, y〉K, ∅)

{SA(x,PKP , JvK); f(x, y, SKP ,PKP)}
≡c {VA(x, y,SKP ,PKP);Output(x, y, SKP ,PKP)}

C.4 Classifiers

Hyperplane decision

Proof of Proposition 5.1. The client’s view is

VC = (PKP ,PKQR, x; {JviK}ki=1, i0).

The simulator SC , on input (PKP ,SKQR, x, k
∗) where k∗ = argmax

i∈[k]

〈wi, x〉 does the following:

1. Generate k random Paillier encryptions JṽiK
2. Output (PKP ,SKQR, x; {JṽK}ki=1, k

∗)

As the index i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure, the
distributions SC = (PKP ,SKQR, x; {JṽK}ki=1, k

∗) and VC = (PKP ,SKQR, x; {JviK}ki=1, i0) are computationally
indistinguishable.

As the server views nothing but its inputs (the server does not receive any message in the hybrid model), we use for
the trivial simulator that just outputs its inputs for the proof of security.

As Protocols 1 and 3 are secure in the honest-but-curious model, we obtain the security of the hyperplane decision
protocol using modular sequential composition (Theorem B.2).

Bayes classifier

Proof of Proposition 6.1. The client’s view is

VC = (PKP ,SKQR, x; JP K, {JTi,jK}, i0).

The simulator SC , on input (PKP ,SKQR, x, imax) where imax = argmaxj P(C = cj |X = x),

• generates tables of random Paillier encryptions JP̃ K and {JTi,jK};
• outputs (PKP ,SKQR, x; JP̃ K, {JT̃i,jK}, imax).

33

218
Approved for Public Release; Distribution Unlimited.

As the integer i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure,
the distributions SC = (PKP ,SKQR, x; JP̃ K, {JT̃i,jK}, imax) and VC = (PKP ,SKQR, x; JP K, {JTi,jK}, i0) are
computationally indistinguishable.

Again, as the server views nothing but its inputs (the server does not receive any message in the hybrid model), we
use the trivial simulator that outputs its inputs and the random coins for the encryption for the proof of security.

As Protocol 1 is secure in the honest-but-curious model, we obtain the security of the hyperplane decision protocol
using modular sequential composition (Theorem B.2).

Decision tree

Proof of Proposition 7.1. The proof of security for the server is very easily obtained using modular sequential
composition of the comparison protocol and Protocol 2: in the hybrid model, the client receives nothing but the
encrypted result.

For the client also the proof is trivial, using modular sequential composition and the semantical security of QR and
of the FHE scheme: the encryptions of bits bi are computational indistinguishable from random bits whether they are
encrypted under QR or the FHE scheme.

34

219
Approved for Public Release; Distribution Unlimited.

Functional Encryption with Bounded Collusions via

Multi-Party Computation∗

Sergey Gorbunov† Vinod Vaikuntanathan‡ Hoeteck Wee§

September 5, 2012

Abstract

We construct a functional encryption scheme secure against an a-priori bounded polynomial
number of collusions for the class of all polynomial-size circuits. Our constructions require only
semantically secure public-key encryption schemes and pseudorandom generators computable
by small-depth circuits (known to be implied by most concrete intractability assumptions). For
certain special cases such as predicate encryption schemes with public index, the construction
requires only semantically secure encryption schemes, which is clearly the minimal necessary
assumption.

Our constructions rely heavily on techniques from secure multi-party computation and
randomized encodings. All our constructions are secure under a strong, adaptive simulation-
based definition of functional encryption.

Keywords: Functional Encryption, Multi-Party Computation, Randomized Encodings.

∗A preliminary version of this work appeared in the Proceedings of the 32nd Annual International Conference on
Cryptology (CRYPTO 2012).
†University of Toronto. Email: sgorbunov@cs.toronto.edu. Supported by NSERC Alexander Graham Bell

Graduate Scholarship.
‡University of Toronto. Email: vinodv@cs.toronto.edu. Supported by an NSERC Discovery Grant and by

DARPA under Agreement number FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or the U.S. Government.
§George Washington University. Email: hoeteck@alum.mit.edu. Supported by NSF CAREER Award CNS-

1237429.

220
Approved for Public Release; Distribution Unlimited.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Overview of Our Constructions . 3

1.2.1 Functional Encryption for NC1 Circuits . 3
1.2.2 A Bootstrapping Theorem and Functional Encryption for P 5

1.3 Definitions of Functional Encryption . 6
1.4 A Perspective: Bounded-Use Garbled Circuits . 6

2 Preliminaries 7
2.1 Functional Encryption . 7
2.2 Shamir’s Secret Sharing . 7
2.3 Public Key Encryption. 8
2.4 Decomposable Randomized Encoding . 8

3 Security of Functional Encryption against Bounded Collusions 9

4 Background Constructions 11
4.1 Adaptive, Singleton . 11
4.2 Adaptive, “Brute Force” . 12
4.3 One-Query General Functional Encryption from Randomized Encoding 14

5 A Construction for NC1 circuits 16
5.1 Our Construction . 16

5.1.1 Correctness . 17
5.2 Setting the Parameters . 18
5.3 Proof of Security . 18

6 A Bootstrapping Theorem for Functional Encryption 22
6.0.1 Correctness . 23

6.1 Proof of Security . 24

7 Yet Another Bootstrapping Theorem Using FHE 26
7.0.1 Correctness and Security . 27

A Relations between Definitions of Functional Encryption 30
A.1 A Simulation-based Definition . 30
A.2 An Indistinguishability-Based Definition . 31
A.3 Relations Between Definitions . 32

B Probabilistic Proofs 35
B.1 Small Pairwise Intersection . 35
B.2 Cover-Freeness . 36

221
Approved for Public Release; Distribution Unlimited.

1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to data: users who possess
the secret key can recover the entire message from a ciphertext, whereas those who do not know
the secret key learn nothing at all. While such “black-and-white” notions of encryption have
served us well for the past thirty years and are indeed being widely used for secure communications
and storage, it is time to move beyond. In particular, the advent of cloud computing and the
resulting demand for privacy-preserving technologies demands a much more fine-grained access
control mechanism for encrypted data.

Boneh, Sahai and Waters [BSW11] recently formalized the notion of functional encryption to-
wards this end, building on and generalizing a number of previous constructs including (anonymous)
identity-based encryption (IBE) [Sha84, BF01, Coc01, BW06], fuzzy IBE [SW05], attribute-based
encryption (ABE) [GPSW06, LOS+10], and predicate encryption [KSW08, LOS+10]. Informally,
a functional encryption scheme for a circuit family C associates secret keys SKC with every circuit
C, and ciphertexts CT with every input x. The owner of the secret key SKC and the ciphertext CT
should be able to obtain C(x), but learn nothing else about the input message x itself.1 Moreover,
security should hold against collusions amongst “key holders”, namely, a collusion of users that
hold secret keys SKC1 , . . . ,SKCq and an encryption of x should learn nothing else about x apart
from C1(x), . . . , Cq(x).

Functional encryption transparently captures as special cases a number of familiar notions of
encryption, such as identity-based encryption (IBE), anonymous IBE, fuzzy IBE, attribute-based
encryption and so forth. For example, an identity-based encryption scheme can be seen as a
functional encryption scheme for the following family of circuits parametrized by the identity:

Cid′(id, µ) =

{
(id, µ) if id = id′

(id,⊥) otherwise

In a similar vein, fuzzy IBE schemes correspond to a circuit that detects proximity between two
strings, and attribute based encryption schemes correspond to circuit that can be computed by
Boolean formulas. The central and challenging open question in the study of functional encryption
is:

Can we build a functional encryption scheme for the class of all poly-size circuits?

To date, constructions of functional encryption are known only for these limited classes of
circuits (see [BF01, Coc01, SW05, GPSW06, KSW08, LOS+10] and others). More concretely, the
state-of-the-art constructions are limited to predicate encryption schemes, where the predicate itself
is computable by a “low complexity” class, such as Boolean formula and inner product over fields,
both of which are computable in NC1. In particular, a large part of the difficulty in constructing
functional encryption schemes lies in the fact that we typically require security against a-priori
unbounded collusions, namely, adversaries who obtain secret keys for an unbounded number of
circuits C1, . . . , Cq. This raises the following natural question: can we build functional encryption
schemes for arbitrary circuits for some meaningful relaxation of this security requirement?

1We do not require the circuit C to be secret throughout this work, and in most literature on functional encryption.
For the singular exception, see the work of Shi, Shen and Waters [SSW09].

1

222
Approved for Public Release; Distribution Unlimited.

Functional Encryption for Bounded Collusions. In this work, we initiate a systematic study
of functional encryption for bounded collusions. We consider a relaxed notion of security where
the adversary is given secret keys for an a-priori bounded number of circuits C1, . . . , Cq of her
choice (which can be made adaptively). This notion, which we call q-bounded security (or security
against q collusions), is a natural relaxation of the strong definition above, and could be sufficient
in a number of practical use-case scenarios. Our main result in this paper is a construction of
q-bounded secure functional encryption schemes for arbitrary polynomial-size circuit families under
mild cryptographic assumptions.

The question of designing IBE schemes with bounded collusions has been considered in a
number of works [DKXY02, CHH+07, GLW12]. The functional encryption setting presents
us with a significantly richer landscape since (1) a secret key SKC can be used to obtain
(partial) information about many messages, as opposed to IBE where a secret key decrypts
only ciphertexts for a single identity, and (2) the partial information is a result of a potentially
complex computation on the message itself. Our constructions leverage interesting ideas from the
study of (information-theoretic) multi-party computation [BGW88, BMR90, DI05] and randomized
encodings [Yao86, IK00, AIK06].

We stress that q-bounded security does not restrict the system from issuing an unbounded
number of secret keys. We guarantee security against any adversary that gets hold of at most q keys.
Specifically, our security definition achieves security against multiple “independent” collusions, as
long as each collusion has size at most q. Indeed, it is not clear how to achieve such a security
notion for general circuits even in the stateful setting where the system is allowed to maintain a
counter while issuing secret keys (analogous to the early notion of stateful signatures). We note
that our construction does not require maintaining any state.

1.1 Our Results

The main result of this work is the construction of a q-query functional encryption scheme for the
class of all polynomial-size circuits. Our construction is based on the existence of semantically secure
public key encryption schemes, and pseudorandom generators (PRG) computable by polynomials
of degree poly(κ), where κ is the security parameter. The former is clearly a necessary assumption,
and the latter is a relatively mild assumption which, in particular, is implied by most concrete
intractability assumptions commonly used in cryptography, such as ones related to factoring,
discrete logarithm, or lattice problems.

An important special case of functional encryption that we will be interested in is predicate
encryption with public index (which is also called attribute-based encryption by some authors).
This corresponds to a circuit family C parametrized by predicates g and defined as:

Cg(ind, µ) =

{
(ind, µ) if g(ind) = true
(ind,⊥) otherwise

Here, ind is the so-called public index, and µ is sometimes refered to as the payload message.
For the special case of predicate encryption schemes with public index, our construction handles
arbitrary polynomial-size circuits while relying solely on the existence of semantically secure public-
key encryption schemes, which is clearly the minimal necessary assumption. In particular, we do
not need the “bounded-degree PRG” assumption for this construction.

In contrast, functional encryption schemes that handle an unbounded number of secret-key
queries are known only for very limited classes of circuit families, the most general being inner

2

223
Approved for Public Release; Distribution Unlimited.

product predicates [KSW08, LOS+10, OT10]. In particular, constructing an unbounded-query
secure functional encryption scheme for general circuit families is considered a major open problem
in this area [BSW11]. As for functional encryption schemes with public index (also referred to
as “attribute-based encryption” by some authors) that handle an unbounded number of secret-
key queries, there are a handful of constructions for polynomial-size formulas [GPSW06, OSW07],
which themselves are a sub-class of NC1 circuits.

We will henceforth refer to a functional encryption scheme that supports arbitrary polynomial-
size circuits as a general functional encryption scheme. Summarizing this discussion, we show:

Theorem 1.1 (Main Theorem, Informal). Let κ be a security parameter. Assuming the existence
of semantically secure encryption schemes as well as PRGs computable by arithmetic circuits of
degree-poly(κ), for every q = q(κ), there exists a general functional encryption scheme secure
against q secret key queries.

Corollary 1.2 (Informal). Let κ be a security parameter. Assuming the existence of semantically
secure encryption schemes, for every q = q(κ), there exists a general predicate encryption scheme
with public index secure against q secret key queries.

We have so far avoided discussing the issue of which security definition to use for functional
encryption. Indeed, there are a number of different definitions in the literature, including both
indistinguishability style and simulation style definitions. In a nutshell, we prove our constructions
secure under a strong, adaptive simulation-based definition; see Section 1.3 for details.

1.2 Overview of Our Constructions

We proceed with an overview of our construction of a q-bounded general functional encryption
scheme.

Starting point. The starting point of our constructions is the fact, observed by Sahai and
Seyalioglu [SS10], that general functional encryption schemes resilient against a single secret-key
query can be readily constructed using the beautiful machinery of Yao’s “garbled circuits” [Yao86]
(and in fact, more generally, from randomized encodings [IK00, AIK06]).2 The construction given in
[SS10] only achieves “selective, non-adaptive” security, where the adversary must specify the input
message x before it sees the public key, and the single key query C before it sees the challenge
ciphertext. We show how to overcome these limitations and achieve “full adaptive security” (for
a single key query) by using techniques from non-committing encryption [CFGN96], while still
relying only on the existence of semantically secure encryption schemes. All of our constructions
henceforth also achieve full adaptive security.

Building on this, our construction proceeds in two steps.

1.2.1 Functional Encryption for NC1 Circuits

In the first step, we show how to construct a q-query functional encryption scheme for NC1 circuits
starting from any 1-query scheme.

2We note that [SS10] is completely insecure for collusions of size two: in particular, given two secret keys SK0`

and SK1` , an adversary can derive the SKC for any other C, and moreover, completely recover x.

3

224
Approved for Public Release; Distribution Unlimited.

We denote a “degree” of a circuit C as the degree of the polynomial computing C in the variables
of x. A degree of a circuit family denotes the maximum degree of a circuit in the family. Let D
denote the degree of NC1 family. The complexity of our construction will be polynomial in both
D and q, where q is the number of secret keys the adversary is allowed to see before he gets the
challenge ciphertext. This step does not require any additional assumption (beyond semantically
secure public key encryption).

The high level approach is as follows: we will run N independent copies of the 1-query scheme.
To encrypt, we will encrypt the views of some N -party MPC protocol computing some functionality
related to C (aka “MPC in the head” [IKOS07]). As the underlying MPC protocol, we will rely
on the BGW semi-honest MPC protocol without degree reduction (c.f. [DI05, Section 2.2]). We
will exploit the fact that this protocol is completely non-interactive when used to compute bounded-
degree functions.

We proceed to sketch the construction. Suppose the encryptor holds input x = (x1, . . . , x`), the
decryptor holds circuit C, and the goal is for the decryptor to learn C(x1, . . . , x`). In addition, we
fix t and N to be parameters of the construction.

• The public keys of the system consists of N independent public keys for the 1-query scheme for
the same family C(·). The key generation algorithm associates the decryptor with a random
subset Γ ⊆ [N] of size Dt + 1 and generates secret keys for the public keys MPKi for i ∈ Γ.
(Note key generation is already a point of departure from previous q-bounded IBE schemes
in [DKXY02, CHH+07] where the subset Γ is completely determined by C.)

• To encrypt x, the encryptor first chooses ` random polynomials µ1, . . . , µ` of degree t with
constant terms x1, . . . , x` respectively. The encryptor computes CTi to be the encryption of
(µ1(i), . . . , µ`(i)) under the i’th public key, and sends (CT1, . . . ,CTN).

• To decrypt, observe that since C(·) has degree at most D,

P (·) := C(µ1(·), . . . , µ`(·))

is a univariate polynomial of degree at most Dt and whose constant term is C(x1, . . . , x`).
Now, upon decrypting CTi for each i ∈ Γ, the decryptor recovers P (i) = C(µ1(i), . . . , µ`(i)).
It can then recover P (0) = C(x1, . . . , x`) via polynomial interpolation.

The key question now is: what happens when q of the decryptors collude? Let Γ1, . . . ,Γq ⊆ [N] be
the (uniformly random) sets chosen for each of the q secret key queries of the adversary. Whenever
two of these sets intersect, the adversary obtains two distinct secret keys for the same public key in
the underlying one-query FE scheme. More precisely, for every j ∈ Γ1 ∩ Γ2, the adversary obtains
two secret keys under the public key MPKj . Since security of MPKj is only guaranteed under a
single adversarial query, we have to contend with the possibility that in this event, the adversary
can potentially completely break the security of the public key MPKj , and learn a share of the
encrypted message x.

In particular, to guarantee security, we require that sets Γ1, . . . ,Γq have small pairwise
intersections which holds for a uniformly random choice of the sets under an appropriate choice of
the parameters t and N . With small pairwise intersections, the adversary is guaranteed to learn at
most t shares of the input message x, which together reveal no information about x.

For technical reasons, this is not sufficient to establish security of the basic scheme. The first
issue, which already arises for a single key query, is that we need to randomize the polynomial P

4

225
Approved for Public Release; Distribution Unlimited.

by adding a random share of 0; this is needed to ensure that the evaluations of P correspond to a
random share of C(x1, . . . , x`), and indeed, the same issue also arises in the BGW protocol. More
generally, we need to rerandomize the polynomial P for each of the q queries C1, . . . , Cq, in order
to ensure that it is consistent with random shares of Ci(x1, . . . , x`), for i = 1, 2, . . . , q. This can
be done by having the encryptor hard-code additional randomness into the ciphertext. For more
details, see Section 5.

Predicate encryption with public index. We point out that this construction also gives us
for free a predicate encryption scheme with public index for arbitrary polynomial-size circuits (with
no a-priori bound on the degree). In this setting, it suffices to realize the following family of circuits
parametrized by predicates g:

Cg(ind, µ) =

{
(ind, µ) if g(ind) = 1
(ind, 0) otherwise

We can write Cg as:
Cg(ind, µ) = (ind, µ · g(ind))

Since ind is always part of the output, we can just publish ind “in the clear”. Now, observe that
for all ind, Cg, we have Cg(ind, µ) is a degree one function in the input µ.

To obtain a predicate encryption scheme with public index, we observe that the construction
above satisfies a more general class of circuits. In particular, if the input to the encryption algorithm
is composed of a public input (that we do not wish to hide) and a secret input (that we do wish
to hide), then the construction above only requires that the circuit C has small degree in the bits
of the secret input. Informally, this is true because we do not care about hiding the public input,
and thus, we will not secret share it in the construction above. Thus, the degree of the polynomial
P (·) grows only with the degree of C in its secret inputs. The bottom line is that since predicate
encryption schemes with public index deal with circuits that have very low degree in the secret
input (degree 1, in particular), our construction handles arbitrary predicates.

1.2.2 A Bootstrapping Theorem and Functional Encryption for P

In the second step, we show a “bootstrapping theorem” for functional encryption schemes. In a
nutshell, this shows how to generically convert a q-query secure functional encryption scheme for
NC1 circuits into one that is q-query secure for arbitrary polynomial-size circuits, assuming in
addition the existence of a pseudo-random generator (PRG) that can be computed with circuits of
degree poly(κ). Such PRGs can be constructed based on most concrete intractability assumptions
such as those related to factoring, discrete logarithms and lattices.

The main tool that enables our bootstrapping theorem is the notion of randomized en-
codings [Yao86, IK00, AIK06]. Instead of using the FE scheme to compute the (potentially
complicated) circuit C, we use it to compute its randomized encoding C̃ which is typically a
much easier circuit to compute. In particular, secret keys are generated for C̃ and the encryption
algorithm for the bounded-degree scheme is used to encrypt the pair (x;R), where R is a uniformly
random string. The rough intuition for security is that the randomized encoding C̃(x;R) reveals
“no more information than” C(x) itself and thus, this transformation does not adversely affect the
security of the scheme.

5

226
Approved for Public Release; Distribution Unlimited.

Unfortunately, intuitions can be misleading and so is this one. Note that in the q-query
setting, the adversary obtains not just a single randomized encoding, but q of them, namely
C̃1(x;R), . . . , C̃q(x;R). Furthermore, since all these encodings use the same randomness R, the
regular notion of security of randomized encodings does not apply as-is. We solve this issue by
hard-coding a large number of random strings (proportional to q) in the ciphertext and using
a cover-free set construction, ensuring that the adversary learns q randomized encodings with
independently chosen randomness. See Section 6 for more details.

Putting this construction together with a randomized encoding scheme for polynomial-size
circuits (which follows from Yao’s garbled circuits [Yao86, AIK06]) whose complexity is essentially
the complexity of computing a PRG, we get our final FE scheme.

As a bonus, we show a completely different way to bootstrap q-query FE schemes for NC1
circuits into a q-query FE scheme for any polynomial-size circuits, using a fully homomorphic
encryption scheme [Gen09, BV11]. See appendix 7 for more details.

1.3 Definitions of Functional Encryption

Our constructions are shown secure under a strong simulation-based definition, in both the adaptive
and non-adaptive sense. The non-adaptive variant requires the adversary to make all its secret key
queries before receiving the challenge ciphertext whereas in the adaptive variant, there is no such
restriction. Although the adaptive variant is clearly stronger, Boneh, Sahai and Waters [BSW11]
recently showed that it is also impossible to achieve, even for very simple circuit families (related
to IBE). We observe that the BSW impossibility result holds only if the adversary obtains an
unbounded number of ciphertexts (essentially because of a related lower bound for non-committing
encryption schemes with unbounded messages). Faced with this state of affairs, we show our
constructions are shown secure in the non-adaptive sense, as well as in the adaptive sense with a
bounded number of messages.

In addition, we show a number of implications between different variants of these definitions;
see Section 3 and Appendix A for more details.

1.4 A Perspective: Bounded-Use Garbled Circuits

The reason why the construction of Sahai and Seyalioglu only achieves security against collusions
of size 1 is intimately related to the fact that Yao’s garbled circuits become completely insecure
when used more than once. Our constructions may be viewed as a stateless variant of Yao’s garbled
circuit that can be reused for some a-priori bounded number of executions. Fix two-parties inputs
to be C and x. We can view the ciphertext as encoding of a “universal” circuit of Ux(·) on some
fixed input value x, such that we can “delegate” computation on q different inputs C1, . . . , Cq
without leaking any information about x beyond C1(x), . . . , Cq(x).

Organization of the Paper. We describe the preliminaries and a simulation-based definition of
functional encryption in Sections 2 and 3, respectively. For completeness, we describe a construction
for 1-query functional encryption and prove its security in the adaptive setting in Section 4. Readers
familiar with this construction can go ahead to the next section. We describe our Construction 1
for NC1 circuits in Section 5 and our Construction 2 for bootstrapping in Section 6. An additional
FHE-based Construction 3 for bootstrapping is presented in Section 7. An interested reader is
referred to the appendices for the definitional implications.

6

227
Approved for Public Release; Distribution Unlimited.

2 Preliminaries

Notations. Let D denote a distribution over some finite set S. Then, x ← D is used to denote

the fact that x is chosen from the distribution D. When we say x
$← S, we simply mean that x

is chosen from the uniform distribution over S. Unless explicitly mentioned, all logarithms are to
base 2. For n ∈ N, let [n] denote the set of numbers 1, . . . , n. Let κ denote the security parameter.

2.1 Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ is a finite set. Let
C =

{
Cκ
}
κ∈N denote an ensemble where each Cκ is a finite collection of circuits, and each circuit

C ∈ Cκ takes as input a string x ∈ Xκ and outputs C(x) ∈ Yκ.
A functional encryption scheme FE for C consists of four algorithms FE = (FE.Setup,FE.Keygen,

FE.Enc,FE.Dec) defined as follows.

• Setup FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (MPK,MSK).

• Key Generation FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master
secret key MSK and a circuit C ∈ Cκ and outputs a corresponding secret key SKC .

• Encryption FE.Enc(MPK, x) is a p.p.t. algorithm that takes as input the master public key
MPK and an input message x ∈ Xκ and outputs a ciphertext CT.

• Decryption FE.Dec(SKC ,CT) is a deterministic algorithm that takes as input the secret key
SKC and a ciphertext CT and outputs C(x).

Definition 2.1 (Correctness). A functional encryption scheme FE is correct if for all C ∈ Cκ and
all x ∈ Xκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ);

FE.Dec(FE.Keygen(MSK, C),FE.Enc(MPK, x)) 6= C(x)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

Refer to Section 3 for the security definition.

2.2 Shamir’s Secret Sharing

We assume familiarity with Shamir’s secret-sharing scheme [Sha79] which works as follows: Let F
be a finite field and let x = (x1, . . . , xn) be a vector of any distinct non-zero elements of F, where
n < |F|. Shamir’s t-out-of-n secret-sharing scheme works as follows:

• To share a secret M ∈ F, the sharing algorithm SS.Sharet,n(M) chooses a random univariate
polynomial µ(x) of degree t with constant coefficient M . The n shares are µ(x1), . . . , µ(xn).

Note that any t or fewer shares look uniformly random.

• The reconstruction algorithm SS.Reconstruct takes as input t + 1 shares and uses Lagrange
interpolation to find a unique degree-t polynomial µ(·) that passes through the share points.
Finally, it computes µ(0) to recover the secret.

7

228
Approved for Public Release; Distribution Unlimited.

An important property of this scheme is that it permits computation on the shares, a feature
used in many multi-party computation protocols starting from [BGW88]. In particular, adding
shares gives us µ1(i) + µ2(i) = (µ1 + µ2)(i) meaning that that sharing scheme is additively
homomorphic. Multiplying shares gives us µ1(i)µ2(i) = (µ1µ2)(i) meaning that the scheme is
also multiplicatively homomorphic (where µ1µ2 denotes the product of the polynomials). The
main catch is that the degree of the polynomial increases with the number of multiplications,
requires more shares to recover the answer post multiplication. In other words, the scheme per se is
multiplicatively homomorphic for a bounded number of multiplications (but an arbitrary number
of additions).

2.3 Public Key Encryption.

A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec), over message spaceM =
{Mκ}κ∈N, is a triple of ppt algorithms as follows.

• Setup. PKE.Setup(1κ): takes a unary representation of the security parameter and outputs
public and private secret keys (PK, SK).

• Encryption. PKE.EncPK(M): takes the public encryption key PK and a message M ∈ Mκ

and outputs a ciphertext CT.

• Decryption. PKE.DecSK(CT): takes the secret key SK and a ciphertext CT and outputs a
message M∗ ∈Mκ.

Correctness and security against chosen plaintext attacks are defined as follows.

Definition 2.2. A public key encryption scheme PKE is correct if for all M ,

Pr[(PK,SK)←PKE.Setup(1κ);PKE.DecSK(PKE.EncPK(M)) 6= M] = negl(κ) ,

where the probability is over the coins of PKE.Setup, PKE.Enc.

Definition 2.3. A public key encryption scheme PKE is (t, ε)-IND-CPA secure if for any adversary
A that runs in time t it holds that∣∣∣Pr[APKE.EncPK(·)(1κ,PK) = 1]− Pr[APKE.EncPK(0)(1κ,PK) = 1]

∣∣∣ ≤ ε ,
where the probability is over (PK,SK)←PKE.Setup(1κ), the coins of PKE.Enc and the coins of the
adversary A.

2.4 Decomposable Randomized Encoding

Let C be a circuit that takes inputs k ∈ {0, 1}`, x ∈ {0, 1}n and outputs C(k, x) ∈ {0, 1}m. A
decomposable randomized encoding scheme RE consists of two algorithms (RE.Encode,RE.Decode)
satisfying the following properties:

1. Decomposable Encoding. RE.Encode(1κ, C, x): A p.p.t. algorithm takes as inputs a
security parameter, a description of a circuit C, an input x and outputs a randomized encoding:

(C̃1(·, x;R), . . . , C̃`(·, x;R)) for i ∈ [`], where C̃i(·, x;R) depends only on ki

8

229
Approved for Public Release; Distribution Unlimited.

2. Decoding. RE.Decode((ỹi)
`
i=1): On input of an encoding of a circuit ỹi = Ci(ki, x;R) for

some k = (k1, . . . , k`) output C(k, x).

3. Semantic Security. We say decomposable randomized encoding RE is secure if there exists
a p.p.t. simulator RE.Sim, such that for every p.p.t. adversary A the outputs of the following
two distributions are computationally indistinguishable:

ExprealRE,A(1κ): ExpidealRE,RE.Sim(1κ):

1: (C, k = (k1, . . . , k`), x)← A(1κ)

2: (C̃i(·, x;R))`i=1 ← RE.Encode(1κ, C, x)

3: Output (C̃i(ki, x;R))`i=1)

1: (C, k = (k1, . . . , k`), x)← A(1κ)

2: (C̃i(ki, x;R))`i=1 ← RE.Sim(1κ, C, C(k, x))

3: Output (C̃i(ki, x;R))`i=1)

Note that such a randomized encoding for arbitrary polynomial-size circuits follows from Yao’s
garbled circuit construction [Yao86, AIK06].

3 Security of Functional Encryption against Bounded Collusions

In this section, we first describe simulation-based definitions for functional encryption with
bounded collusions, largely based on the recent works of Boneh, Sahai and Waters [BSW11] and
O’Neill [O’N10]. We then go on to discuss relations between various flavors of these definitions,
with details in Appendix A.

Definition 3.1 (q-NA-SIM- and q-AD-SIM- Security). Let FE be a functional encryption scheme
for a circuit family C =

{
Cκ : Xκ → Yκ

}
κ∈N. For every p.p.t. adversary A = (A1, A2) and a p.p.t.

simulator S = (S1, S2), consider the following two experiments:

ExprealFE,A(1κ): ExpidealFE,S(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (x, st) ←AFE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK, x)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (α, x)

1: (MPK,MSK)← FE.Setup(1κ)

2: (x, st)← A
FE.Keygen(MSK,·)
1 (MPK)

I Let (C1, . . . , Cq) be A1’s oracle queries
I Let SKi be the oracle reply to Ci
I Let V :=

{
yi = Ci(x), Ci,SKi

}
.

3: (CT, st′)← S1(MPK,V, 1|x|)

4: α← A
O′(MSK,st′,·)
2 (MPK,CT, st)

5: Output (α, x)

We distinguish between two cases of the above experiment:

1. The adaptive case, where:

9

230
Approved for Public Release; Distribution Unlimited.

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

• the oracle O′(MSK, st′, ·) is the second stage of the simulator, namely S
Ux(·)
2 (MSK, st′, ·)

where Ux(C) = C(x) for any C ∈ Cκ.

The simulator algorithm S2 is stateful in that after each invocation, it updates the state st′

which is carried over to its next invocation. We call a simulator algorithm S = (S1, S2)
admissible if, on each input C, S2 makes just a single query to its oracle Ux(·) on C itself.

The functional encryption scheme FE is then said to be q-query simulation-secure for one
message against adaptive adversaries (q-AD-SIM-secure, for short) if there is an admissible
p.p.t. simulator S = (S1, S2) such that for every p.p.t. adversary A = (A1, A2) that makes at
most q queries, the following two distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,S(1κ)

}
κ∈N

2. The non-adaptive case, where the oracles O(MSK, ·) and O′(MSK, st, ·) are both the “empty
oracles” that return nothing: the functional encryption scheme FE is then said to be q-
query simulation-secure for one message against non-adaptive adversaries (q-NA-SIM-secure,
for short) if there is a p.p.t. simulator S = (S1,⊥) such that for every p.p.t. adversary
A = (A1, A2) that makes at most q queries, the two distributions above are computationally
indistinguishable.

Intuitively, our security definition states that any information that the adversary is able to learn
from the ciphertext and secret keys, can be obtained by a simulator from the secret keys and the
outputs of the circuit alone. A number of remarks on this definition are in order.

1. In the non-adaptive setting, the simulator

(a) is not allowed to “program” the public parameters or the pre-ciphertext secret key
queries;

(b) given the real public parameters, adversary’s oracle queries, corresponding real secret
keys and circuit output values, is asked to produce a ciphertext indistinguishable from
the real ciphertext.

2. In the adaptive setting, in addition to the above bullets the second stage simulator

(c) is given the real MSK and is allowed to “program” the post-ciphertext secret keys.

3. Even if the the adversary does not request any secret keys, he learns the length of x and
therefore, the simulator should be given this information to be on even ground with the
adversary. This also ensures that the definition properly generalizes (regular) public-key
encryption.

4. We remark that our definitions imply (and are stronger than) those presented in the work of
Boneh, Sahai and Waters [BSW11]1, except we only consider a single ciphertext and impose
an upper bound on the number of secret key queries.

1A sketch of the proof is presented in the Appendix A.

10

231
Approved for Public Release; Distribution Unlimited.

Why focus on this definition? First, as mentioned above, our definition is at least as strong
as the definition presented in [BSW11]. In addition, in Appendix A we show the following relations
between the definitions:

1. Relations between simulation and indistinguishability: We show that a single message
simulation definition implies single message indistinguishability definition for both non-
adaptive and adaptive worlds.

2. Relations between single and many messages (simulation): We show that a single message
non-adaptive simulation implies many messages non-adaptive simulation definition. However,
we cannot hope to achieve the same implication for adaptive world due to the impossibility
results presented in [BSW11].

3. Relations between single and many messages (indistinguishability): Finally, we show that
a single message indistinguishability implies many message indistinguishability definition in
both the adaptive and non-adaptive worlds.

These definitional implications are summarized in Figure 1 and proved in Appendix A. As a
result of these definitional implications, we focus on proving that our constructions are secure under
the single message simulation definitions for both adaptive and non-adaptive worlds.

4 Background Constructions

4.1 Adaptive, Singleton

Consider the following simple circuit family that consists of a single identity circuit C = {C},
input space X = {0, 1} and C(x) = x. We construct a 1-AD-SIM-secure functional encryption for
this circuit family, starting from any CPA-secure encryption (PKE.Setup,PKE.Enc,PKE.Dec). (The
construction is inspired by techniques used in non-committing encryption [CFGN96, DN00, KO04].)

• Setup BasicFE.Setup(1κ): Run PKE.Setup twice to generate independent master public-
key/secret-key pairs

(PKi,SKi)← PKE.Setup(1κ) for i = 0, 1

Output the master public/secret key pair

MPK := (PK0,PK1) and MSK := (SK0,SK1)

• Key Generation BasicFE.Keygen(MSK, C): On input the master secret key MSK and a

circuit C, pick a random bit r
$← {0, 1} and output the secret key

SK := (r, SKr)

• Encryption BasicFE.Enc(MPK, x): On input the master public key MPK and an input
message x ∈ {0, 1}: output as ciphertext

CT := (PKE.Enc(PK0, x),PKE.Enc(PK1, x))

• Decryption BasicFE.Dec(SK,CT): On input a secret key SK = (r, SKr) and a ciphertext
CT = (CT0,CT1), output

PKE.DecSKr(CTr)

11

232
Approved for Public Release; Distribution Unlimited.

Correctness. Correctness is straight-forward.

Security. We prove that the scheme is 1-AD-SIM-secure. We define a simulator BasicFE.Sim that
proceeds as follows:

• If the adversary makes a secret key query before seeing the ciphertext, the simulator learns
x and can therefore simulate the ciphertext perfectly via normal encryption.

• If the adversary requests for the ciphertext first, then the simulator picks a random bit

β
$← {0, 1} and outputs as ciphertext:

CT := (PKE.Enc(PK0, β),PKE.Enc(PK1, β))

When the adversary then requests for a secret key, the simulator learns MSK = (SK0, SK1)
and x, and outputs as the secret key:

SK := (β ⊕ x,SKβ⊕x)

We establish security via a series of Games.

Game 0. Normal encryption.

Game 1. If the adversary requests for the ciphertext before making a secret key query, then we
modify the ciphertext as follows:

CT := (PKE.Enc(PK0, x⊕ r),PKE.Enc(PK1, x⊕ r))

Game 2. Output of the simulator.

It is easy to see that the outputs of Games 0 and 1 are computationally indistinguishable by CPA
security, and that the outputs of Games 1 and 2 are identically distributed.

Extension to larger X . It is easy to see that this construction extends to X = {0, 1}λ via λ-wise
repetition (that is, λ independent master public keys, etc).

4.2 Adaptive, “Brute Force”

Boneh, et. al [BSW11, Section 4.1] presented a AD-IND-secure scheme for any functionality where
the circuit family has polynomial size, starting from any semantically secure public-key encryption
scheme. For simplicity, we just write down the construction for a family of two circuits C = {C0, C1},
which easily extends to any poly-size family. We show that if we replace the underlying encryption
scheme with the previous 1-AD-SIM-secure FE encryption for singleton circuit space C′ = {C∗},
then we obtain a 1-AD-SIM-secure FE encryption for C.

• Setup BFFE.Setup(1κ): Run BasicFE.Setup twice to generate independent master public-
key/secret-key pairs

(MPKi,MSKi)← BasicFE.Setup(1κ) for i = 0, 1

Output (MPK0,MPK1) as the master public key and (MSK0,MSK1) as the master secret key.

12

233
Approved for Public Release; Distribution Unlimited.

• Key Generation BFFE.Keygen(MSK, Cb): On input the master secret key MSK and a circuit
Cb ∈ C, output as secret key SKb ← BasicFE.Keygen(MSKb, C

∗).

• Encryption BFFE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X , output as ciphertext

CT := (BasicFE.Enc(MPK0, C0(x)),BasicFE.Enc(MPK1, C1(x)))

• Decryption BFFE.Dec(SKb,CT): On input a secret key SKb and a ciphertext CT =
(CT0,CT1), output

BasicFE.DecSKb(CTb)

Correctness. Correctness is straight-forward.

Security. We prove that the scheme is 1-AD-SIM-secure. The simulator BFFE.Sim proceeds as
follows:

• If the adversary makes a query Cb before seeing the ciphertext, the simulator learns Cb(x)
and then simulates the ciphertext as follows:

CTb ← BasicFE.Enc(MPKb, Cb(x)) and CT1−b ← BasicFE.Sim(MPK1−b, ∅, 1|x|)

Output CT := (CT0,CT1)

• If the adversary requests for the ciphertext first, then the simulator simulates the ciphertext
as follows:

CTi ← BasicFE.Sim(MPKi, ∅, 1|x|), for i = 0, 1

Output CT := (CT0,CT1). When the adversary then requests for a secret key Cb, the
simulator learns MSK = (MSK0,MSK1) and Cb, Cb(x) and outputs as secret key

SKb ← BasicFE.Sim(MSKb, (Cb(x), Cb), 1
|x|)

We establish security via a series of Games.

Game 0. Normal encryption.

Game 1. Roughly speaking, we will simulate on MPK0,CT0 and follow normal encryption on
MPK1,CT1. More precisely, the simulator proceeds as follows:

• If the adversary makes a secret key query Cb before seeing the ciphertext, proceed as follows:

– if b = 0, use the normal encryption for both CT0 and CT1.

– if b = 1, follow BFFE.Sim (that is, generate CT0 using BasicFE.Sim).

• If the adversary requests for the ciphertext first, then the simulator simulates the ciphertext
as follows:

CT0 ← BasicFE.Sim(MPK0, ∅) and CT1 ← BasicFE.Enc(MPK1, C1(x))

Output CT := (CT0,CT1). When the adversary then requests for a secret key Cb, the
simulator proceeds as follows:

13

234
Approved for Public Release; Distribution Unlimited.

– if b = 0, follow BFFE.Sim (that is, generate SK0 using BasicFE.Sim);

– if b = 1, follow normal encryption (that is, generate SK1 using BasicFE.Keygen).

Game 2. Output of the simulator.

It is easy to see that the outputs of Games 0 and 1 are computationally indistinguishable by
1-AD-SIM of the underlying scheme. The same applies to the outputs of Games 1 and 2.

4.3 One-Query General Functional Encryption from Randomized Encoding

Sahai and Seyalioglu [SS10] proved 1-NA-SIM; we observe the same “bootstrapping” construction
works for 1-AD-SIM. Let C be an arbitrary family of poly-size circuits. We construct ONEQFE
scheme for C as follows.

Let BFFE denote the brute-force construction defined above. In a high-level the idea is this:
suppose we wish to construct an FE scheme for a polynomial-size circuit C and input x. Let U(C, x)
denote the universal circuit that output C(x). Let Ũ(C, x;R) denote a randomized encoding of
U(C, x) where for every x,R, Ũ(· , x;R) has small locality. Then, assuming C has length λ, we
can write

Ũ(C, x;R) = (Ũ1(C[1], x;R), . . . , Ũλ(C[λ], x;R))

where Ũi(· , x;R) depends only on C[i], the ith bit of circuit C. For each i, we can now use BFFE
scheme for a family of two circuits:

Ũi := {Ũi(0, · ; ·), Ũi(1, · ; ·)}

• Setup FE.Setup(1κ): Run the brute-force setup algorithm λ times to generate independent
master public-key/secret-key pairs

(MPKi,MSKi)← BFFE.Setup(1κ) for Ũi and i = 1, . . . , λ

Output (MPKi)
λ
i=1 as the master public key and (MSKi)

λ
i=1 as the master secret key.

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, compute

SKC,i ← BFFE.Keygen(MSKi, Ũi(C[i], · ; ·)) for i = 1, . . . , λ

Output as secret key
SKC := ((SKC,i)i∈[λ])

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X , choose R and compute

CTi ← BFFE.Enc(MPKi, (x;R)) for i = 1, . . . , λ

Output (CTi)
λ
i=1 as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC = (SKC,i)i∈[λ]) and a ciphertext

CT = (CTi)
λ
i=1, do the following:

1. Compute ỹi ← BFFE.Dec(MSKi,CTi) = Ũi(C[i], x;R) for i = 1, . . . , λ;

2. Run the decoder to get y ← RE.Decode(ỹ1, . . . , ỹλ).

Output y.

14

235
Approved for Public Release; Distribution Unlimited.

Correctness. Correctness follows directly from the correctness of the brute-force FE construction
and randomized encodings.

Security. We first prove that ONEQFE is 1-NA-SIM-secure (See below on how to modify the
proof to show 1-AD-SIM-security). Recall that the simulator gets as input the following values:

1. The public key: (MPKi)
λ
i=1;

2. The query C and the corresponding secret key SKC = (SKC,i)
λ
i=1;

3. The output of C: C(x);

On the very high level, the security of the scheme follows from the fact that by the security of brute-
force construction the adversary can only learn ỹi for all i and by the security of the randomized
encoding the adversary can only learn y = C(x).

We establish security via a series of Games. Game 0 corresponds to the real experiment and
Game λ+ 1 corresponds to the ideal experiment where simulator S produced the ciphertext. The
goal of the simulator S is to produce a ciphertext that is indistinguishable from the real ciphertext.
Let BFFE.Sim and RE.Sim be the brute-force FE and randomized encoding simulators, respectively.

Game 0. Real encryption experiment.

Game i for i ∈ {1, . . . , λ}. In Game i, i ciphertexts are encrypted properly using MPKi and λ− i
ciphertexts are simulated. Formally, for all 1 ≤ j ≤ i, let

CTi ← BFFE.Enc(MPKi, (x;R))

For all i < j ≤ λ, let

CTi ← BFFE.Sim(MPKi, (Ũi(C[i], x;R), Ũi(C[i], · ; ·),SKC,i))

Output the ciphertext
CT := (CT1, . . . ,CTλ)

Game λ+ 1. Same as Game λ, except the randomized encoding is now produced by the RE.Sim.
Formally, the simulator S does the following.

1. Let
(Ũi(C[i], x;R))λi=1 ← RE.Sim(1κ, U, U(C, x)))

2. For all i ∈ [λ], let

CTi ← BFFE.Sim(MPKi, (Ũi(C[i], x;R), Ũi(C[i], · ; ·),SKC,i))

3. Output the ciphertext
CT := (CT1, . . . ,CTλ)

Claim 4.0.1. The outputs of Game 0 and Game λ are computationally indistinguishable.

15

236
Approved for Public Release; Distribution Unlimited.

Proof. The only different between Games 0 and λ is that in the later the ciphertext produced by the
simulator. If there is a distinguisher between the Games, then by we can distinguish between Games
i and i+ 1 for some i, hence compromise the security of the underlying BFFE construction.

Claim 4.0.2. The outputs of Game λ and Game λ+ 1 are computationally indistinguishable.

Proof. This claim follows directly from the security of the randomized encoding simulator.

Therefore, we can conclude that the real experiment is indistinguishable from the ideal
experiment.

We now sketch how to modify the above proof to show that ONEQFE is 1-AD-SIM-secure.
Construct the simulator S = (S1, S2) as follows. The simulator S1 is the same as in the non-
adaptive case, except it passes the simulated decomposable randomized encoding Ũ(C, x;R) as a
part of the state to S2. Now, assume the oracle query C comes after the challenge ciphertext (the
other case is trivial). We invoke the single brute-force simulator BFFE.Sim many times for all MSKi.
For every oracle queries Ũi(C[i], · ; ·) made by BFFE.Sim reply with ỹi ← Ũi(C[i], x;R). Finally,
output (SKC,i)i∈[λ] as the secret key to the adversary.

5 A Construction for NC1 circuits

In this section, we construct a functional encryption scheme for all NC1 circuits secure against
q secret-key queries, starting from one that is secure against a single secret-key query. Our
construction will rely on any semantically secure public-key encryption scheme.

The Class of Circuits. We construct q-bounded FE scheme for a circuit family C := NC1. In
particular, we consider polynomial representation of circuits C in the family. The input message
space X = F` is an `-tuple of field elements, and for every circuit C ∈ C, C(·) is an `-variate
polynomial over F of total degree at most D. The complexity of our construction will be polynomial
in both D and q, where q is the number of secret keys the adversary is allowed to see before he gets
the challenge ciphertext.

5.1 Our Construction

Let C := NC1 be a circuit family with circuits of degree D = D(κ) in its input, and let q = q(κ) be
a bound on the number of secret key queries. Our scheme is associated with additional parameters
S = S(κ), N = N(κ), t = t(κ) and v = v(κ) (for an instantiation of the parameters, see Section 5.2).

We start by defining a new family G as follows:

GC,∆(x, Z1, . . . , ZS) := C(x) +
∑
i∈∆

Zi (1)

where ∆ ⊆ [S] and Z1, . . . , ZS ∈ F.

Let (OneQFE.Setup,OneQFE.Keygen,OneQFE.Enc,OneQFE.Dec) be a functional encryption
scheme for G secure against a single secret key query. Our q-query secure encryption scheme
BDFE = (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec) for C works as follows:

16

237
Approved for Public Release; Distribution Unlimited.

• Setup BdFE.Setup(1κ): Run the one-query setup algorithm N times to generate independent
master public-key/secret-key pairs

(MPKi,MSKi)← OneQFE.Setup(1κ) for i = 1, . . . , N

Output (MPKi)
N
i=1 as the master public key and (MSKi)

N
i=1 as the master secret key.

• Key Generation BdFE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C,

1. Choose a uniformly random set Γ ⊆ [N] of size tD + 1;

2. Choose a uniformly random set ∆ ⊆ [S] of size v;

3. Generate the secret keys

SKC,∆,i ← OneQFE.Keygen(MSKi, GC,∆) for every i ∈ Γ

Output as secret key SKC := (Γ,∆, (SKC,∆,i)i∈Γ).

• Encryption BdFE.Enc(MPK, x): On input the master public key MPK = (MPKi)
N
i=1 and an

input message x = (x1, . . . , x`) ∈ X :

1. For i = 1, 2, . . . , `, pick a random degree t polynomial µi(·) whose constant term is xi.

2. For i = 1, 2, . . . , S, pick a random degree Dt polynomial ζi(·) whose constant term is 0.

3. Run the one-query encryption algorithm OneQFE.Enc N times to produce ciphertexts

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
for i = 1, . . . , N

Output (CTi)
N
i=1 as the ciphertext.

• Decryption BdFE.Dec(SKC ,CT): On input a secret key SKC = (Γ,∆, (SKC,∆,i)i∈Γ) and a
ciphertext CT = (CTi)

N
i=1, do the following:

1. Compute a degree Dt polynomial η(·) such that η(i) = OneQFE.Dec(SKC,∆,i,CTi) for
all i ∈ Γ.

2. Output η(0).

5.1.1 Correctness

We show that the scheme above is correct. By correctness of the underlying single-query FE, we
have that for all i ∈ Γ,

η(i) = GC,∆(µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

= C(µ1(i), . . . , µ`(i)) +
∑
a∈∆

ζa(i)

Since |Γ| ≥ Dt+ 1, this means that η is equal to the degree Dt polynomial

η(·) = C(µ1(·), . . . , µ`(·)) +
∑
a∈∆

ζa(·)

Hence, η(0) = C(x1, . . . , x`) = C(x).

17

238
Approved for Public Release; Distribution Unlimited.

5.2 Setting the Parameters

We show how to set the parameters S = S(κ), N = N(κ) and t = t(κ). These parameters govern
the choice of the sets Γ and ∆ during the key generation algorithm, and are required to satisfy the
following two conditions:

Small Pairwise Intersections. Let Γ1, . . . ,Γq ⊆ [N] be the (uniformly random) sets chosen
for each of the q secret key queries of the adversary. Whenever two of these sets intersect, the
adversary obtains two distinct secret keys for the underlying one-query secure FE scheme. More
precisely, for every j ∈ Γ1 ∩ Γ2, the adversary obtains two secret keys under the public key MPKj .
Since security of MPKj is only guaranteed under a single adversarial query, we have to contend
with the possibility that in this event, the adversary can potentially completely break the security
of the public key MPKj . In particular, for every such j, the adversary potentially learns a share of
the encrypted input message x.

Thus, to guarantee security, we require that the union of the pairwise intersections of Γ1, . . . ,Γq

is small. In particular, we require that

∣∣∣∣⋃i6=j(Γi ∩ Γj)

∣∣∣∣ ≤ t. This ensures that the adversary learns

at most t shares of the input message x, which together reveal no information about x.
A simple probabilistic argument shows that this is true (with probability 1− 2−Ω(t/q2)) as long

as q2 · (Dt/N)2 ·N ≤ t/10. In other words, we will set t(κ) = Θ(q2κ) and N(κ) = Θ(D2q2t) which
satisfies the above constraint with probability 1− 2−Ω(κ). For details, we refer an interested reader
to Appendix B.1.

Cover-Freeness. Let ∆1, . . . ,∆q ⊆ [S] be the (uniformly random) sets of size v chosen for each
of the q secret key queries of the adversary. The security proof relies on the condition that the
polynomials

∑
a∈∆j

ζa(·) are uniformly random and independent which is true if the collection of

sets ∆1, . . . ,∆q is cover-free. That is, for every i ∈ [q]: ∆i \
(⋃

j 6=i ∆j

)
6= φ.

A simple probabilistic argument shows that this is true (with probability 1 − 2−Ω(q2v2/S)) as
long as q2v2/S ≤ v/100. In other words, we will set v(κ) = Θ(κ) and S(κ) = Θ(vq2) which satisfies
the above constraint with probability 1 − 2−Ω(κ). For details, we refer an interested reader to
Appendix B.2.

We remark that in our construction, multiple secret key queries for the same C ∈ C result in
different secret keys SKC , essentially because of the different random choices of the sets ∆ and Γ.
Using a pseudorandom function (applied to C), it is possible to ensure that multiple secret key
queries for the same C result in the same answer.

5.3 Proof of Security

Theorem 5.1. Let ONEQFE be a 1-AD-SIM-secure (resp. 1-NA-SIM-secure) functional encryp-
tion scheme for any family of poly-size circuits. Then, for any circuit family C computable in NC1
the BDFE scheme described above is q-AD-SIM-secure (resp. q-NA-SIM-secure).

We prove that the construction BDFE given in Section 5 is q-AD-SIM-secure if we start out with
a 1-AD-SIM-secure scheme. This subsumes the non-adaptive variant of the proof. By Theorem A.1,
this implies that BDFE is q-NA-SIM-secure for many messages. However, it is only single-message

18

239
Approved for Public Release; Distribution Unlimited.

q-AD-SIM-secure (see Figure 1 for relations).

We establish security by first defining the simulator and then arguing that its output is
indistinguishable via a series of Games. For readability, we adopt the following convention: we
use i to index over values in [N], and we use j to index over the queries.

Overview. Suppose the adversary receives the challenge ciphertext after seeing q∗ ≤ q queries.
The simulator has to simulate the ciphertext and answer the remaining secret key queries. We may
assume it already knows all of Γ1, . . . ,Γq,∆1, . . . ,∆q. This is because:

• for j ≤ q∗, the simulator gets Γj ,∆j from SKj ;

• for j > q∗, the simulator gets to program Γj ,∆j and could pick all these quantities in advance.

We first describe our strategy for simulating the ciphertext CT = (CT1, . . . ,CTN) and the secret
keys. Let I denote ⋃

j 6=j′
(Γj ∩ Γj′)

We will consider two cases:

• i ∈ I: Here, we may issue more than one secret key corresponding to (MPKi,MSKi); therefore,
we can no longer rely on the security of the underlying one-query FE scheme. Instead, we
rely on the statistical security of the underlying MPC protocol and the fact that |I| ≤ t.
Specifically, we can simulate CTi and the secret keys honestly.

• i /∈ I: Here, we issue at most one secret key corresponding to (MPKi,MSKi); this is because at
most one of the sets Γ1, . . . ,Γq contains i. Suppose i ∈ Γj . We may now appeal to the security
of the underlying one-query FE scheme. Specifically, we simulate CTi computationally using
the simulator for the underlying one-query FE scheme. If j ≤ q∗, then we do not need to
program secret keys at all. If j > q∗, upon receiving query Cj , we program the corresponding
keys SKCj ,∆j ,i using the one-query simulator.

We formally define the simulator BdFE.Sim as follows:

Simulating the ciphertext after query q∗. Here, the simulator knows Γ1, . . . ,Γq,∆1, . . . ,∆q;
the queries C1, . . . , Cq∗ , the outputs C1(x), . . . , Cq∗(x), and the secret keys SK1, . . . ,SKq∗ .

1. Uniformly and independently sample ` random degree t polynomials µ1, . . . , µ` whose constant
terms are all 0.

2. We sample the polynomials ζ1, . . . , ζS as follows: let ∆0 := ∅. For j = 1, 2, . . . , q:

(a) by the cover-free property, fix some a∗ ∈ ∆j \ (∆0 ∪ · · · ∪∆j−1);

(b) for all a ∈ (∆j \ (∆0 ∪ · · · ∪∆j−1)) \ {a∗}, set ζa to be a uniformly random degree Dt
polynomial whose constant term is 0;

(c) if j ≤ q∗, pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x); if
j > q∗, pick random values for ηj(i) for all i ∈ I;

19

240
Approved for Public Release; Distribution Unlimited.

(d) the evaluation of ζa∗ on the points in I is defined by the relation:

ηj(·) = Cj(µ1(·), . . . , µ`(·)) +
∑
a∈∆j

ζa(·)

Finally, for all a /∈ (∆1 ∪ · · · ∪ ∆q), set ζa to be a uniformly random degree Dt polynomial
whose constant term is 0.

3. For each i ∈ I, run the one-query encryption algorithm OneQFE.Enc to produce ciphertexts

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
4. For each i /∈ I, run the one-query simulator OneQFE.Sim to produce ciphertexts CTi as

follows: at most one of Γ1, . . . ,Γq contains i.

• If such a set exists, let j denote the unique set Γj that contains i (i.e. i ∈ Γj). If j ≤ q∗,
compute

CTi ← OneQFE.Sim
(
MPKi, (ηj(i), GCj ,∆j , SKCj ,∆j ,i)

)
where SKCj ,∆j ,i is provided as part of SKj .

• If no such set exist or j > q∗, then compute

CTi ← OneQFE.Sim
(
MPKi, ∅

)
Output (CTi)

N
i=1 as the ciphertext.

Simulating secret key SKj, for j > q∗. Here, the simulator gets MSK = (MSK1, . . . ,MSKN)
and Cj(x), Cj and needs to simulate (SKCj ,∆j ,i)i∈Γj .

1. For each i ∈ Γj ∩ I, pick SKCj ,∆j ,i ← OneQFE.Keygen(MSKi, GCj ,∆j).

2. For each i ∈ Γj \ I (i.e, Γj is the only set that contains i),

(a) pick a random degree Dt polynomial ηj(·) whose constant term is Cj(x) and subject to
the constraints on the values in I chosen earlier;

(b) run OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j)) to obtain SKCj ,∆j ,i so that CTi decrypts to ηj(i).

Output (SKCj ,∆j ,i)i∈Γj .

We establish security via a series of Games. The simulator is described above.

Game 1. We modify ζ1, . . . , ζS , η1, . . . , ηq to be the same as that in the simulator.

Game 2. We simulate (CTi)i/∈I and SKj , j > q∗ as in the simulator.

20

241
Approved for Public Release; Distribution Unlimited.

Game 3. The output of the simulator. That is, we modify how polynomials µ1, . . . , µ` are
sampled.

Claim 5.1.1. The outputs of Game 0 and Game 1 are identically distributed.

Proof. In the normal encryption, ζa∗ is chosen at random and ηj(·) is defined by the relation. From
Step 2 in the ciphertext simulation and Step 2 in the secret keys simulation (for j > q∗) BdFE.Sim,
essentially, chooses ηj(·) at random which defines ζa∗ . It is easy to see that reversing the order of
how the polynomials are chosen produces the same distribution.

Claim 5.1.2. The outputs of Game 1 and Game 2 are computationally indistinguishable.

Proof. Informally, this follows from the security of the underlying one-query FE scheme and the
fact that for all i /∈ I, we run OneQFE.Keygen(MSKi, ·) at most once.

By a hybrid argument, it suffices to show that for all i /∈ I, the distribution of CTi in Game 1 and
2 are computationally indistinguishable (given MPKi and SK1, . . . ,SKq). Indeed, fix such a i /∈ I
and a corresponding unique j such that i ∈ Γj (the case no such j exists is similar).

First, observe that amongst SK1, . . . ,SKq, only SKj contains a key SKCj ,∆j ,i that is generated using
either SKCj ,∆j ,i ← OneQFE.Keygen(MSKi, GCj ,∆j) (for the non-adaptive queries) or SKCj ,∆j ,i ←
OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j)) (for the adaptive queries).

Case 1: Assume j ≤ q∗. Observe that

ηj(i) = Cj(µ1(i), . . . , µ`(i)) +
∑
a∈∆j

ζa(i)

= GCj ,∆j (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i)) (2)

which means that in both Games 1 and 2, CTi decrypts to the same value. Now, note that in Game
1, CTi is generated using

CTi ← OneQFE.Enc
(
MPKi, (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i))

)
By the security of the underlying FE scheme, this is computationally indistinguishable from

OneQFE.Sim
(
MPKi, (GCj ,∆j (µ1(i), . . . , µ`(i), ζ1(i), . . . , ζS(i)), GCj ,∆j , SKCj ,∆j ,i)

)
By the Equation 2, this is the same as

OneQFE.Sim
(
MPKi, (ηj(i), GCj ,∆j , SKCj ,∆j ,i)

)
which is the distribution of CTi in Game 2.

Case 2: Assume j > q∗. Then:

• CTi ← OneQFE.Sim
(
MPKi, ∅

)
and

• SKCj ,∆j ,i ← OneQFE.Sim(MSKi, (ηj(i), GCj ,∆j))

21

242
Approved for Public Release; Distribution Unlimited.

Similarly, by the Equation 2 and by the security of the underlying one-query FE scheme this
simulated pair of ciphertext and secret key is indistinguishable from the real.

Claim 5.1.3. The outputs of Game 2 and Game 3 are identically distributed.

Proof. In Game 2, the polynomials µ1, . . . , µ` are chosen with constant terms x1, . . . , x`, respec-
tively. In Game 3, these polynomials are now chosen with 0 constant terms. This only affects the
distribution of µ1, . . . , µ` themselves and polynomials ζ1, . . . , ζS . Moreover, only the evaluations of
these polynomials on the points in I affect the outputs of the games. Now observe that:

• The distribution of the values {µ1(i), . . . , µ`(i)}i∈I are identical in both Game 2 and 3. This
is because in both games, we choose these polynomials to be random degree t polynomials
(with different constraints in the constant term), so their evaluation on the points in I are
identically distributed, since |I| ≤ t.

• The values {ζ1(i), . . . , ζS(i)}i∈I depend only on the values {µ1(i), . . . , µ`(i)}i∈I .

The claim follows readily from combining these observations.

6 A Bootstrapping Theorem for Functional Encryption

In this section, we show a “bootstrapping-type” theorem for functional encryption (FE). In a
nutshell, this shows how to take a q-query functional encryption scheme for “bounded degree”
circuits, and transform them into a q-query functional encryption scheme for arbitrary polynomial-
size circuits. The transformation relies on the existence of a pseudorandom generator (PRG) that
stretches the seed by a constant factor, and which can be computed by circuits of degree poly(κ).
This is a relatively mild assumption, and in particular, is implied by most concrete intractability
assumptions commonly used in cryptography, such as ones related to factoring, discrete logarithm,
or lattice problems.

In a high-level the idea is this: Suppose we wish to construct an FE scheme for a family C of
polynomial-size circuit. Let C ∈ C and x be some input. Then, let C̃(x;R) denote a randomized
encoding of C that is computable by a constant-depth circuit with respect to the inputs x and R.
By [AIK06, Theorem 4.14], we know that assuming the existence of a pseudo-random generator in
⊕L/poly, such a randomized encoding exists for every polynomial-size circuit C.

Consider a new family of circuits G defined as follows:

GC,∆(x,R1, . . . , RS) := C̃

(
x;
⊕
a∈∆

Ra

)
Observe the following:

• Since for any C, C̃(· ; ·) is computable by a constant-depth circuit, then GC,∆(· ; ·) is
computable by a constant-degree polynomial. Using the result from the previous scheme, we
have a q-AD-SIM-secure FE scheme for G.

• Given a functional encryption scheme ford G, it is easy to construct one for C. Decryption
works by first recovering the output of GC,∆ and then applying the decoder for the randomized
encoding.

22

243
Approved for Public Release; Distribution Unlimited.

• Informally, 1-AD-SIM-security follows from the fact that the ciphertext together with the
secret key reveals only the output of C̃(x), which in turn reveals no more information than
C(x). More formally, given C(x), we can simulate C̃(x) and then the ciphertext, using first
the simulator for the randomized encoding and then that for the underlying FE scheme.

• The role of the subset ∆ is similar to that in the preceding construction — to “rerandomize”
the randomness used in G, which is necessary to achieve q-AD-SIM-security.

Functional Encryption Scheme for C. Let (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec)
be a q-AD-SIM-secure scheme for G, with a simulator BdFE.Sim. We construct an encryption scheme
(FE.Setup,FE.Keygen,FE.Enc,FE.Dec) for C works as follows (that takes parameters S, v as before).

• Setup FE.Setup(1κ): Run the bounded FE setup algorithm to generate a master public-
key/secret-key pair (MPK,MSK)← BdFE.Setup(1κ).

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, do the following:

1. Choose a uniformly random set ∆ ⊆ [S] of size v;

2. Generate the secret key SKC,∆ ← BdFE.Keygen(MSK, GC,∆).

Output as secret key SKC := (∆,SKC,∆).

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X , do the following:

1. For i = 1, 2, . . . , S, choose uniformly random Ri
$← {0, 1}r.

2. Run the bounded degree encryption algorithm BdFE.Enc to produce a ciphertext

CT← BdFE.Enc(MPK, (x,R1, . . . , RS))

Output CT as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC and a ciphertext CT,

– Run the bounded FE decryption algorithm to get ỹ ← BdFE.Dec(SKC,∆,CT).

– Run the randomized encoding decoder on ỹ to get the output y ← RE.Decode(ỹ).

6.0.1 Correctness

We first show correctness of the scheme FE . Given a secret key SKC and a ciphertext CT ←
FE.Enc(MPK, x), the decryption algorithm computes

ỹ = BdFE.Dec(SKC,∆,CT) = GC,∆(x,R1, . . . , RS) = C̃(x;
⊕

a∈∆
Ra))

Of course, running RE.Decode on this should return y = C(x), by the correctness of the randomized
encoding scheme.

23

244
Approved for Public Release; Distribution Unlimited.

Bootstrapping for Unbounded Queries. Although the transformation above assumes the
knowledge of q (the bound on the number of secret key queries of the adversary), we can generalize
it to work for unbounded queries as follows. Essentially, the idea is to generate fresh (computational)
randomness for each randomized encoding using a pseudo-random function.

In particular, let {prfS}S∈{0,1}κ be a circuit family of weak pseudo-random functions. Consider
a new circuit family C that works in the following way:

GC,R(x, S)) := C̃

(
x; prfS(R)

)
Then, essentially the same construction as above works as a way to bootstrap an FE scheme

for arbitrary circuits from FE schemes for circuits that can compute the weak PRF followed by
the randomized encoding. Assuming the existence of weak PRFs and PRGs that can be computed
by circuits of degree poly(κ), we then obtain functional encryption schemes for arbitrary circuits.
Note, that by [AGVW12] it is impossible to achieve functional encryption for PRFs under NA-SIM-
security for unbounded queries. However, constructions secure under a weaker security definition
(for example, indistinguishability) are still open.

6.1 Proof of Security

Theorem 6.1. Let BDFE be a q-AD-SIM-secure (resp. q-NA-SIM-secure) functional encryption
scheme for any family of circuits computable in NC1. Then, for any family C of polynomial-size
circuits the FE scheme described above is q-AD-SIM-secure (resp. q-NA-SIM-secure).

We prove that the construction FE given in Section 6 is q-AD-SIM-secure if we start out with
a q-AD-SIM-secure scheme. This subsumes the non-adaptive variant of the proof.

Proof overview. Suppose the adversary sees q∗ queries before seeing the ciphertext. The
simulator has to simulate the ciphertext and answer the remaining secret key queries. We may
again assume that the simulator knows all of Γ1, . . . ,Γq,∆1, . . . ,∆q.

Simulating the ciphertext. The simulator gets {Cj(x), Cj , SKCj}j∈[q∗] and outputs:

CT← BdFE.Sim
(
MPK,

{
RE.Sim(Cj(x)), GCj ,∆j ,SKCj ,∆j

}
j∈[q∗]

)
with fresh independent randomness for each of the q∗ invocations of RE.Sim.

Simulating secret key SKCj , for j > q∗. Here, the simulator gets MSK and Cj(x), Cj and
needs to simulate SKCj := (∆j ,SKCj ,∆j). It proceeds as follows:

1. Picks ỹj ← RE.Sim(Cj(x)).

2. Runs BdFE.Sim(MSK, (ỹj , GCj ,∆j)) to obtain SKCj ,∆j so that CT decrypts to ỹj .

Output SKCj = (∆j ,SKCj ,∆j).

Details. We establish security via a series of Games, where the last Game corresponds to the
simulator described above.

24

245
Approved for Public Release; Distribution Unlimited.

Game 0. Normal encryption.

Game 1. We modify the distribution of the ciphertext to use BdFE.Sim as in the static case for
both the ciphertext and the secret-key queries after the adversary sees the ciphertext. That is,

CT← BdFE.Sim
(
MPK,

{
GCj ,∆j (x;R1, . . . , RS), GCj ,∆j , SKCj ,∆j

}
j∈[q∗]

)
Moreover, for j > q∗, it

1. Picks ỹj ← GCj ,∆j (x;R1, . . . , RS).

2. Runs BdFE.Sim(MSK, (ỹj , GCj ,∆j)) to obtain SKCj ,∆j so that CT decrypts to ỹj .

Output SKCj = (∆j ,SKCj ,∆j).

Game 2. We replace
{⊕

a∈∆j
Ra
}
j∈[q]

with
{
R′j
}
j∈[q]

, where for each j:

GCj ,∆j (x;R1, . . . , RS) := C̃(x;
⊕

a∈∆j

Ra)

Game 3. The output of the simulator (that is, switch to using RE.Sim).

Claim 6.1.1. The outputs of Game 0 and Game 1 are computationally indistinguishable.

Proof. This follows readily from q-AD-SIM-security of the underlying FE scheme.

Claim 6.1.2. The outputs of Game 1 and Game 2 are identically distributed.

Proof. By cover-freeness of ∆1, . . . ,∆q, we have that{⊕
a∈∆j

Ra

}
j∈[q]

and
{
R′j

}
j∈[q]

are identically distributed.

Claim 6.1.3. The outputs of Game 2 and Game 3 are computationally indistinguishable.

Proof. This follows readily from a hybrid argument and the security of the randomized encoding
scheme, which says that for each j = 1, . . . , q:

C̃j(x;R′j) and RE.Sim(Cj(x))

are computationally indistinguishable.

25

246
Approved for Public Release; Distribution Unlimited.

7 Yet Another Bootstrapping Theorem Using FHE

We show a bootstrapping theorem that transforms a q-query FE scheme supporting NC1 circuits
into a q-query FE scheme for arbitrary polynomial-size circuits using, in addition, a fully
homomorphic encryption scheme [Gen09, BV11]. Intuitively, the construction can be viewed as
follows: we reduce functional encryption for a circuit C to one for the decryption algorithm for a
fully homomorphic encryption scheme computable in NC1. Putting this together with the q-query,
NC1 ciruit scheme from Section 5 gives us Theorem 7.1.

First, we need a generalization of the construction for NC1 circuits from Section 5. Assume
that the message is split into a public part and a secret part. Then, the key observation is that the
construction from Section 5 works for any circuit C which is computable in NC1 in the variables
of the secret part. The rationale for this is the same as that used to obtain a predicate encryption
with public index from the scheme in Section 5.

We show the following theorem:

Theorem 7.1. Let BDFE be a q-query, FE scheme which works for any NC1 circuit, and let
FHE be a semantically secure fully homomorphic encryption scheme whose decryption algorithm
FHE.Dec(SK, ct) can be implemented by an NC1 circuit in the secret key. Then, for any family of
poly-size circuits C there exists a q-query FE scheme FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec).

Furthermore, if BDFE is q-NA-SIM-secure (resp. q-AD-SIM-secure), then so is FE.

Any of the recent fully homomorphic encryption schemes have decryption algorithms com-
putable in NC1. Putting these together, we get q-bounded FE schemes under the “learning with
errors” and the “ring learning with errors” assumptions (together with certain circular security
assumptions) [BV11].

Let C be an arbitrary polynomial-size circuit family. Our construction uses the following
components:

• An Inner Encryption Scheme: Let FHE = (FHE.Keygen,FHE.Enc,FHE.Eval,FHE.Dec)
be a fully homomorphic encryption scheme where the decryption algorithm FHE.Dec can be
implemented by an NC1 circuit in the secret key.

• An Outer Encryption Scheme: Let BDFE = (BdFE.Setup,BdFE.Keygen,BdFE.Enc,BdFE.Dec)
be a q-query functional encryption scheme for the family G that is computable by NC1 circuits
in their secret input defined as follows:

GC(ct,SK) :=
[
ct,FHE.Dec(SK,FHE.Eval(C, ct))

]
Note that although G has circuits that are at least as large as those for C, all we are interested
in is its degree in the secret input, namely SK.

Our q-query secure encryption scheme (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) for C works as follows.

• Setup FE.Setup(1κ): Run the bounded FE setup algorithm to generate a master public-
key/secret-key pair:

(MPK,MSK)← BdFE.Setup(1κ)

26

247
Approved for Public Release; Distribution Unlimited.

• Key Generation FE.Keygen(MSK, C): On input the master secret key MSK and a circuit
C ∈ C, run the bounded FE key generation algorithm to generate a secret key

SKC ← BdFE.Keygen(MSK, GC)

for the circuit GC .

• Encryption FE.Enc(MPK, x): On input the master public key MPK and an input message
x ∈ X :

1. Choose a uniformly random public-key/secret-key pair for the fully homomorphic
encryption scheme FHE by running

(PK,SK)← FHE.Keygen(1κ)

2. Encrypt the input message x using the FHE encryption algorithm

ct← FHE.Enc(PK, x)

3. Run the bounded FE encryption algorithm to encrypt the ciphertext ct together with
the fully homomorphic secret key SK:

CT← BdFE.Enc(MPK, (ct, SK))

Output CT as the ciphertext.

• Decryption FE.Dec(SKC ,CT): On input a secret key SKC and a ciphertext CT, run the
bounded FE decryption algorithm to get [ct, y]← BdFE.Dec(SKC ,CT), and output [ct, y].

7.0.1 Correctness and Security

We first show correctness of the scheme FE . Given a secret key SKC and a ciphertext CT ←
FE.Enc(MPK, x), the decryption algorithm computes

[ct, y] = BdFE.Dec(SKC ,CT)

= BdFE.Dec(SKC ,BdFE.Enc(MPK, (ct,SK)))

(where ct← FHE.Enc(PK, x))

= GC(ct,SK)

= [ct,FHE.Dec(SK,FHE.Eval(C, ct))]

= [ct, C(x)]

We establish security via a series of Games. The simulator is described in Game 2.

Game 0. Normal encryption.

Game 1. Run the q-query simulator on input ([ct← FHE.Enc(PK, x), Ci(x)], GCi ,SKi)
n
i=1, where

n ≤ q is the number of oracle query calls made to BdFE.Keygen.

27

248
Approved for Public Release; Distribution Unlimited.

Game 2. Run the q-query simulator on input ([ct← FHE.Enc(PK, 0), Ci(x)], GCi , SKi)
n
i=1, where

n ≤ q is the number of oracle query calls made to BdFE.Keygen.

References

[AGVW12] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. Cryptology ePrint Archive,
Report 2012/468, 2012. http://eprint.iacr.org/.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, pages 213–229, 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, STOC ’88, pages 1–10,
New York, NY, USA, 1988. ACM.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, pages 97–106, 2011.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, pages 290–307, 2006.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In STOC, pages 639–648, 1996. Longer version at
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-682.pdf.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In
ASIACRYPT, pages 502–518, 2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In In EUROCRYPT, pages 65–82. Springer-Verlag, 2002.

28

249
Approved for Public Release; Distribution Unlimited.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In CRYPTO, pages 432–450, 2000.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[GLW12] Shafi Goldwasser, Allison B. Lewko, and David A. Wilson. Bounded-collusion IBE
from key homomorphism. In TCC, pages 564–581, 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference on
Computer and Communications Security, pages 89–98, 2006.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, STOC ’07, pages 21–30, New York, NY, USA,
2007. ACM.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, pages 335–354, 2004.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages 146–
162, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT,
volume 6110 of Lecture Notes in Computer Science, pages 62–91. Springer, 2010.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In ACM Conference on Computer and Communications
Security, pages 195–203, 2007.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 191–208. Springer, 2010.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

29

250
Approved for Public Release; Distribution Unlimited.

crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
crypto.stanford.edu/craig
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM Conference on Computer and Communications Security, pages
463–472, 2010.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 457–473. Springer, 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

A Relations between Definitions of Functional Encryption

In this section, we first describe simulation-based and indistinguishability-based definitions for
many input messages functional encryption, largely based on the recent works of Boneh, Sahai and
Waters [BSW11] and O’Neill [O’N10]. We then go on to show relations between various flavors of
these definitions.

A.1 A Simulation-based Definition

Definition A.1 (NA-SIM- and AD-SIM- Security). Let FE be a functional encryption scheme for
a circuit family C =

{
Cκ : Xκ → Yκ

}
κ∈N. For every p.p.t. adversary A = (A1, A2) and a p.p.t.

simulator S = (S1, S2), consider the following two experiments:

ExprealFE,`,A(1κ): ExpidealFE,`,S(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (x1, . . . , x`, st) ←A
FE.Keygen(MSK,·)
1 (MPK)

3: CTi ← FE.Enc(MPK, xi)

4: α ← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output (α, x1, . . . , x`)

1: (MPK,MSK)← FE.Setup(1κ)

2: (x1, . . . , x`, st) ←A
FE.Keygen(MSK,·)
1 (MPK)

I Let (C1, . . . , Cq) be A1’s oracle queries
I Let SKi be the oracle reply to Ci
I Let V :=

{
yij = Ci(xj), Ci, SKi

}
.

3: (CT1, . . . ,CT`, st
′)← S1(MPK,V, 1|xi|)

4: α← A
O′(MSK,st′,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output (α, x1, . . . , x`)

We distinguish between two cases of the above experiment:

1. The adaptive case, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

30

251
Approved for Public Release; Distribution Unlimited.

• the oracle O′(MSK, st′, ·) is the second stage of the simulator, namely S
Ux(·)
2 (MSK, st′, ·),

where Ux(C) = C(x) for any C ∈ C.

The simulator algorithm S2 is stateful in that after each invocation, it updates the state st′

which is carried over to its next invocation. We call a simulator algorithm S = (S1, S2)
admissible if, on each input C, S2 makes just a single query to its oracle Ux(·) on C itself.

The functional encryption scheme FE is then said to be (q,many)-simulation-secure for many
messages against adaptive adversaries ((q,many)-AD-SIM-secure, for short) if there is an
admissible p.p.t. simulator S = (S1, S2) such that for every polynomial function ` = `(κ)
and for every p.p.t. adversary A = (A1, A2) that makes at most q queries, the following two
distributions are computationally indistinguishable:{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,S(1κ)

}
κ∈N

In the special case where `(κ) = 1, we will call the scheme (q, one)-AD-SIM-secure.

2. The non-adaptive case, where the oracles O(MSK, ·) and O′(MSK, st, ·) are both the “empty
oracles” that return nothing: the functional encryption scheme FE is then said to be
(q,many)-query simulation-secure for many messages against non-adaptive adversaries
((q,many)-NA-SIM-secure, for short) if there is a p.p.t. simulator S = (S1,⊥) such that
for every polynomial function ` = `(κ) for every p.p.t. adversary A = (A1, A2) that makes
at most q queries, the two distributions above are computationally indistinguishable. In the
special case where `(κ) = 1, we will call the scheme (q, one)-NA-SIM-secure.

Note that this definition is the generalization of the one presented in Section 3 to the case
where the adversary receives multiple ciphertexts. Intuitively, the above security definition states
that whatever information adversary is able to learn from the ciphertexts and secret keys, can be
obtained by a simulator from the secret keys and the outputs of the functionality for the messages
only.

We remark that our definitions imply (and are stronger than) those of presented in the work
of Boneh, Sahai and Waters [BSW11]. More formally, for the adaptive variant we can instantiate
[BSW11] simulator (Sim1, SimO, Sim2) as follows.

1. Sim1 runs FE.Setup and sets pp := MPK, σ := MSK.

2. SimO runs FE.Keygen algorithm on MSK and updates σ to include all oracle queries and
replies (Ci,SKi).

3. Sim2 computes yi = Ux(·) for all Ci using its oracle. Next, it runs our simulator
S1(MPK, {yi, Ci, SKi}) to obtain the ciphertext CT. It invokes A◦ on the ciphertext, and
on any FE.Keygen call it uses our S2 to obtain a secret key. Finally, output the same α as
A◦. The non-adaptive variant follows similarly.

A.2 An Indistinguishability-Based Definition

Definition A.2 (NA-IND- and AD-IND-Security). Let FE be a functional encryption scheme for
a circuit family C =

{
Cκ : Xκ → Yκ

}
κ∈N. For every function ` = `(κ), every p.p.t. adversary

A = (A1, A2), consider the following two experiments:

31

252
Approved for Public Release; Distribution Unlimited.

Exp
(0)
FE,A(1κ): Exp

(1)
FE,A(1κ):

1: (MPK,MSK)← FE.Setup(1κ)

2: (~x0, ~x1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

I where ~x0 = (x0[1], . . . , x0[`])
I and ~x1 = (x1[1], . . . , x1[`])

3: CTi ← FE.Enc(MPK, x0[i]) ∀i ∈ [`]

4: b← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output b

1: (MPK,MSK)← FE.Setup(1κ)

2: (~x0, ~x1, st)← A
FE.Keygen(MSK,·)
1 (MPK)

I where ~x0 = (x0[1], . . . , x0[`])
I and ~x1 = (x1[1], . . . , x1[`])

3: CTi ← FE.Enc(MPK, x1[i]) ∀i ∈ [`]

4: b← A
O(MSK,·)
2 (MPK,CT1, . . . ,CT`, st)

5: Output b

Define an admissible adversary A = (A1, A2) as one which makes at most q oracle queries and
C(x0[i]) = C(x1[i]) for each query C and every i ∈ [`]. We distinguish between two cases of the
above experiment:

1. The adaptive case, where the oracle O(MSK, ·) = FE.Keygen(MSK, ·): the functional
encryption scheme FE is said to be indistinguishable-secure for many messages against
adaptive adversaries ((q,many)-AD-IND-secure, for short) if for every polynomial function
` = `(κ) and every admissible p.p.t. admissible adversary A = (A1, A2), the advantage of A
defined as below is negligible in the security parameter κ:

AdvFE,`,A(κ) :=
∣∣Pr[Exp

(0)
FE,`,A(1κ) = 1]− Pr[Exp

(1)
FE,`,A(1κ) = 1]

∣∣
where the probability is over the random coins of the algorithms of the scheme FE and that
of A. In the special case where `(κ) = 1, we will call the scheme (q, one)-AD-IND-secure.

2. The non-adaptive case, where the oracle O(MSK, ·) is the “empty oracle” that returns nothing:
the functional encryption scheme FE is said to be indistinguishable-secure for many messages
against non-adaptive adversaries ((q,many)-NA-IND-secure, for short) if for every polynomial
function ` = `(κ) and every admissible p.p.t. adversary A = (A1, A2), the advantage of A
defined as above is negligible in the security parameter κ.

In the special case where `(κ) = 1, we will call the scheme (q, one)-NA-IND-secure.

Note that this definition is identical to the definitions presented in [BSW11] and [O’N10], except
that they define it for a single message only.

A.3 Relations Between Definitions

In this section, we prove the following relations between the definitions.

• Non-adaptive Definitions: When considering non-adaptive definitions (namely, where the
adversary is constrained to making secret key queries only before he receives the challenge
ciphertext), we show that one-message definitions are equivalent to many-message definitions,
both in the indistinguishability and the simulation worlds.

Put together, this shows that it is sufficient to prove security for one message in the simulation
sense, which is precisely what we will do for our schemes.

32

253
Approved for Public Release; Distribution Unlimited.

NA-SIMone

NA-INDone

NA-SIM

NA-IND

[O’N10] ×[BSW11]

Theorem A.1

[O’N10]1 ×[BSW11]

Theorem A.3

AD-SIMone

AD-INDone

AD-SIM2

AD-IND

×[BSW11]

×

×[BSW11]

Theorem A.3

The Non-Adaptive World The Adaptive World

Figure 1: Relations between definitions of functional encryption in the non-adaptive and adaptive flavors. Regular
blue arrows indicate an implication between the definitions, and a red arrow with a cross on it indicates a separation.
The citations for all non-trivial implications and separations are also shown. Note that we omit writing q in the
abbreviations above (i.e. AD-SIM=(q,many)-AD-SIM, AD-SIMone=(q, one)-AD-SIM; similarly for the rest of the
abbreviations.)

• Adaptive Definitions: When considering adaptive definitions (namely, where the adversary
is allowed to make secret key queries after receiving the challenge ciphertext) we show that
for any q, (q, one)-AD-SIM implies (q, one)-AD-IND which is equivalent to (q,many)-AD-IND.
We also construct a functional encryption scheme and prove it secure under (q, one)-AD-SIM
definition. Therefore, from the work of Boneh et al. [BSW11] we can conclude that (q, one)-
AD-SIM does not imply (q,many)-AD-SIM.

These relationships are summarized in Figure 1.

Theorem A.1. Let FE be (q, one)-NA-SIM-secure functional encryption scheme for a circuit family
C. Then, FE is also (q,many)-NA-SIM-secure.

Proof. Let S1 be the single message p.p.t. simulator. We construct a p.p.t. simulator Sm.
Intuitively, the multiple message simulator will just invoke the single message simulator many
times. Then, using the standard hybrid argument we can conclude that it produces output
indistinguishable from the real. Let ` = `(k) be arbitrary polynomial function and let A = (A1, A2)
be arbitrary p.p.t. adversary.

On input (MPK, {yij = Ci(xj), Ci, SKi}) the simulator Sm proceeds as follows: For each j, let

Vj := {yij = Ci(xj), Ci,SKi}i∈[q]

1This proof was not explicitly given in [O’N10], but a similar proof for single message definitions can be easily
extended.

2General functional encryption for this definition was shown impossible in [BSW11] when adversary makes just 2
FE.Keygen calls (2-bounded collusion). Since we show a secure construction satisfying AD-SIMone, this implication
follows.

33

254
Approved for Public Release; Distribution Unlimited.

The simulator computes and outputs the ciphertext1:

(CT1, . . . ,CT`), where CTj ← S1(MPK, Vj)

Now, let D be the distinguisher between the real and ideal experiments. Then, by the hybrid
argument D can distinguish between the experiments where A2 is given

(CTr1, . . . ,CT
r
i−1,CT

s
i , . . . ,CT

s
`) vs (CTr1, . . . ,CT

r
i ,CT

s
i+1, . . . ,CT

s
`)

for some i, where CTr’s and CTs’s correspond to the real and simulated ciphertexts, respectively.

We now construct a single message adversary B = (B1, B2) and a distinguisher D′ as follows:

1. B
FE.Keygen(MSK,·)
1 (MPK) runs A1 and replies to its oracle queries appropriately to get

(x1, . . . , x`, st). It outputs

(xi, st
′ = (x1, . . . , xi−1, xi+1, . . . , x`, st, (Cj , SKj)j∈[q])

2. B2(MPK,CT, st′) first runs the real encryption algorithm on input messages x1, . . . , xi−1 to
obtain CTr1, . . . ,CT

r
i−1. Then, for all j ≥ i+ 1 it sets

Vj := {yij = Ci(xj), Ci,SKi}i∈[q]

and runs the single message simulator to get a ciphertext CTsj ← S1(MPK, Vj).

3. Finally, it invokes A2(MPK,CTr1, . . . ,CT
r
i−1,CT,CT

s
i+1, . . . ,CT

s
`) and outputs whatever it

outputs.

4. The distinguisher D′ is the same as D.

We showed that if there exists a distinguisher for many message simulator, then we can break
the security for the single message simulator. This concludes the proof.

Theorem A.2. Let FE be (q, one)-AD-SIM-secure functional encryption scheme for a circuit family
C. Then, FE is also (q, one)-AD-IND-secure.

Proof. Let A = (A1, A2) be the admissible adversary such that AdvFE,`,A is non-negligible. We
construct adversary B = (B1, B2) against (q, one)-AD-SIM-security.

• BFE.Keygen(MSK,·)
1 (MPK): Run the adversary A1 and reply to its oracle queries using its own

oracle to obtain (x0, x1, st). Output (xb, st
∗ := (st, x0, x1), where b

$← {0, 1}.

• BO
′(MSK,st′,·)

2 (MPK,CT, st): Run the adversary A2(MPK,CT, st) replying to its oracle queries
using its own oracle to obtain b′. Output α := (b′, st′).

1Note, that this theorem does not extend to the adaptive definition. In particular, the proof breaks down when
even trying to construct the multiple message simulator to “forge” the secret keys SK.

34

255
Approved for Public Release; Distribution Unlimited.

Now, in the real experiment b = b′ with probability 1/2 + ε for some noticeable ε. In the ideal
experiment since the simulator is admissible, it must make the same oracle queries to Ux(·) as B2

makes, which are the same queries as A2 makes. Hence, it must be the case that Cj(x0) = Cj(x1)
for all j. Therefore, information theoretically the simulator gets no information about the bit b
and hence cannot produce the corresponding ciphertext with probability better than 1/2. Hence,
we can distinguish between the ideal and real experiment.

Theorem A.3. Let FE be (q, one)-AD-IND/NA-IND-secure functional encryption scheme for a
circuit family C. Then, FE is also (q,many)-AD-IND/NA-IND-secure, respectively.

Proof. These proofs follow a standard hybrid argument.

As a result, we focus on proving only (q, one)-NA-SIM and (q, one)-AD-SIM for our constructions.
For simplicity we denote it as q-NA-SIM- and q-AD-SIM- security.

B Probabilistic Proofs

B.1 Small Pairwise Intersection

Lemma B.1. Let Γ1, . . . ,Γq ⊆ [N] be randomly chosen subsets of size tD+1. Let t = Θ(q2κ), N =
Θ(D2q2t). Then,

Pr

[∣∣∣∣ ⋃
i6=j

(Γi ∩ Γj)

∣∣∣∣ ≤ t] = 1− 2−Ω(κ)

where the probability is over the random choice of the subsets Γ1, . . . ,Γq.

Proof. For all i, j ∈ [q] such that i 6= j, let Xij be a random variable denoting the size of the
intersection of Si and Sj . Let

X =
∑

i,j∈[q],i6=j

Xij

It is not hard to see that Xij ’s are independent random variables. By the linearity of expectation,

E[X] =
∑

i,j∈[q],i6=j

E[Xij]

Now, for a fixed set Si and a randomly chosen Sj the size of the intersection of Si and Sj follows a
hypergeometric distribution, where tD+ 1 serves both as the number of success states and number
of trials, and N is the population size. Therefore,

E[Xij] =
(tD + 1)(tD + 1)

N
=

(tD + 1)2

N

Hence,

µ = E[X] =
q(q − 1)(tD + 1)2

N
≤ 10q2t2D2

N

By Chernoff bound, for any σ ≥ 0:

Pr[X > (1 + σ)µ] < exp

(
−σ2

2 + σ
µ

)
35

256
Approved for Public Release; Distribution Unlimited.

Setting t = Θ(q2κ), N = Θ(D2q2t) gives us µ = Θ(t) = Θ(q2κ). Applying Chernoff bound,

Pr[X > t] = 2−Ω(κ)

B.2 Cover-Freeness

Lemma B.2. Let ∆1, . . . ,∆q ⊆ [S] be randomly chosen subsets of size v. Let v(κ) = Θ(κ) and
S(κ) = Θ(vq2). Then, for all i ∈ [q]

Pr[∆i \
(⋃
j 6=i

∆j

)
6= φ] = 1− 2−Ω(κ)

where the probability is over the random choice of subsets ∆1, . . . ,∆q.

Proof. Let i ∈ [q] be arbitrary. Let G :=
⋃
j 6=i ∆j . Clearly, |G| = (q − 1)v. Let X be the random

variable denoting |∆i \G|. Now,

|∆i \G| = |∆i| − |∆i ∩G| = v − |∆i ∩G|

Hence,
E[X] = v − E[|∆i ∩G|]

Now, E[|∆i ∩G|] follows a hypergeometric distribution with v success states, v(q − 1) trials and S
population size. Hence,

E[|∆i ∩G|] =
v2(q − 1)

S

Therefore, E[X] = v − (v2(q − 1))/S. Setting, v(κ) = Θ(κ) and S(κ) = Θ(vq2) we obtain that
µ = E[X] = Θ(κ). By Chernoff bound, for any 0 ≤ σ ≤ 1:

Pr[X ≤ (1− σ)µ] < exp

(
−σ2

2
µ

)
Applying it we obtain that Pr[X ≤ (1− σ)µ] = 2−Ω(κ). Hence,

Pr[∆i \
(⋃
j 6=i

∆j

)
6= φ] = Pr[X > 0] ≥ Pr[X > (1− σ)µ] = 1− 2−Ω(κ)

36

257
Approved for Public Release; Distribution Unlimited.

Attribute-Based Encryption for Circuits

Sergey Gorbunov∗ Vinod Vaikuntanathan† Hoeteck Wee‡

May 31, 2013

Abstract

In an attribute-based encryption (ABE) scheme, a ciphertext is associated with an `-bit
public index ind and a message m, and a secret key is associated with a Boolean predicate P .
The secret key allows to decrypt the ciphertext and learn m iff P (ind) = 1. Moreover, the
scheme should be secure against collusions of users, namely, given secret keys for polynomially
many predicates, an adversary learns nothing about the message if none of the secret keys can
individually decrypt the ciphertext.

We present attribute-based encryption schemes for circuits of any arbitrary polynomial
size, where the public parameters and the ciphertext grow linearly with the depth of the
circuit. Our construction is secure under the standard learning with errors (LWE) assumption.
Previous constructions of attribute-based encryption were for Boolean formulas, captured by
the complexity class NC1.

In the course of our construction, we present a new framework for constructing ABE
schemes. As a by-product of our framework, we obtain ABE schemes for polynomial-size
branching programs, corresponding to the complexity class LOGSPACE, under quantitatively
better assumptions.

∗University of Toronto. Email: sgorbunov@cs.toronto.edu. Supported by Ontario Graduate Scholarship (OGS).
†University of Toronto. Email: vinodv@cs.toronto.edu. Supported by an NSERC Discovery Grant and by

DARPA under Agreement number FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or the U.S. Government.
‡George Washington University. Email: hoeteck@alum.mit.edu. Supported by NSF CAREER Award CNS-

1237429.

258
Approved for Public Release; Distribution Unlimited.

1 Introduction

Attribute-based encryption [SW05, GPSW06] is an emerging paradigm for public-key encryption
which enables fine-grained control of access to encrypted data. In traditional public-key encryption,
access to the encrypted data is all or nothing: given the secret key, one can decrypt and read the
entire message, but without it, nothing about the message is revealed (other than its length). In
attribute-based encryption, an encryption of a message m is labeled with a public attribute vector
ind (also called the “index”), and secret keys are associated with predicates P . A secret key skP
decrypts the ciphertext and recovers the message m if and only if ind satisfies the predicate, namely
if and only if P (ind) = 1.

Attribute-based encryption captures as a special case previous cryptographic notions such as
identity-based encryption (IBE) [Sha84, BF01, Coc01] and fuzzy IBE [SW05]. It has also found
applications in scenarios that demand complex policies to control access to encrypted data, as well
as in designing cryptographic protocols for verifiably outsourcing computations [PRV12].

The crucial component in the security requirement for attribute-based encryption stipulates
that it resists collusion attacks, namely any group of users collectively learns nothing about the
message m if none of them is individually authorized to decrypt the ciphertext.

In the past few years, there has been significant progress in attribute-based encryption in terms
of efficiency, security guarantees, and diversifying security assumptions [GPSW06, Wat09, LW10,
LOS+10, CHKP12, ABB10a, OT10]. On the other hand, little progress has been made in terms
of supporting larger classes of predicates. The state of the art is Boolean formulas [GPSW06,
LOS+10, OT10], which is a subclass of log-space computations. Constructing a secure attribute-
based encryption for all polynomial-time predicates was posed as a central challenge by Boneh,
Sahai and Waters [BSW11]. We resolve this problem affirmatively in this work.

2 Our Contributions

We construct attribute-based encryption schemes for circuits of every a-priori bounded depth, based
on the learning with errors (LWE) assumption. In the course of our construction, we present a
new framework for constructing attribute-based encryption schemes, based on a primitive that we
call “two-to-one recoding” (TOR). Our methodology departs significantly from the current line of
work on attribute-based encryption [GPSW06, LOS+10] and instead, builds upon the connection
to garbled circuits developed in the context of bounded collusions [SS10b, GVW12]. Along the way,
we make the first substantial progress towards the 25-year-old open problem of constructing (fully)
reusable garbled circuits. In a follow-up work, Goldwasser et al. [GKP+13] completely resolved this
open problem; moreover, their construction relies crucially on our ABE scheme as an intermediate
building block. More details follow.

2.1 Attribute-based encryption

For every class of predicate circuits with depth bounded by a polynomial function d = d(λ) (where
λ is the security parameter), we construct an ABE scheme that supports this class of circuits, under
the learning with errors (LWE) assumption. Informally, the (decisional) LWE problem [Reg09] asks
to distinguish between “noisy” random linear combinations of n numbers s = (s1, . . . , sn) ∈ Znq from
uniformly random numbers over Zq.

1

259
Approved for Public Release; Distribution Unlimited.

Regev [Reg09] showed that solving the LWE problem on the average is as hard as (quantumly)
solving several notoriously difficult lattice problems in the worst case. Since then, the LWE
assumption has become a central fixture in cryptography. We now have a large body of work
building cryptographic schemes under the LWE assumption, culminating in the construction of a
fully homomorphic encryption scheme [BV11].

The key parameter that determines the hardness of LWE is the ratio between the modulus q
and the maximum absolute value of the noise B; as such, we refer to q/B as the hardness factor
of LWE. The problem becomes easier as this ratio grows, but is believed to be hard for 2n

ε
-time

algorithms when q/B = 2O(nε), where 0 < ε < 1/2. Our results will hold as long as the latter holds
for some constant ε.

In particular, we show:

Theorem 2.1 (informal). Assume that there is a constant 0 < ε < 1 for which the LWE problem
is hard for a exp(nε) factor in dimension n, for all large enough n. Then, for any polynomial d,
there is a selectively secure attribute encryption scheme for general circuits of depth d.

Moreover, our scheme has succinct ciphertexts, in the sense that the ciphertext size depends
polynomially on the depth d and the length ` of the attribute vector ind, but not on the size of the
circuits in the class. The construction as stated achieves the weaker notion of selective security, but
we can easily obtain a fully secure scheme following [BB04] (but using sub-exponential hardness in
a crucial way):

Corollary 2.2. Assume that there is a constant 0 < ε < 1/2 such that the LWE problem with a
factor of exp(nε) is hard in dimension n for exp(nε)-time algorithms. Then, for any polynomial d,
there is a fully secure attribute-based encryption scheme for general circuits of depth d.

We also obtain a new ABE scheme for branching programs (which correspond to the complexity
class LOGSPACE) under the weaker quasi-polynomial hardness of LWE:

Theorem 2.3 (informal). There exist attribute-based encryption schemes for the class of branching
programs under either (1) the hardness of the LWE problem with an nω(1) factor, or (2) the bilinear
decisional Diffie-Hellman assumption.

Here, there is no a-prori bound on the size or the depth of the branching program. In addition,
we achieve succinct ciphertexts of size O(`) where ` is the number of bits in the index. Prior to this
work, we only knew how to realize IBE and inner product encryption under nω(1)-hardness of LWE
[CHKP12, ABB10a, AFV11], whereas our bilinear construction is a different way to achieve the
results of Goyal et al. [GPSW06] which uses secret-sharing for general access structures. Our
construction exploits a combinatorial property of branching programs to overcome limitations
of previous approaches based on secret sharing for monotone formulas (c.f. [ABV+12]). The
construction is inspired by a pairings-based scheme for regular languages in [Wat12].

We now move on to provide a technical roadmap of our construction: first, we define a new
primitive that we call a two-to-one recoding (TOR) scheme; we then show how TOR gives us an
attribute-based encryption scheme for circuits, and how to construct a TOR scheme from the LWE
assumption.

2

260
Approved for Public Release; Distribution Unlimited.

2.2 New Framework: TOR

A Two-to-One Recoding (TOR) scheme is a family of (probabilistic) functions {Encode(pk, ·)}
indexed by pk, together with a “two-to-one” recoding mechanism. The basic computational security
guarantee for Encode(pk, ·) is that of (correlated) pseudorandomness [RS10]: Encode(pk, s) should
be pseudorandom given Encode(pki, s) for polynomially many pki’s, where s is a uniformly random
“seed”.

The recoding mechanism guaratees that given any triple of public keys (pk0, pk1, pktgt), there
is a recoding key rk that allows us to perform the transformation

(Encode(pk0, s),Encode(pk1, s)) 7→ Encode(pktgt, s).

Such a recoding key rk can be generated using either of the two secret keys sk0 or sk1. Furthermore,
the recoding mechanism must satisfy a natural simulation requirement: namely, we can generate rk
given just pk0, pk1 (and neither of the two secret keys), if we are allowed to “program” pktgt. That
is, there are three ways of generating the pair (pktgt, rk) that are (statistically) indistinguishable:
(1) given pktgt, generate rk using the secret key sk0; (2) given pktgt, generate rk using the secret key
sk1; and (3) generate rk without either secret key, by “programming” the output public key pktgt.

This requirement demonstrates the intuitive guarantee that we expect from a two-to-one
recoding mechanism: namely, the recoding key is “useless” given only one encoding, but not both
encodings. For example, it is easy to see that given Encode(pk0, s) and rk (but not Encode(pk1, s)),
the output Encode(pktgt, s) is pseudorandom. Indeed, this is because rk could as well have been
“simulated” using sk1, in which case it is of no help in the distinguishing task.

The simulation requirement also rules out the trivial construction from trapdoor functions where
rk is a trapdoor for inverting Encode(pk0, ·) or Encode(pk1, ·).

From TOR to Garbled Circuits. We start from the observation that our TOR primitive
implies a form of reusable garbled circuits with no input or circuit privacy, but instead, with a form
of authenticity guarantee. As we will see, this leads directly into our attribute-based encryption
scheme.

Consider a two-input boolean gate with input wires u, v and output wire w, computing a function
G : {0, 1} × {0, 1} → {0, 1}. In Yao’s garbled circuit construction, we associate each wire with a
pair of strings (called “labels”), and we provide a translation table comprising of four values vb,c
where vb,c allows us to perform the transformation:

Lu,b, Lv,c 7→ Lw,G(b,c)

The garbled circuits construction guarantees that given the translation table and labels Lu,b∗ and
Lv,c∗ for specific input bits b∗ and c∗, we can obtain Lw,G(b∗,c∗); however, the other label at the
output, namely Lw,1−G(b∗,c∗) remains hidden.

In our setting, we replace labels with public keys, so that each wire is associated with a pair of
public keys. As before, we also provide a translation table comprising four values rkb,c where the
recoding key rkb,c allows us to perform the transformation

Encode(pku,b, s),Encode(pkv,c, s) 7→ Encode(pkw,G(b,c), s)

The security properties of the TOR scheme then give us the following guarantee: Given the
translation table and encodings of s corresponding to b∗, c∗, we clearly compute the encoding

3

261
Approved for Public Release; Distribution Unlimited.

of s corresponding to G(b∗, c∗). However, the encoding corresponding to 1 − G(b∗, c∗) remains
pseudorandom.

Moreover, crucially, the translation table is independent of s, so we can now “reuse” the
translation table by providing fresh encodings with different choices of s. In a sentence, replacing
strings by functions gives us the power of reusability.

In the garbled circuits construction, the four entries of the table are permuted and thus, one can
perform the translation even without knowing what the input bits b∗ and c∗ are. This is possible
because there is an efficient way to verify when the “correct” translation key is being used. In
contrast, in the reusable construction above, one has to know exactly which of the recoding keys to
use. This is part of the reason why we are unable to provide circuit or input privacy, but instead,
only guarantee authenticity, namely that an adversary can obtain only one of the two possible
encodings at the output wire.

This construction forms the cornerstone of the subsequent work of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] who construct reusable garbled circuits with input and
circuit privacy, by additionally leveraging the power of fully homomorphic encryption [Gen09,
BV11].

From TOR to Attribute-Based Encryption. How is all this related to attribute-based
encryption? In our attribute-based encryption scheme for circuits, the encodings of s are provided
in the ciphertext, and the translation tables are provided in the secret key. More precisely, each
wire is associated with two TOR public keys, and the encryption of a message m under an index
ind is obtained by computing Encode(pki,indi , s) for every input wire i. The output encoding
Encode(pkout, s) is then used to mask the message. We obtain the secret key corresponding to
a circuit C by “stitching” multiple translation tables together, where the public keys for the input
and output wires are provided in the public parameters, and we pick fresh public keys for the
internal wires during key generation. In a nutshell, this gives us the guarantee that given a secret
key skC and an encryption Enc(ind,m) such that C(ind) = 1, we can compute Encode(pkout, s) and
thus recover the message. On the other hand, this value looks pseudorandom if C(ind) = 0.

In our outline of reusable garbled circuits with authenticity, we wanted to reuse the garbled
circuit G(C) across multiple encryptions with indices ind1, ind2, . . . on which C always evaluates to
0. In attribute-based encryption, we also want reusability across multiple circuits C1, C2, . . . all of
which evaluate to 0 on a fixed index ind (in addition to multiple indices). Fortunately, the strong
security properties of the TOR primitive provide us with this guarantee.

To obtain attribute-based encryption for branching programs, we are able to support a different
notion of translation tables, which we can realize using a slightly weaker notion of TOR. In
branching programs, the transition function depends on an input variable and the current state.
The fact that one of these two values is always an input variable makes things simpler; in circuits,
both of the input values to a gate could be internal wires.

TOR from LWE. We show how to instantiate TOR from LWE, building upon previous lattice-
based IBE techniques in [GPV08, CHKP12, ABB10a, ABB10b]. The public key is given by a
matrix A ∈ Zn×mq , and

Encode(A, s) = AT s + e

4

262
Approved for Public Release; Distribution Unlimited.

where s ∈ Znq , e ∈ Zmq is an error vector, and AT denotes the transpose of the matrix A.
(Correlated) pseudorandomness follows directly from the LWE assumption. Given A0,A1,Atgt ∈
Zn×mq , the recoding key rk is given by a low-norm matrix R ∈ Z2m×m

q such that

[A0 ‖ A1] R = Atgt

Note that

RT

[
AT

0 s + e0

AT
1 s + e1

]
≈ AT

tgts

which gives us the recoding mechanism. There are three ways of generating the public key Atgt

together with the recoding key R: (1) using the trapdoor for A0, (2) using the trapdoor for A1,
or (3) first generating R and then “programming” Atgt := [A0||A1] R. These three ways are
statistically indistinguishable by the “bonsai trick” of [CHKP12]. In fact, our recoding mechanism
is very similar to the lattice delegation mechanism introduced in [ABB10b], which also uses random
low norm matrices to move from one lattice to another.

The multiplicative mechanism for recoding means that the noise grows exponentially with the
number of sequential recodings. This, in turn, limits the depth of the circuits we can handle. In
particular, the noise grows by a multiplicative poly(n) factor on each recoding, which means that
after depth d, it becomes nO(d). Since nO(d) < q/4 < 2n

ε
, we can handle circuits of depth Õ(nε)

(here, the first inequality is for correctness and the second for security). Viewed differently, setting
the LWE dimension n = d1/ε lets us handle circuits of maximum depth d = d(`).

Our weak TOR for branching programs uses an additive mechanism, namely the recoding
key is given by a low-norm matrix R ∈ Zm×mq such that A0R = Atgt − A1. Note that

RT (AT
0 s+e0)+(AT

1 s+e1) ≈ AT
tgts which gives us our recoding mechanism. Since in our branching

program construction, AT
0 s + e0 will always be a fresh encoding provided in the ciphertext, the

noise accumulation is additive rather than multiplicative.

2.3 Applications

Let us now explain the application of our result to the problem of publicly verifiable delegation of
computation without input privacy.

A verifiable delegation scheme allows a computationally weak client to delegate expensive
computations to the cloud, with the assurance that a malicious cloud cannot convince the client
to accept an incorrect computation [Mic00, GKR08, GGP10, CKV10, AIK10]. Recent work of
Parno, Raykova and Vaikuntanathan [PRV12] showed that any attribute-based encryption scheme
for a class of circuits with encryption time at most linear in the length of the index immediately
yields a two-message delegation scheme for the class in the pre-processing model. Namely, there
is an initial pre-processing phase which fixes the circuit C the client wishes to compute, produces
a circuit key and sends it to the server. Afterwards, to delegate computation on an input x, the
client only needs to send a single message. Moreover, the ensuing delegation scheme satisfies public
delegatability, namely anyone can delegate computations to the cloud; as well as public verifiability,
namely anyone can check the cloud’s work (given a “verification” key published by the client). The
previous delegation schemes that satisfy both these properties (secure in the standard model)
supported the class NC1 [PRV12, GPSW06, LW12]. Our attribute-based encryption schemes for
circuits gives us a verifiable delegation scheme for all circuits, where the computation time of the
client in the online phase is polynomial in the length of its input and the depth of the circuit, but

5

263
Approved for Public Release; Distribution Unlimited.

is otherwise independent of the circuit size. We note that this scheme does not guarantee privacy
of the input. Building on this work, Goldwasser et al. [GKP+13] show how to achieve a publicly
verifiable delegation scheme with input privacy.

2.4 Related Work

Prior to this work, the state-of-art for lattice-based predicate encryption was threshold and inner
product predicates [ABV+12, AFV11]; realizing Boolean formula was itself an open problem. A
different line of work considers definitional issues in the more general realm of functional encryption
[BSW11, O’N10], for which general feasibility results are known for the restricted setting of a-
priori bounded collusions developed from classical “one-time” garbled circuits [SS10a, GVW12] (the
ciphertext size grows with both the circuit size and the collusion bound). Our methodology takes a
fresh perspective on how to achieve reusability of garbled circuits with respect to authenticity. Our
primitive (TOR) can be thought of as a generalization of the notion of proxy re-encryption [BBS98,
AFGH06, HRSV11] which can be thought of as a one-to-one re-encryption mechanism.

Independent work. Boyen [Boy13] gave a construction of an ABE scheme for Boolean formulas
based on LWE; our result for LWE-based branching program subsumes the result since Boolean
formulas are a subclass of branching programs. Garg, Gentry, Halevi, Sahai and Waters [GGH+13]
gave a construction of attribute-based encryption for general circuits under a DBDH-like assumption
in multi-linear groups (unfortunately, there is no known candidate for realizing such an assumption),
as well as a non-standard assumption in ideal lattices [GGH12]. The public parameters in the
construction also grow with the depth of the circuit.

Subsequent Work. Our attribute-based encryption scheme has been used as the crucial
component in the subsequent work of [GKP+13] to construct a (private index) functional encryption
scheme with succinct ciphertexts. They also show a number of applications of their construction,
including reusable garbled circuits with input and circuit privacy.

Organization. We present our TOR framework and its instantiation in Sections 4 and 5. We
present our ABE scheme in Section 6. We present the scheme for branching programs in Section 7.

3 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq
denote the ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×mq

denote the set of n×m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote
matrices, bold lowercase letters (e.g. x) to denote vectors. The notation AT denotes the transpose
of the matrix A.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. A similar notation applies to vectors. When doing
matrix-vector multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its

6

264
Approved for Public Release; Distribution Unlimited.

probability is 1−negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

3.1 Attribute-Based Encryption

We define attribute-based encryption (ABE), following [GPSW06].An ABE scheme for a class
of predicate circuits C (namely, circuits with a single bit output) consists of four algorithms
(Setup,Enc,KeyGen,Dec):

Setup(1λ, 1`)→ (pp,mpk,msk) : The setup algorithm gets as input the security parameter λ, the
length ` of the index, and outputs the public parameter (pp,mpk), and the master key msk. All
the other algorithms get pp as part of its input.

Enc(mpk, ind,m)→ ctind : The encryption algorithm gets as input mpk, an index ind ∈ {0, 1}` and
a message m ∈M. It outputs a ciphertext ctind. Note that ind is public given ctind.

KeyGen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate specified
by C ∈ C. It outputs a secret key skC (where C is also public).

Dec(skC , ctind)→ m : The decryption algorithm gets as input skC and ctind, and outputs either ⊥
or a message m ∈M.

We require that for all (ind, C) such that C(ind) = 1, all m ∈ M and ctind ← Enc(mpk, ind,m),
Dec(skC , ctind) = m.

Security Definition. For a stateful adversary A, we define the advantage function AdvpeA (λ) to
be

Pr

b = b′ :

ind← A(1λ, 1`);
(mpk,msk)← Setup(1λ, 1`);

(m0,m1)← AKeyGen(msk,·)(mpk), |m0| = |m1|;
b

$← {0, 1};
ctind ← Enc(mpk, ind,mb);

b′ ← AKeyGen(msk,·)(ctind)

− 1

2

with the restriction that all queries C that A makes to KeyGen(msk, ·) satisfies C(ind) = 0 (that
is, skC does not decrypt ctind). an attribute-based encryption scheme is selectively secure if for all
PPT adversaries A, the advantage AdvpeA (λ) is a negligible function in λ. We call an attribute-based
encryption scheme fully secure if the adversary A is allowed to choose the challenge index ind after
seeing secret keys, namely, along with choosing (m0,m1).

3.2 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg09], who showed that solving it on the average is
as hard as (quantumly) solving several standard lattice problems in the worst case.

7

265
Approved for Public Release; Distribution Unlimited.

Definition 3.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over
Zq, the learning with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of
distributions:

{A,As + x} and {A,u}

where A
$← Zn×mq , s

$← Znq ,x
$← χm,u

$← Zmq .

Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called
B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [Reg09] and classical [Pei09] reductions between dLWEn,m,q,χ and
approximating short vector problems in lattices in the worst case, where χ is a B-bounded
(truncated) discretized Gaussian for some appropriate B. The state-of-the-art algorithms for these
lattice problems run in time nearly exponential in the dimension n [AKS01, MV10]; more generally,

we can get a 2k-approximation in time 2Õ(n/k). Combined with the connection to LWE, this means
that the dLWEn,m,q,χ assumption is quite plausible for a poly(n)-bounded distribution χ and q as
large as 2n

ε
(for any constant 0 < ε < 1). Throughout this paper, the parameter m = poly(n), in

which case we will shorten the notation slightly to LWEn,q,χ.

3.3 Trapdoors for Lattices and LWE

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution over Zm
with parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · σ.

Note that DZm,σ is
√
m · σ-bounded.

Lemma 3.1 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large
m = Ω(n log q), outputs a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix T ∈ Zm×m
such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability over all
random choices, does the following: For any u ∈ Znq , and large enough s = Ω(

√
n log q), the

randomized algorithm SampleD(A,T,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s
√
n

(with probability 1). Furthermore, the following distributions of the tuple (A,T,U,R) are within
negl(n) statistical distance of each other for any polynomial k ∈ N:

• (A,T)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,T,U, s).

• (A,T)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

4 Two-to-One Recoding Schemes

An overview is provided in Section 2.2.

8

266
Approved for Public Release; Distribution Unlimited.

Symmetric encryption. In our construction, we will use Encode(pk, s) as a one-time key for a
symmetric-key encryption scheme (E,D). If Encode is deterministic, then we could simply use a one-
time pad. However, since Encode is probabilistic, the one-time pad will not guarantee correctness.
Instead, we require (E,D) to satisfy a stronger correctness guarantee, namely for all messages m
and for all ψ,ψ′ in the support Encode(pk, s), D(ψ′,E(ψ,m)) = m.

Allowing degradation. With each recoding operation, the “quality” of encoding potentially
degrades. In order to formalize this, we allow the initial global public parameters to depend on
dmax, an a-prior upper bound on the number of nested recoding operations. We then require that
given any encodings ψ and ψ′ that are a result of at most dmax nested recodings, D(ψ′,E(ψ,m)) = m.
We stress that we allow dmax to be super-polynomial, and in fact, provide such instantiations for a
relaxed notion of TOR.

4.1 Definition of TOR

Formally, a TOR scheme over the input space S = {Sλ} consists of six polynomial-time algorithms
(Params,Keygen,Encode,ReKeyGen, SimReKeyGen,Recode) and a symmetric-key encryption scheme
(E,D) with the following properties:

• Params(1λ, dmax) is a probabilistic algorithm that takes as input the security parameter λ and
an upper bound dmax on the number of nested recoding operations (written in binary), outputs
“global” public parameters pp.

• Keygen(pp) is a probabilistic algorithm that outputs a public/secret key pair (pk, sk).

• Encode(pk, s) is a probabilistic algorithm that takes pk and an input s ∈ S, and outputs an
encoding ψ.

In addition, there is a recoding mechanism together with two ways to generate recoding keys: given
one of the two secret keys, or by programming the output public key.

• ReKeyGen(pk0, pk1, sk0, pktgt) is a probabilistic algorithm that takes a key pair (pk0, sk0),
another public key pk1, a “target” public key pktgt, and outputs a recoding key rk.

• SimReKeyGen(pk0, pk1) is a probabilistic algorithm that takes two public keys pk0, pk1 and
outputs a recoding key rk together with a “target” public key pktgt.

• Recode(rk, ψ0, ψ1) is a deterministic algorithm that takes the recoding key rk, two encodings ψ0

and ψ1, and outputs an encoding ψtgt.

Remark 4.1. For our instantiation from lattices, we can in fact invert Encode(pk, s) to recover s
using the corresponding sk. However, we will not require this property in our generic constructions
from TOR. Indeed, realizing this property over bilinear groups would be hard, since s is typically
encoded in the exponent.

9

267
Approved for Public Release; Distribution Unlimited.

Correctness. Correctness of a TOR scheme requires two things. First, for every pk and s ∈ S,
there exists a family of sets Ψpk,s,j , j = 0, 1, . . . , dmax:

• Pr[Encode(pk, s) ∈ Ψpk,s,0] = 1, where the probability is taken over the coin tosses of Encode;

• Ψpk,s,0 ⊆ Ψpk,s,1 ⊆ · · · ⊆ Ψpk,s,dmax .

• for all ψ,ψ′ ∈ Ψpk,s,dmax and all m ∈M, D(ψ′,E(ψ,m)) = m.

Note that these properties hold trivially if Encode is deterministic and (E,D) is the one-
time pad. Secondly, the correctness of recoding requires that for any triple of key pairs
(pk0, sk0), (pk1, sk1), (pktgt, sktgt), and any encodings ψ0 ∈ Ψpk0,s,j0 and ψ1 ∈ Ψpk1,s,j1 ,

Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s,max(j0,j1)+1

Statistical Security Properties. Note that we have three ways of sampling recoding keys: using
ReKeyGen along with one of two secret keys sk0 or sk1; using SimReKeyGen while programming pktgt.
We require that all three ways lead to the same distribution of recoding keys, up to some statistical
error.

(Key Indistinguishability) : Let (pkb, skb) ← Keygen(pp) for b = 0, 1 and (pktgt, sktgt) ←
Keygen(pp).

The following two ensembles must be statistically indistinguishable:[
Aux,ReKeyGen(pk0, pk1, sk0 , pktgt)

]
s
≈[

Aux,ReKeyGen(pk1, pk0, sk1 , pktgt)
]

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)). Informally, this says that sampling recoding
keys using sk0 or sk1 yields the same distribution.

(Recoding Simulation) : Let (pkb, skb)← Keygen(pp) for b = 0, 1. Then, the following two ways
of sampling the tuple

[
(pk0, sk0), (pk1, sk1), pktgt, rk

]
must be statistically indistinguishable:[

(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, sktgt)← Keygen(pp); rk← ReKeyGen(pk0, pk1, sk0, pktgt)
]

s
≈[

(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, rk)← SimReKeyGen(pk0, pk1)
]

In addition, we require one-time semantic security for (E,D):

(One-time Semantic Security) : For all m0,m1 ∈ M, the following two distributions must be
statistically indistinguishable:[

E(ψ,m0) : ψ
$← K

]
s
≈
[
E(ψ,m1) : ψ

$← K
]

For all three properies, computational indistinguishability is sufficient for our applications, but we
will achieve the stronger statistical indistinguishability in our instantiations.

10

268
Approved for Public Release; Distribution Unlimited.

Computational Security Property. We require that given the encoding of a random s on
` = poly(λ) keys, the evaluation at a fresh key is pseudorandom.

(Correlated Pseudorandomness) : For every polynomial ` = `(λ), let (pki, ski)← Keygen(pp)

for i ∈ [`+ 1]. Let s
$← S, and let ψi ← Encode(pki, s) for i ∈ [`+ 1]. Then, the following two

ensembles must be computationally indistinguishable:[
(pki, ψi)i∈[`], pk`+1, ψ`+1

]
c
≈[

(pki, ψi)i∈[`], pk`+1, ψ : ψ
$← K

]
That is, we define the advantage function AdvcpA (λ) to be:

Pr

b = b′ :

pp← Setup(1λ); s← S;
(pki, ski)← Keygen(pp),
ψi ← Encode(pki, s), i = 1, . . . , `;
ψ′0 ← Encode(pk`+1, s);

b
$← {0, 1};ψ′1

$← K
b′ ← A(pk1, . . . , pk`+1, ψ1, . . . , ψ`, ψ

′
b)

−
1

2

and we require that for all PPT A, the advantage function AdvcpA (λ) is a negligible function in λ.

4.2 Simple Applications of TOR

First example. We revisit the example from Section 2.2. Consider a two-input boolean gate
g with input wires u, v and output wire w, computing a function G : {0, 1} × {0, 1} → {0, 1}.
Analogous to Yao’s garbled circuit, we provide a translation table Γ comprising four values

Γ := (rkb,c : b, c ∈ {0, 1})

where rkb,c allows us to perform the transformation

Encode(pku,b, s),Encode(pkv,c, s) 7→ Encode(pkw,G(b,c), s)

Now, fix b∗, c∗ and d∗ := G(b∗, c∗). Given an encoding of s corresponding to b∗ and c∗, we can
compute that under for d∗ using the recoding key rkb∗,c∗ ; in addition, we claim that the encoding
corresponding to 1 − d∗ remains pseudorandom. To prove this, it suffices to simulate Γ given
pku,b∗ , pkv,c∗ , pkw,1−d∗ as follows:

• we sample (pkw,d∗ , rkb∗,c∗) using SimReKeyGen;

• we sample pku,1−b∗ and pkv,1−c∗ along with the corresponding secret keys; using these secret
keys, we can sample the other three recoding keys rk1−b∗,c∗ , rkb∗,1−c∗ , rk1−b∗,1−c∗ .

11

269
Approved for Public Release; Distribution Unlimited.

IBE from TOR. As a warm-up, we show how to build a selectively secure IBE for identity space
{0, 1}`.

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkout

)
The ciphertext for identity ind and message m is given by:(

Encode(pk1,ind1 , s), . . . ,Encode(pk`,ind` , s),Encode(pkstart, s),E(Encode(pkout, s),m)
)

The secret key for identity ind is given by (rk1, . . . , rk`) where we first sample

(pk′1, sk
′
1), . . . , (pk′`−1, sk

′
`−1)← Keygen(pp)

and then sample

rk1← ReKeyGen(pkstart, pk1,ind1 , skstart, pk
′
1)

rk2← ReKeyGen(pk′1, pk2,ind2 , sk
′
1, pk′2)

...
rk`← ReKeyGen(pk′`−1, pk`,ind` , sk

′
`−1, pkout)

To prove selective security, we need to generate secret keys for any ind 6= ind∗, given sk1,1−ind∗1 , . . . , sk`,1−ind∗`
but not skstart or skout. We can achieve this as follows: pick an i for which indi 6= ind∗i ;

• pick (rk1, pk
′
1), . . . , (rki−1, pk

′
i−1) using SimReKeyGen;

• pick (pk′i, sk
′
i), . . . , (pk

′
`−1, sk

′
`−1) using Keygen;

• pick rki, rki+1, . . . , rk` using ReKeyGen with secret keys sk1−ind∗i , sk
′
i, . . . , sk

′
`−1 respectively.

5 TOR from LWE

In this section, we present an instantiation of TOR from LWE, building upon ideas previously
introduced in [GPV08, CHKP12, ABB10a, ABB10b].

Lemma 5.1. Assuming dLWEn,q,χ where q = nΘ(dmax), there is a TOR scheme that is correct up
to dmax levels.

• Params(1λ, dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ =
χ(n) = DZ,

√
n, the error boundB = B(n) = O(n), the modulus q = q(n) = Õ(n2dmax)dmaxn, the

number of samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) = O(
√
n log q).

Output the global public parameters pp = (n, χ,B, q,m, s). Define the domain S of the encoding
scheme to be Znq .

• Keygen(pp): Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain a matrix
A ∈ Zn×mq together with the trapdoor matrix T ∈ Zm×m. Output pk := A and sk := T.

• Encode(pk, s): Sample an error vector e← χm and output the encoding ψ := AT s + e ∈ Znq .

12

270
Approved for Public Release; Distribution Unlimited.

The recoding algorithms work as follows:

• ReKeyGen(pk0, pk1, skb, pktgt): Let pk0 = A0, pk1 = A1, skb = Tb and pktgt = Atgt. Compute
the matrix R ∈ Z2m×m in the following way:

– Choose a discrete Gaussian matrix R1−b ← (DZ,s)
m×m. Namely, each entry of the matrix

is an independent sample from the discrete Gaussian distribution DZ,s.

– Compute U := Atgt −A1−bR1−b ∈ Zn×mq .

– Compute the matrix Rb by running the algorithm SampleD to compute a matrix Rb ∈ Zm×m
as follows:

Rb ← SampleD(Ab,Tb,U)

Output

rktgt
0,1 :=

[
R0

R1

]
∈ Z2m×m

(We remark that AbRb = U = Atgt −A1−bR1−b, and thus, A0R0 + A1R1 = Atgt).

• SimReKeyGen(pk0, pk1): Let pk0 = A0 and pk1 = A1.

– Sample a matrix R ← (DZ,s)
2m×m by sampling each entry from the discrete Gaussian

distribution DZ,s.

– Define
Atgt := [A0 || A1] R ∈ Zn×mq

Output the pair (pktgt := Atgt, rk
tgt
0,1 := R).

• Recode(rktgt
0,1,ψ0,ψ1): Let rktgt

0,1 = R. Compute the recoded ciphertext

ψtgt = [ψT0 || ψT1] R

We also need a one-time symmetric encryption scheme (E,D) which we will instantiate as an
error-tolerant version of the one-time pad with K = Znq ,M = {0, 1}n, as follows:

• E(ψ,µ) takes as input a vector ψ ∈ Znq and a bit string µ ∈M and outputs the encryption

γ := ψ + dq/2e µ (mod q)

• D(ψ′,γ) takes as input a vector ψ′ = (ψ′1, . . . , ψ
′
n) ∈ Znq , an encryption γ = (γ1, . . . , γn) ∈ Znq

and does the following. Define a function Round(x) where x ∈ [−(q − 1)/2, . . . , (q − 1)/2] as:

Round(x) =

{
0 if |x| < q/4
1 otherwise

The decryption algorithm outputs a vector µ = (Round(γ1 − ψ′1), . . . ,Round(γn − ψ′n)).

We defer the analysis of (E,D) to the full version.

13

271
Approved for Public Release; Distribution Unlimited.

5.1 Analysis

Correctness. We define the sets ΨA,s,j for pk := A ∈ Zn×mq , s ∈ Znq and j ∈ [1 . . . dmax] as
follows:

ΨA,s,j =
{
AT s + e : ||e||∞ ≤ B · (2sm

√
m)j

}
Given this definition:

• Observe that when e ← χm, ||e||∞ ≤ B by the definition of χ and B. Pr[Encode(A, s) ∈
ΨA,s,0] = 1.

• ΨA,s,0 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,dmax , by definition of the sets above.

• For any two encodings ψ = AT s + e,ψ′ = AT s + e′ ∈ ΨA,s,dmax ,

||ψ −ψ′||∞ = ||e− e′||∞ ≤ 2 ·B · (2sm
√
m)dmax < q/4,

which holds as long as n · O(n2 log q)dmax < q/4. Thus, ψ and ψ′ are “close”, and
by the correctness property of the symmetric encryption scheme (E,D) described above,
D(ψ′,E(ψ,µ)) = µ for any µ ∈ {0, 1}n.

• Consider two encodings ψ0 ∈ ΨA0,s,j0 and ψ1 ∈ ΨA1,s,j1 for any j0, j1 ∈ N, any A0,A1 ∈ Zn×mq

and s ∈ Znq . Then, ψ0 = AT
0 s + e0 and ψ1 := AT

1 s + e1 where ||e0||∞ ≤ B · (2sm
√
m)j0 and

||e1||∞ ≤ B · (2sm
√
m)j1 .

Then, the recoded ciphertext ψtgt is computed as follows:

ψTtgt :=
[
ψT0 || ψT1

]
Rtgt

0,1

=
[
sTA0 + eT0 || sTA1 + eT1

]
Rtgt

0,1

= sT
[
A0 || A1

]
Rtgt

0,1 +
[
eT0 || eT1] Rtgt

0,1

= sTAtgt + etgt

where the last equation is because Atgt =
[
A0 || A1

]
Rtgt

0,1 and we define etgt :=
[
eT0 || eT1] Rtgt

0,1.
Thus,

||etgt||∞ ≤ m · ||Rtgt
0,1||∞ · (||e0||∞ + ||e1||∞)

≤ m · s
√
m · (B · (2sm

√
m)j0 +B · (2sm

√
m)j1)

≤ B · (2sm
√
m)max(j0,j1)+1

exactly as required. Here, the second inequality is because ||Rtgt
0,1||∞ ≤ s

√
m by Lemma 3.1.

This finishes our proof of correctness.

Key Indistinguishability. Recall that in ReKeyGen, we given sampling (R0,R1) satisfying
A0R0 +A1R1 = Atgt. Key indistinguishability basically says that we obtain the same distribution
whether we use a trapdoor for A0 or that for A1. Indeed, this follows directly from the following
statement in [CHKP12, GPV08] (see also [CHK09, Theorem 3.4]): for every (A0,T0), (A1,T1)
generated by TrapSamp(1n, 1m, q), every matrix V ∈ Zn×mq , and any s = Ω(

√
n log q), the following

two experiments generate distributions with negl(n) statistical distance:

14

272
Approved for Public Release; Distribution Unlimited.

• Sample R0 ← (DZm,s)
m, compute U := V −A0R0 ∈ Zn×mq and R1 ← SampleD(A1,T1,U, s).

Output (R0,R1).

• Sample R1 ← (DZm,s)
m, compute U := V −A1R1 ∈ Zn×mq and R0 ← SampleD(A0,T0,U, s).

Output (R0,R1).

The recoding simulation property follows readily from Lemma 3.1, as is done in [CHKP12].
Correlated pseudorandomness directly from the decisional LWE assumption dLWEn,(`+1)·m,q,χ where

q = nΘ(dmax).

6 Attribute-Based Encryption for Circuits

In this section, we show how to construct attribute-based encryption for circuits from any TOR
scheme. Let TOR be the scheme consisting of algorithms (Params,Keygen,Encode) with the “two-
to-one” recoding mechanism (Recode,ReKeyGen, SimReKeyGen) with input space S. For every dmax,
let dmax-TOR denote a secure “two-to-one” recoding scheme that is correct for dmax recoding levels.

Theorem 6.1. For every ` and polynomial dmax = dmax(λ), let C`,dmax denote a family of
polynomial-size circuits of depth at most dmax that take ` bits of input. Assuming the existence
of a dmax-TOR scheme, there exists a selectively secure attribute-based encryption scheme ABE for
C.

Combining Theorem 6.1 and Lemma 5.1, we obtain a selectively secure attribute-based
encryption scheme from LWE. Furthermore, invoking an argument from [BB04, Theorem 7.1] and
using subexponential hardness of LWE, we obtain a fully secure scheme:

Corollary 6.2. For all ` and polynomial dmax = dmax(`), there exists a selectively secure attribute-
based encryption scheme ABE for any family of polynomial-size circuits with ` inputs and depth at
most dmax, assuming the hardness of dLWEn,q,χ for sufficiently large n = poly(λ, dmax), q = nO(dmax)

and some poly(n)-bounded error distribution χ.
Moreover, assuming 2O(`)-hardness of dLWEn,q,χ for parameters n = poly(λ, dmax, `), and q and

χ as above, the attribute-based encryption scheme ABE is fully secure.

The reader is referred to the text after the construction for further explanation of how to choose
the LWE parameters.

Observe that if we start with a TOR scheme that supports dmax = `ω(1), then our construction
immediately yields an attribute-based encryption scheme for arbitrary polynomial-size circuit
families (without any restriction on the depth). This can be achieved if, for example, we had
an LWE-based TOR scheme where q grows polynomially instead of exponentially in dmax as in our
LWE-based weak TOR.

We now prove Theorem 6.1.

Circuit Representation. Let Cλ be a collection of circuits each having ` = `(λ) input wires
and one output wire. Define a collection C = {Cλ}λ∈N. For each C ∈ Cλ, we index the wires
of C in the following way. The input wires are indexed 1 to `, the internal wires have indices
`+ 1, `+ 2, . . . , |C|−1 and the output wire has index |C|, which also denotes the size of the circuit.
We assume that the circuit is composed of arbitrary two-to-one gates. Each gate g is indexed as

15

273
Approved for Public Release; Distribution Unlimited.

a tuple (u, v, w) where u and v are the incoming wire indices, and w > max{u, v} is the outgoing
wire index. The gate computes the function gw : {0, 1} × {0, 1} → {0, 1}. The “fan-out wires” in
the circuit are given a single number. That is, if the outgoing wire of a gate feeds into the input of
multiple gates, then all these wires are indexed the same. (See e.g. [BHR12, Fig 4].)

6.1 Construction from TOR

The ABE scheme ABE = (Setup,Enc,KeyGen,Dec) is defined as follows.

Setup(1λ, 1`, dmax) : For each of the ` input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pki,b, ski,b)← Keygen(pp) for i ∈ [`], b ∈ {0, 1}
(pkout, skout)← Keygen(pp)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0
pk1,1 pk2,1 . . . pk`,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0
sk1,1 sk2,1 . . . sk`,1

)

Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s
$← S and encode it under the

public keys specified by the index bits:

ψi ← Encode(pki,indi , s) for all i ∈ [`]

Encrypt the message m:
τ ← E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψ`, τ

)
KeyGen(msk, C) :

1. For every non-input wire w = `+ 1, . . . , |C| of the circuit C, and every b ∈ {0, 1}, generate
public/secret key pairs:

(pkw,b, skw,b)← Keygen(pp) if w < |C| or b = 0

and set pk|C|,1 := pkout.

2. For the gate g = (u, v, w) with outgoing wire w, compute the four recoding keys rkwb,c (for
b, c ∈ {0, 1}):

rkwb,c ← ReKeyGen
(
pku,b, pkv,c, sku,b, pkw,gw(b,c)

)
Output the secret key which is a collection of 4(|C| − `) recoding keys

skC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)

16

274
Approved for Public Release; Distribution Unlimited.

Dec(skC , ctind) : We tacitly assume that ctind contains the index ind. For w = ` + 1, . . . , |C|, let
g = (u, v, w) denote the gate with outgoing wire w. Suppose wires u and v carry the values b∗

and c∗, so that wire w carries the value d∗ := gw(b∗, c∗). Compute

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
If C(ind) = 1, then we would have computed ψ|C|,1. Output the message

m← D
(
ψ|C|,1, τ

)
If C(ind) = 0, output ⊥.

LWE Parameters. Fix ` = `(λ) and dmax = dmax(`), and suppose the dLWEn,m,q,χ assumption
holds for q = 2n

ε
for some 0 < ε < 1. Then, in our LWE-based TOR, we will set:

n = Θ̃(d1/ε
max) and q = nΘ(dmax)

By Corollary 6.2, we get security under 2n
ε
-LWE.

6.2 Correctness

Lemma 6.3 (correctness). Let C = {Cλ}λ∈N be family where each Cλ is a finite collection
of polynomial-size circuits each of depth at most dmax. Let TOR be a correct “two-to-one”
recoding scheme for dmax levels. Then, the construction presented above is a correct attribute-based
encryption scheme.

Proof. Fix a circuit C of depth at most dmax and an input ind such that C(ind) = 1. Informally,
we rely on recoding correctness for dmax recodings to show that w = 1, . . . , |C|, we have

ψw,d∗ = Encode(pkw,d∗ , s),

where d∗ is the value carried by the wire w and ψw,d∗ is computed as in Dec. Formally, we proceed
via induction on w to show that

ψw,d∗ ∈ Ψpkw,d∗ ,s,j .

where j is the depth of wire w. The base case w = 1, . . . , ` follows immediately from correctness
of Encode. For the inductive step, consider a wire w at depth j for some gate g = (u, v, w) where
u, v < w. By the induction hypothesis,

ψu,b∗ ∈ Ψpku,b∗ ,s,j0 , ψu,c∗ ∈ Ψpkv,c∗ ,s,j1

where j0, j1 < j denote the depths of wires u and v respectively. It follows immediately from the
correctness of Recode that

ψw,d∗ ∈ Ψpkw,d∗ ,s,max(i0,i1)+1 ⊆ Ψpkw,d∗ ,s,j

which completes the inductive proof. Since C(ind) = 1 and pk|C|,1 = pkout, we have ψ|C|,1 ∈
Ψpkout,s,dmax . Finally, by the correctness of (E,D), D(ψ|C|,1, τ) = m.

17

275
Approved for Public Release; Distribution Unlimited.

6.3 Security

Lemma 6.4 (selective security). For any adversary A against selective security of the attribute-
based encryption scheme, there exist an adversary B against correlated pseudorandomness of TOR
whose running time is essentially the same as that of A, such that

AdvpeA (λ) ≤ AdvcpB (λ) + negl(λ)

where negl(λ) captures the statistical security terms in TOR.

We begin by describing alternative algorithms, which would be useful later for constructing the
adversary B for the correlated pseudorandomness security game.

Alternative algorithms. Fix the selective challenge ind. We get from the “outside” the challenge
pp, (pki, ψi)i∈[`+1] for correlated pseudorandomness, The main challenge is to design an alternative
algorithm KeyGen∗ for answering secret key queries without knowing sk1,ind1 , . . . , sk`,ind` or skout.
The algorithm KeyGen∗ will maintain the following invariant: on input C with C(ind) = 0,

• for every non-output wire w = 1, . . . , |C| − 1 carrying the value b∗, we will know skw,1−b∗ but
not skw,b∗ .

Moreover, we do not know sk|C|,0 or sk|C|,1 = skout.

Setup∗(ind, 1λ, 1`, dmax) : Let

(pki,1−indi , ski,1−indi) ← Keygen(pp) for i ∈ [`]

pkout := pk`+1

pki,indi := pki for i ∈ [`]

Output mpk =

(
pk1,0 pk2,0 . . . pk`,0
pk1,1 pk2,1 . . . pk`,1 pkout

)
Enc∗(mpk, ind,m) : Set τ ← E(ψ`+1,m) and output the ciphertext

ctind =
(
ψ1, ψ2, . . . , ψ`, τ

)
where ψ1, . . . , ψ`+1 are provided in the challenge.

KeyGen∗(ind,msk, C) : where C(ind) = 0,

1. For each internal wire w ∈ [` + 1, |C| − 1] of the circuit C carrying the value b∗ for input
ind, generate public/secret key pairs:

(pkw,1−b∗ , skw,1−b∗)← Keygen(pp)

We will generate pkw,b∗ using SimReKeyGen as described next.

18

276
Approved for Public Release; Distribution Unlimited.

2. For w = ` + 1, . . . , |C|, let g = (u, v, w) denote the gate for which w is the outgoing
wire. Suppose wires u and v carry the values b∗ and c∗, so that wire w carries the value
d∗ := gw(b∗, c∗). By the invariant above, we know sku,1−b∗ and skv,1−c∗ but not sku,b∗ and
skv,c∗ . We start by generating

(pkw,d∗ , rk
w
b∗,c∗)← SimReKeyGen(pku,b∗ , pkv,c∗)

We generate the other three recoding keys using ReKeyGen as follows:

rkw1−b∗,c∗ ← ReKeyGen
(
pku,1−b∗ , pkv,c∗ , sku,1−b∗ , pkw,gw(1−b∗,c∗)

)
rkwb∗,1−c∗ ← ReKeyGen

(
pkv,1−c∗ , pku,b∗ , skv,1−c∗ , pkw,gw(b∗,1−c∗)

)
rkw1−b∗,1−c∗ ← ReKeyGen

(
pku,1−b∗ , pkv,1−c∗ , sku,1−b∗ , pkw,gw(1−b∗,1−c∗)

)
Note that rkw1−b∗,c∗, rk

w
1−b∗,1−c∗ are generated the same way in both KeyGen and KeyGen∗

using sku,1−b∗ .

Output the secret key

skC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)
Informally, the recoding key rkwb∗,1−c∗ looks the same as in Keygen because of key indistinguisha-

bility, and rkwb∗,c∗ (together with the simulated pkw,d∗) looks the same as in Keygen because of the
recoding simulation property.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to
denote the advantage of the adversary A in Games 0, 1, etc. Game 0 is the real experiment.

Game i for i = 1, 2, . . . , q. As in Game 0, except the challenger answers the first i− 1 key queries
using KeyGen∗ and the remaining q− i key queries using KeyGen. For the i’th key query Ci, we
consider sub-Games i.w as follows:

Game i.w, for w = `+ 1, . . . , |Ci|. The challenger switches (rkwb,c : b, c ∈ {0, 1}) from KeyGen
to KeyGen∗. More precisely:

• First, we switch (pkw,d∗ , rk
w
b∗,c∗) from KeyGen to KeyGen∗. This relies on recoding

simulation.

• Next, we switch rkwb∗,1−c∗ from KeyGen to KeyGen∗. This relies on key indistinguishabil-
ity, w.r.t. skb∗ and sk1−c∗ .

• The other two keys rkw1−b∗,c∗, rk
w
1−b∗,1−c∗ are generated the same way in both KeyGen and

KeyGen∗.

By key indistinguishability and recoding simulation, we have

|Advi,w − Advi,w+1| ≤ negl(λ) for all i, w

Note that in Game q, the challenger runs Setup∗ and answers all key queries using KeyGen∗

with the selective challenge ind and generates the challenge ciphertext using Enc.

19

277
Approved for Public Release; Distribution Unlimited.

Game q + 1. Same as Game q, except the challenger generates the challenge ciphertext using Enc∗

with ψ`+1 = Encode(pk`+1, s). Clearly,

Advq+1 = Advq

Game q + 2. Same as Game q + 1, except ψ`+1
$← K. It is straight-forward to construct an

adversary B such that
|Advq+1 − Advq+2| ≤ AdvcpB (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows
readily.

7 Attribute-Based Encryption for Branching Programs

In this section, we present weak TOR and attribute-based encryption for branching programs,
which capture the complexity class log-space. As noted in Section 2.2, we exploit the fact that in
branching programs, the transition function depends on an input variable and the current state;
this means that one of the two input encodings during recoding is always a “depth 0” encoding.

Branching programs. Recall that a branching program Γ is a directed acyclic graph in which
every nonterminal node has exactly two outgoing edges labeled (i, 0) and (i, 1) for some i ∈ [`].
Moreover, there is a distinguished terminal accept node. Every input x ∈ {0, 1}` naturally induces
a subgraph Γx containing exactly those edges labeled (i, xi). We say that Γ accepts x iff there is a
path from the start node to the accept node in Γx. At the cost of possibly doubling the number of
edges and vertices, we may assume that there is at most one edge connecting any two nodes in Γ.

7.1 Weak TOR

A weak “two-to-one” encoding (wTOR) scheme consists of the same algorithms as TOR, except
that Keygen(pp, j) takes an additional input j ∈ {0, 1}. That is, Keygen may produce different
distribution of public/secret key pairs depending on j. Moreover, in ReKeyGen, the first public key
is always generated using Keygen(pp, 0) and the second using Keygen(pp, 1); similarly, in Recode,
the first encoding is always generated with respect to a public key from Keygen(pp, 0) and the
second from Keygen(pp, 1). Similarly, the correctness and statistical security properties are relaxed.

Correctness. First, for every pk and s ∈ S, there exists a family of sets Ψpk,s,j , j = 0, 1, . . . , dmax:

• Ψpk,s,1 ⊆ · · · ⊆ Ψpk,s,dmax .

• for all ψ,ψ′ ∈ Ψpk,s,dmax and all m ∈M,

D(ψ′,E(ψ,m)) = m

Secondly, the correctness of recoding requires that for any triple of key pairs (pk0, sk0), (pk1, sk1), (pktgt, sktgt)
respectively in the support of Keygen(pp, 0),Keygen(pp, 1),Keygen(pp, 1) and any encodings ψ0 ∈
Encode(pk0, s) and ψ1 ∈ Ψpk1,s,j1 where 0 < j1,

Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s,j1+1

20

278
Approved for Public Release; Distribution Unlimited.

Statistical Security Properties. We require recoding simulation as before, but not key
indistinguishability. However, we require the following additional property:

(Back-tracking) : For all (pk0, sk0)← Keygen(pp, 0) and all (pk1, sk1), (pktgt, sktgt)← Keygen(pp, 1),
the following distributions are identical:

ReKeyGen(pk0, pk1, sk0, pktgt) ≡ −ReKeyGen(pk0, pktgt, sk0, pk1)

Informally, this says that switching the order of pk1 and pktgt as inputs to ReKeyGen is the same as
switching the “sign” of the output. In our instantiations, the output of ReKeyGen lies in a group,
so negating the output simply refers to applying the group inverse operation.

Remark 7.1. Due to the additional back-tracking property, it is not the case that a TOR implies
a weak TOR. However, we are able to instantiate weak TOR under weaker and larger classes of
assumptions than TOR.

Computational Security Property. We define the advantage function AdvcpA (λ) (modified to
account for the additional input to Keygen) to be the absolute value of:

Pr

b = b′ :

pp← Setup(1λ); s← S;
(pki, ski)← Keygen(pp, 0),
ψi ← Encode(pki, s), i = 1, . . . , `;
(pk`+1, sk`+1)← Keygen(pp, 1);
ψ′0 ← Encode(pk`+1, s);

b
$← {0, 1};ψ′1

$← K
b′ ← A(pk1, . . . , pk`+1, ψ1, . . . , ψ`, ψ

′
b)

− 1

2

and we require that for all PPT A, the advantage function AdvcpA (λ) is a negligible function in λ.

7.2 Weak TOR from LWE

We provide an instantiation of weak TOR from LWE. The main advantage over our construction
of TOR in Section 5 is that the dependency of q on dmax is linear in dmax instead of exponential.
Therefore, if q is quasi-polynomial, we can handle any polynomial dmax, as opposed to an a-prior
bounded dmax.

Lemma 7.1. Assuming dLWEn,(`+2)m,q,χ where q = O(dmaxn
3 log n), there is a weak TOR scheme

that is correct up to dmax levels.

Note that the parameters here are better than in Lemma 5.1. The construction of weak TOR
from learning with errors follows:

• Params(1λ, dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ =
χ(n) = DZ,

√
n, the error bound B = B(n) = O(n), the modulus q = q(n) = dmax · O(n3 log n),

the number of samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) =
O(
√
n log q). Output the global public parameters pp = (n, χ,B, q,m, s). Define the domain S

of the encoding scheme to be Znq .

21

279
Approved for Public Release; Distribution Unlimited.

• Keygen(pp, j): Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain a matrix
A ∈ Zn×mq together with the trapdoor T. Output

pk = A; sk = T.

• Encode(A, s): Sample an error vector e← χm and output the encoding ψ := AT s + e ∈ Znq .

• ReKeyGen(A0,A1,Atgt,T): Outputs a low-norm matrix R such that A0R = Atgt − A1. In
particular,

R← SampleD(A0,T0,Atgt −A1, s)

• SimReKeyGen(A0,A1): Sample a matrix R ← (DZ,s)
m×m by sampling each entry from the

discrete Gaussian distribution DZ,s. Output

rk := R; Atgt := A0R + A1

• Recode(rk,ψ0,ψ1): Outputs rkTψ0 +ψ1.

Correctness. We define the sets ΨA,s,j for pk := A ∈ Zn×mq , s ∈ Znq and j ∈ [1 . . . dmax] as
follows:

ΨA,s,j =
{
AT s + e : ||e||∞ ≤ B · j · (sm

√
m)
}

The analysis is similar to that in the previous section. In particular, we observe right away that

• ΨA,s,1 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,dmax .

• For any two encodings ψ,ψ′ ∈ ΨA,s,dmax and µ ∈ {0, 1}n, D(ψ′,E(ψ,µ)) = µ, as long as

B · dmax · (sm
√
m) ≤ q/4.

• Consider two encodings AT s + e ∈ Encode(A, s) and ψ1 ∈ ΨA1,s,j1 for any j1 ∈ N. Then,
ψ0 = AT

0 s + e0 and ψ1 := AT
1 s + e1 where ||e0||∞ ≤ B and ||e1||∞ ≤ j1 ·B · (sm

√
m).

Then, the recoded ciphertext ψtgt is computed as follows:

ψtgt := RTψ0 +ψ1

= RT (AT
0 s + e0) + (AT

1 s + e1)

= AT
tgts + etgt

where the last equation is because Atgt = A0R + A1 and we define etgt := RTe0 + e1. Thus,

||etgt||∞ ≤ m · ||R||∞||e0||∞ + ||e1||∞
≤ m · s

√
m ·B +B · j1 · (sm

√
m)

= (j1 + 1) ·B · (sm
√
m)

exactly as required. Here, the second inequality is because ||R||∞ ≤ s
√
m by Lemma 3.1. This

finishes our proof of correctness.

22

280
Approved for Public Release; Distribution Unlimited.

Security. Correlated pseudorandomness follows from dLWEn,(`+2)m,q,χ where q = n · dmax.
Recoding simulation follows from Lemma 3.1 by an argument identical to the one for the
construction of TOR in Section 5. For back-tracking, negation is simply the additive inverse over
Zmq .

7.3 Weak TOR from Bilinear Maps

We use asymmetric groups for maximal generality and for conceptual clarity. We consider cyclic
groups G1, G2, GT of prime order q and e : G1 × G2 → GT is a non-degenerate bilinear map.
We require that the group operations in G and GT as well the bilinear map e are computable
in deterministic polynomial time with respect to λ. Let g1, g2 denote random generators of
G1, G2 respectively. The DBDH Assumption says that, given g1, g2, g

a
1 , g

a
2 , g

b
2 and gs1, e(g1, g2)abs is

pseudorandom.

• Params(1λ, dmax): Outputs pp := (g1, g2, g
a
1 , g

a
2).

• Keygen(pp, j):

– If j = 0, then samples t
$← Zq and outputs

(pk, sk) := ((g
a/t
1 , g

a/t
2), t)

– If j ≥ 1, output pk
$← G2.

• Encode(pk, s):

– If pk = (g
a/t
1 , g

a/t
2) ∈ G1 ×G2, output (g

a/t
1)s

– If pk ∈ G2, output e(ga1 , pk)s

• Recode(rk, c0, , c1): Outputs e(c0, rk) · c1.

• ReKeyGen((g
a/t
1 , g

a/t
2), pk1, pktgt, t): Outputs rk := (pktgt · pk−1

1)t ∈ G2.

• SimReKeyGen((g
a/t
1 , g

a/t
2), pk1): Picks z

$← Zq and outputs

rk := (g
a/t
2)z, pktgt := pk1 · (ga2)z

Correctness. Define Ψpk,s,j := {Encode(pk, s)}. For recoding, observe that:

Recode((pktgt · pk−1
1)t, g

as/t
1 , e(ga1 , pk1)s

= e(g
as/t
1 , (pktgt · pk−1

1)t) · e(ga1 , pk1)s

= e(ga1 , (pktgt · pk−1
1)s) · e(ga1 , pk1)s

= e(ga1 , pktgt)
s = Encode(pktgt, s)

For back-tracking, negation is simply the multiplicative inverse over Gq.

23

281
Approved for Public Release; Distribution Unlimited.

Security. Correlation pseudorandomness follows readily from the DBDH assumption and its
random self-reducibility.

7.4 Attribute-Based Encryption from weak TOR

Setup(1λ, 1`, dmax) : For each one of ` input bits, generate two public/secret key pairs. Also,
generate a public/secret key pair for the start and accept states:

(pki,b, ski,b)← Keygen(pp, 0) for i ∈ [`], b ∈ {0, 1}
(pkstart, skstart)← Keygen(pp, 1)

(pkaccept, skaccept)← Keygen(pp, 1)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkaccept

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0 skstart

sk1,1 sk2,1 . . . sk`,1 skaccept

)
Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s

$← S and encode it under the
public keys specified by the index bits and the start state:

ψi ← Encode(pki,indi , s) for all i ∈ [`]

ψstart ← Encode(pkstart, s)

Encrypt the message:
τ ← E(Encode(pkaccept, s),m)

Output the ciphertext:

ctind =
(
ψ1, ψ2, . . . , ψ`, ψstart, τ

)
KeyGen(msk,Γ): Γ : {0, 1}` → {0, 1} is a branching program that takes a `-bit input and outputs

a single bit.

• For every node u, except the start and accept nodes, sample public/secret key pair:

(pku, sku)← Keygen(pp, 1)

• For every edge (u, v) labeled (i, b) in Γ, sample a recoding key rku,v as follows:

rku,v ← ReKeyGen
(
pki,b, pku, ski,b, pkv

)
The secret key skΓ is the collection of all the recoding keys rku,v for every edge (u, v) in Γ.

Dec(skΓ, ctind) : Suppose Γ(ind) = 1; output ⊥ otherwise. Let Π denote the (directed) path from
the start node to the accept node in Γind. For every edge (u, v) labeled (i, indi) in Π, apply the
recoding algorithm on the two encodings ψi, ψu and the recoding key rku,v:

ψv ← Recode
(
rku,v, ψi, ψu

)
If Γ(ind) = 1, we obtain ψaccept. Decrypt and output the message:

m← D(ψaccept, τ)

24

282
Approved for Public Release; Distribution Unlimited.

7.4.1 Correctness

Lemma 7.2 (correctness). Let G = {Γ}λ be a collection of polynomial-size branching programs of
depth at most dmax and let wTOR be a weak “two-to-one” recoding scheme for dmax levels. Then,
the construction presented above is a correct attribute-based encryption scheme for G.

Proof. Let Π denote the directed path from the start to the accept nodes in Γind. We show via
induction on nodes v along the path Π that

ψv ∈ Ψpkv ,s,j

where j is the depth of node v along the path. The base case for v := start node follows immediately
from correctness of Encode. For the inductive step, consider a node v along the path Π at depth j
for some edge (u, v) labeled (i, indi). By the induction hypothesis,

ψu ∈ Ψpku,s,j0

where j0 < j denote the depths of node u. Also by the correctness of the Encode algorithm, for all
i ∈ [`]

ψi ∈ Ψpki,indi ,s,0

It follows immediately from the correctness of Recode that

ψv ∈ Ψpkv ,s,j0+1 ⊆ Ψpkv ,s,j

which completes the inductive proof. Since C(ind) = 1, we have

ψaccept ∈ Ψpkaccept,s,dmax

Recall that τ ← E(Encode(pkaccept, s),m). Finally, by the correctness of (E,D),

D(ψaccept, τ) = m

7.4.2 Selective Security

Lemma 7.3 (selective security). For any adversary A against selective security of the attribute-
based encryption scheme for branching programs, there exist an adversary B against correlated
pseudorandomness of wTOR whose running time is essentially the same as that of A, such that

AdvpeA (λ) ≤ AdvcpB (λ) + negl(λ)

where negl(λ) captures the statistical security terms in TOR.

In the proof of security, we will rely crucially on the following combinatorial property of
branching programs: for any input x, the graph Γx does not contain any cycles as an undirected
graph.

25

283
Approved for Public Release; Distribution Unlimited.

Alternative algorithms. Fix the selective challenge ind. We also get a collection of public
keys, corresponding encodings from the “outside”: (pki, ψi)i∈[`+2], where the challenge is to decide
whether ψ`+1 is Encode(pk`+2, s) or random. The main challenge is design an alternative algorithm
KeyGen∗ for answering secret key queries without knowing sk1,ind1 , . . . , sk`,ind` or skstart, skaccept. We
consider the following “alternative” algorithms.

Setup∗(1λ, 1`, dmax) : Let

(pki,1−indi , ski,1−indi) ← Keygen(pp, 0) for i ∈ [`]

pki,indi := pki for i ∈ [`]

pkstart := pk`+1

pkaccept := pk`+2

Define and output the master public key as follows:

mpk =

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkaccept

)

Enc∗(mpk, ind,m) : Define

ψi,indi := ψi for all i ∈ [`]

ψstart := ψ`+1

ψaccept := ψ`+2

Encrypt the message m:
τ ← E(ψaccept, b)

Output the simulated ciphertext

ctind =
(
ψ1, ψ2, . . . , ψ`, ψstart, τ

)
KeyGen∗(msk,Γ) : Let Γ′ind denote the undirected graph obtained from Γind by treating every

directed edge as an undirected edge (while keeping the edge label). Observe that Γ′ind satisfies
the following properties:

• Γ′ind contains no cycles. This is because Γind is acyclic and every nonterminal node contains
exactly one outgoing edge.

• The start node and the accept node lie in different connected components in Γ′ind, since
Γ(ind) = 0.

Simulation invariant: for each “active” edge labeled (i, indi) from node u to node v, simulate
the recoding key. Choose our own public/secret key pair for each “inactive” edges (i, 1− indi)
and generate the recoding key honestly.

26

284
Approved for Public Release; Distribution Unlimited.

• Run a DFS in Γ′ind starting from the start node. Whenever we visit a new node v from a
node u along an edge labeled (i, indi), we set:

(pkv, rku,v) ← SimReKeyGen
(
pki,ind, pku

)
if (u, v) is a directed edge in Γ

(pkv,−rkv,u) ← SimReKeyGen
(
pki,ind, pku

)
if (v, u) is a directed edge in Γ

Here, we exploit the back-tracking property in wTOR.

Note that since Γ(ind) = 0, then the accept node is not assigned a public key by this process.

• For all nodes u without an assignment, run (pku, sku)← Keygen(pp, 1).

• For every remaining edge (u, v) labeled (i, 1− indi) in Γ, sample a recoding key rku,v as in
KeyGen using ski,1−ind as follows:

rku,v ← ReKeyGen
(
pki,1−ind, pku, ski,1−ind, pkv

)
The secret key skΓ is simply the collection of all the recoding keys rku,v for every edge (u, v) in
Γ.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to
denote the advantage of the adversary A in Games 0, 1, etc. Let n denote the number of edges in
a branching program Γ labeled (i, indi) for some i, and for all j ∈ [n] let ej denote the actual edge.

Game 0. Real experiment.

Game i for i = 1, 2, . . . , q. As in Game 0, except the challenger answers the first i− 1 key queries
using KeyGen∗ and the remaining q− i key queries using KeyGen. For the i’th key query Γi, we
consider sub-Games i.e as follows:

Game i.j, for j = 1, . . . , n. For edge ej = (u, v) labeled (i, indi), the challenger switches the
simulated recoding key rku,v from KeyGen to KeyGen∗. We rely on recoding simulation and
back-tracking properties simultaneously.

By recoding simulation and back-tracking, we have:

|Advi,e − Advi,e+1| ≤ negl(λ) for all i, e

Note that in Game q, the challenger runs Setup∗ and answers all key queries using KeyGen∗

with the selective challenge ind and generates the challenge ciphertext using Enc.

Game q + 1. Same as Game q, except the challenger generates the challenge ciphertext using Enc∗

with ψ`+2 ← Encode(pk`+2, s).
Advq+1 = Advq

Game q + 2. Same as Game q + 1, except ψ`+2
$← K. It is straight-forward to construct an

adversary B such that
|Advq+1 − Advq+2| ≤ AdvcpB (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows
readily.

27

285
Approved for Public Release; Distribution Unlimited.

Acknowledgments.

We thank Dan Boneh and Shafi Goldwasser for helpful comments and insightful conversations.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98–115, 2010.

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and
Hoeteck Wee. Functional encryption for threshold functions (or, fuzzy IBE) from
lattices. In Public Key Cryptography, pages 280–297, 2012.

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf.
Syst. Secur., 9(1):1–30, 2006.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In ASIACRYPT,
pages 21–40, 2011.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In ICALP (1), pages 152–163, 2010.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages
1–9, 1999.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, pages 601–610, 2001.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238, 2004.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT, pages 127–144, 1998.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In CRYPTO, pages 213–229, 2001.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In ACM CCS, pages 784–796, 2012.

[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In TCC, pages 122–
142, 2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

28

286
Approved for Public Release; Distribution Unlimited.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, pages 97–106, 2011.

[CHK09] David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis.
Cryptology ePrint Archive, Report 2009/351, 2009.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH12] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices and applications. Cryptology ePrint Archive, Report 2012/610, 2012.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report
2013/128, 2013.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GHW11] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryption of
abe ciphertexts. In Proceedings of the 20th USENIX conference on Security, SEC’11,
pages 34–34, Berkeley, CA, USA, 2011. USENIX Association.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Succinct functional encryption and its power: Reusable garbled circuits and
beyond. In STOC, 2013. To appear.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM CCS, pages 89–98,
2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

29

287
Approved for Public Release; Distribution Unlimited.

[HRSV11] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan.
Securely obfuscating re-encryption. J. Cryptology, 24(4):694–719, 2011.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In TCC, pages 455–479, 2010.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In STOC,
pages 351–358, 2010.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, pages 191–208,
2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify
in public: Verifiable computation from attribute-based encryption. In TCC, pages 422–
439, 2012.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[RS10] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM
J. Comput., 39(7):3058–3088, 2010.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

[SS10a] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, pages 463–472, 2010.

[SS10b] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In
ASIACRYPT, pages 377–394, 2010.

30

288
Approved for Public Release; Distribution Unlimited.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In CRYPTO, pages 619–636, 2009.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO, pages 218–235,
2012.

31

289
Approved for Public Release; Distribution Unlimited.

A Extensions

A.1 Outsourcing Decryption

In this section we show how to modify our main construction of attribute-based encryption to
support outsourcing of decryption circuits, similar to [GHW11]. We require that the Keygen
algorithm returns two keys:

• the evaluation key ekC , that is given to a computationally powerful proxy,

• and a decryption key dk, given to the client.

Given a ciphertext ctind, the proxy must perform the “bulk” of the computation and return a new
ciphertext ct′ind that is forwarded to the client. Using the decryption key dk, the client can decrypt
and learn the message m iff the predicate C(ind) is satisfied. We emphasize that that amount of
computation the client needs to perform to decrypt the message must be independent on the circuit
size. Intuitively, the security ensures that an adversary should learn nothing about the message,
conditioned on that it queries for decryption keys dk’s for predicates that are not satisfied by the
challenge index (note, the adversary can query for evaluation keys separately for predicates that
are satisfied).

Intuitively, we modify the main construction as follows. As before, the key-generation algorithm
assigns two keys for each circuit wire. The evaluation key consists of all the recoding keys for the
circuit. In addition, the output wire has another key pkout which now plays a special role. The
recoding key from pk|C|,1 to pkout is only given to the client as the decryption key. If C(ind) = 1, the
the proxy computes an encoding under the pk|C|,1 and forwards it to the client. The client applies
the transformation, and decrypts the message. For technical reasons, since we are using “two-to-
one” recoding mechanism, we need to introduce an auxiliary public key pkin and a corresponding
encoding.

Setup(1λ, 1`, dmax) : For each of the ` input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pki,b, ski,b)← Keygen(pp) for i ∈ [`], b ∈ {0, 1}
(pkout, skout)← Keygen(pp)

(pkin, skin)← Keygen(pp)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkin

pk1,1 pk2,1 . . . pk`,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0 skin

sk1,1 sk2,1 . . . sk`,1 skout

)

Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s
$← S and encode it under the

public keys specified by the index bits:

ψi ← Encode(pki,indi , s) for all i ∈ [`]

32

290
Approved for Public Release; Distribution Unlimited.

Encode s under the input public key:

ψin ← Encode(pkin, s)

Encrypt the message m:
τ ← E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψ`, ψin, τ

)
KeyGen(msk, C) :

1. For every non-input wire w = `+ 1, . . . , |C| of the circuit C, and every b ∈ {0, 1}, generate
public/secret key pairs:

(pkw,b, skw,b)← Keygen(pp)

2. For the gate g = (u, v, w) with output wire w, compute the four recoding keys rkwb,c (for
b, c ∈ {0, 1}):

rkwb,c ← ReKeyGen
(
pku,b, pkv,c, sku,b, pkw,gw(b,c)

)
3. Also, compute the recoding key

rkout ← ReKeyGen
(
pk|C|,1, pkin, sk|C|,1, pkout

)
Output the evaluation key which is a collection of 4(|C| − `) recoding keys

ekC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)
and the decryption key dk := rkout.

Eval(ekC , ctind) : We tacitly assume that ctind contains the index ind. For w = ` + 1, . . . , |C|, let
g = (u, v, w) denote the gate with output wire w. Suppose wires u and v carry the values b∗

and c∗, so that wire w carries the value d∗ := gw(b∗, c∗). Compute

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
If C(ind) = 1, then we would have computed ψ|C|,1. Output

ct′ind := (ψ|C|,1, ψin, τ)

If C(ind) = 0, output ⊥.

Dec(dk, ct′ind) : Apply the transformation

ψout ← Recode
(
rkout, ψin, ψ|C|,1

)
and output the message

m← D
(
ψout, τ

)
33

291
Approved for Public Release; Distribution Unlimited.

Security. We informally state how to modify the simulator in the proof of security in Section-6.4.
The simulator gets {pki, ψi}i∈[`+2] from the “outside”. It assigns pk1, . . . , pk` as the public keys
specified by the bits of ind and pkin := pk`+1, pkout := pk`+2. It is easy to see how to simulate the
ciphertext: all the input encodings become a part of it, as well as an encryption of the message
using ψout := ψ`+2. Now, the evaluation key ek is simulated by applying the TOR simulator.

• For query C such that C(ind) = 0, the simulator can choose (pk|C|,1, sk|C|,1) by itself (the public
key pk|C|,0 is “fixed” by the TOR simulator). Hence, the decryption key dk can be computed
using sk|C|,1.

• On the other hand, for query C such that C(ind) = 1, the adversary is not allowed to obtain
the decryption key dk, hence there is not need to simulate it.

A.2 Extending Secret Keys

Consider the following problem: a users holds two (or more) secret keys skC1 and skC2 . C1 allows
to decrypt all ciphertexts addressed to human resources department and C2 allows to decrypt
ciphertexts addressed to share holders. The user wishes to create (and delegate) another secret
key skC∗ that allows to decrypt ciphertexts addressed to human resources and share holders. The
question that we study is whether it is possible to allow the user to compute skC∗ without calling
the authority holding the master secret key msk. More formally, given {skCi}i∈[q] a users should be
able to compute a secret key skC∗ for any circuit C∗ that is an black-box monotone composition of
Ci’s. Note that only monotone compositions are realizable, since otherwise a users holding a secret
keys skC1 where C1(ind) = 0 could come up with a secret key for C1 and hence break any notion of
security.

To suppose monotone extensions, it is enough to show how to obtain (1) skC1 and C2 given
skC1 , skC2 , and (2) skC1 or C2 given skC1 , skC2 . We start from the construction presented in Section-
A.1. We note that the security of that construction does not break if we give the secret key
associated with the output value 0 (sk|Ci|,1) as a part of the secret key skCi . This is because our
simulation proceeds by sampling (pk|Ci|,1, sk|Ci|,1) honestly using Keygen algorithm and the fact
the adversary is restricted to quires Ci such that Ci(ind) = 0. Hence, given sk|C1|,1 and sk|C2|,1,

let C∗ = C1 and C2. The user computes skC∗ as (ekC1 , ekC2) plus four recoding keys rkC
∗

b,c (for
b, c ∈ {0, 1}):

(pk|C∗|,0, rk
C∗
0,0)← SimReKeyGen(pk|C1|,0, pk|C2|,0)

rkC
∗

0,1 ← ReKeyGen
(
pk|C1|,0, pk|C2|,1, sk|C2|,1, pk|C∗|,0

)
rkC

∗
1,0 ← ReKeyGen

(
pk|C1|,1, pk|C2|,0, sk|C1|,1, pk|C∗|,0

)
rkC

∗
1,1 ← ReKeyGen

(
pk|C1|,1, pk|C2|,1, sk|C1|,1, pkout

)
As before, the message is encrypted under the encoding ψout ← Encode(pkout, s). The construction
extends similarly to support or compositions. Furthermore, arbitrary monotone structures can
be realized by sampling keys associated with value 1 (pk1, sk1) honestly and computing the recoding
keys as above, until the final wire is assigned to pkout.

34

292
Approved for Public Release; Distribution Unlimited.

Fully Key-Homomorphic Encryption,

Arithmetic Circuit ABE, and Compact Garbled Circuits∗

Dan Boneh† Craig Gentry‡ Sergey Gorbunov§ Shai Halevi¶

Valeria Nikolaenko‖ Gil Segev∗∗ Vinod Vaikuntanathan††

Dhinakaran Vinayagamurthy‡‡

May 20, 2014

Abstract

We construct the first (key-policy) attribute-based encryption (ABE) system with short
secret keys: the size of keys in our system depends only on the depth of the policy circuit,
not its size. Our constructions extend naturally to arithmetic circuits with arbitrary fan-in
gates thereby further reducing the circuit depth. Building on this ABE system we obtain the
first reusable circuit garbling scheme that produces garbled circuits whose size is the same as
the original circuit plus an additive poly(λ, d) bits, where λ is the security parameter and d is
the circuit depth. Save the additive poly(λ, d) factor, this is the best one could hope for. All
previous constructions incurred a multiplicative poly(λ) blowup. As another application, we
obtain (single key secure) functional encryption with short secret keys.

We construct our attribute-based system using a mechanism we call fully key-homomorphic
encryption which is a public-key system that lets anyone translate a ciphertext encrypted under
a public-key x into a ciphertext encrypted under the public-key (f(x), f) of the same plaintext,
for any efficiently computable f . We show that this mechanism gives an ABE with short keys.
Security is based on the subexponential hardness of the learning with errors problem.

We also present a second (key-policy) ABE, using multilinear maps, with short ciphertexts:
an encryption to an attribute vector x is the size of x plus poly(λ, d) additional bits. This gives
a reusable circuit garbling scheme where the size of the garbled input is short, namely the same
as that of the original input, plus a poly(λ, d) factor.

∗This is the full version of a paper that appeared in Eurocrypt 2014 [BGG+14]. This work is a merge of two
closely related papers [GGH+13d, BNS13].
†Stanford University, Stanford, CA, USA. Email: dabo@cs.stanford.edu.
‡IBM Research, Yorktown, NY, USA. Email: cbgentry@us.ibm.com.
§MIT, Cambridge, MA, USA. Email: sergeyg@mit.edu. This work was partially done while visiting IBM T. J.

Watson Research Center.
¶IBM Research, Yorktown, NY, USA. Email: shaih@alum.mit.edu.
‖Stanford University, Stanford, CA, USA. Email: valerini@cs.stanford.edu.
∗∗Hebrew University, Jerusalem, Israel. Email: segev@cs.huji.ac.il. This work was partially done while the

author was visiting Stanford University.
††MIT, Cambridge, MA, USA. Email: vinodv@csail.mit.edu.
‡‡University of Toronto, Toronto, Ontario, Canada. Email: dhinakaran5@cs.toronto.edu.

1

293
Approved for Public Release; Distribution Unlimited.

1 Introduction

(Key-policy) attribute-based encryption [SW05, GPSW06] is a public-key encryption mechanism
where every secret key skf is associated with some function f : X → Y and an encryption of a
message µ is labeled with a public attribute vector x ∈ X . The encryption of µ can be decrypted
using skf only if f(x) = 0 ∈ Y. Intuitively, the security requirement is collusion resistance: a
coalition of users learns nothing about the plaintext message µ if none of their individual keys are
authorized to decrypt the ciphertext.

Attribute-based encryption (ABE) is a powerful generalization of identity-based encryption [Sha84,
BF03, Coc01] and fuzzy IBE [SW05, ABV+12] and is a special case of functional encryption [BSW11].
It is used as a building-block in applications that demand complex access control to encrypted
data [PTMW06], in designing protocols for verifiably outsourcing computations [PRV12], and for
single-use functional encryption [GKP+13b]. Here we focus on key-policy ABE where the access
policy is embedded in the secret key. The dual notion called ciphertext-policy ABE can be realized
from this using universal circuits, as explained in [GPSW06, GGH+13c].

The past few years have seen much progress in constructing secure and efficient ABE schemes
from different assumptions and for different settings. The first constructions [GPSW06, LOS+10,
OT10, LW12, Wat12, Boy13, HW13] apply to predicates computable by Boolean formulas which
are a subclass of log-space computations. More recently, important progress has been made on con-
structions for the set of all polynomial-size circuits: Gorbunov, Vaikuntanathan, and Wee [GVW13]
gave a construction from the Learning With Errors (LWE) problem and Garg, Gentry, Halevi, Sa-
hai, and Waters [GGH+13c] gave a construction using multilinear maps. In both constructions the
policy functions are represented as Boolean circuits composed of fan-in 2 gates and the secret key
size is proportional to the size of the circuit.

Our results. We present two new key-policy ABE systems. Our first system, which is the
centerpiece of this paper, is an ABE based on the learning with errors problem [Reg05] that supports
functions f represented as arithmetic circuits with large fan-in gates. It has secret keys whose size
is proportional to depth of the circuit for f , not its size. Secret keys in previous ABE constructions
contained an element (such as a matrix) for every gate or wire in the circuit. In our scheme the
secret key is a single matrix corresponding only to the final output wire from the circuit. We prove
selective security of the system and observe that by a standard complexity leveraging argument (as
in [BB11]) the system can be made adaptively secure.

Theorem 1.1 (Informal). Let λ be the security parameter. Assuming subexponential LWE, there
is an ABE scheme for the class of functions with depth-d circuits where the size of the secret key
for a circuit C is poly(λ, d).

Our second ABE system, based on multilinear maps ([BS02],[GGH13a]), optimizes the cipher-
text size rather than the secret key size. The construction here relies on a generalization of broad-
cast encryption [FN93, BGW05, BW13] and the attribute-based encryption scheme of [GGH+13c].
Previously, ABE schemes with short ciphertexts were known only for the class of Boolean formu-
las [ALdP11].

Theorem 1.2 (Informal). Let λ be the security parameter. Assuming that d-level multilinear maps
exist, there is an ABE scheme for the class of functions with depth-d circuits where the size of the
encryption of an attribute vector x is |x|+ poly(λ, d).

2

294
Approved for Public Release; Distribution Unlimited.

Our ABE schemes result in a number of applications and have many desirable features, which
we describe next.

Applications to reusable garbled circuits. Over the years, garbled circuits and variants have
found many uses: in two party [Yao86] and multi-party secure protocols [GMW87, BMR90], one-
time programs [GKR08], key-dependent message security [BHHI10], verifiable computation [GGP10],
homomorphic computations [GHV10] and many others. Classical circuit garbling schemes produced
single-use garbled circuits which could only be used in conjunction with one garbled input. Gold-
wasser et al. [GKP+13b] recently showed the first fully reusable circuit garbling schemes and used
them to construct token-based program obfuscation schemes and k-time programs [GKP+13b].

Most known constructions of both single-use and reusable garbled circuits proceed by garbling
each gate to produce a garbled truth table, resulting in a multiplicative size blowup of poly(λ). A
fundamental question regarding garbling schemes is: How small can the garbled circuit be?

There are three exceptions to the gate-by-gate garbling method that we are aware of. The
first is the “free XOR” optimization for single-use garbling schemes introduced by Kolesnikov and
Schneider [KS08] where one produces garbled tables only for the AND gates in the circuit C. This
still results in a multiplicative poly(λ) overhead but proportional to the number of AND gates
(as opposed to the total number of gates). Secondly, Lu and Ostrovsky [LO13] recently showed
a single-use garbling scheme for RAM programs, where the size of the garbled program grows as
poly(λ) times its running time. Finally, Goldwasser et al. [GKP+13a] show how to (reusably) garble
non-uniform Turing machines under a non-standard and non-falsifiable assumption and incurring
a multiplicative poly(λ) overhead in the size of the non-uniformity of the machine. In short, all
known garbling schemes (even in the single-use setting) suffer from a multiplicative overhead of
poly(λ) in the circuit size or the running time.

Using our first ABE scheme (based on LWE) in conjunction with the techniques of Goldwasser
et al. [GKP+13b], we obtain the first reusable garbled circuits whose size is |C| + poly(λ, d). For
large and shallow circuits, such as those that arise from database lookup, search and some machine
learning applications, this gives significant bandwidth savings over previous methods (even in the
single use setting).

Theorem 1.3 (Informal). Assuming subexponential LWE, there is a reusable circuit garbling
scheme that garbles a depth-d circuit C into a circuit Ĉ such that |Ĉ| = |C| + poly(λ, d), and
garbles an input x into an encoded input x̂ such that |x̂| = |x| · poly(λ, d).

We next ask if we can obtain short garbled inputs of size |x̂| = |x|+poly(λ, d), analogous to what
we achieved for the garbled circuit. In a beautiful recent work, Applebaum, Ishai, Kushilevitz and
Waters [AIKW13] showed constructions of single-use garbled circuits with short garbled inputs of
size |x̂| = |x|+ poly(λ). We remark that while their garbled inputs are short, their garbled circuits
still incur a multiplicative poly(λ) overhead.

Using our second ABE scheme (based on multilinear maps) in conjunction with the techniques
of Goldwasser et al. [GKP+13b], we obtain the first reusable garbling scheme with garbled inputs
of size |x|+ poly(λ, d).

Theorem 1.4 (Informal). Assuming subexponential LWE and the existence of d-level multilinear
maps, there is a reusable circuit garbling scheme that garbles a depth-d circuit C into a circuit
Ĉ such that |Ĉ| = |C| · poly(λ, d), and garbles an input x into an encoded input x̂ such that
|x̂| = |x|+ poly(λ, d).

3

295
Approved for Public Release; Distribution Unlimited.

A natural open question is to construct a scheme which produces both short garbled circuits
and short garbled inputs. We first focus on describing the ABE schemes and then give details of
the garbling scheme.

ABE for arithmetic circuits. For a prime q, our first ABE system (based on LWE) directly
handles arithmetic circuits with weighted addition and multiplication gates over Zq, namely gates
of the form

g+(x1, . . . , xk) = α1x1 + . . .+ αkxk and g×(x1, . . . , xk) = α · x1 · · ·xk

where the weights αi can be arbitrary elements in Zq. Previous ABE constructions worked with
Boolean circuits.

Addition gates g+ take arbitrary inputs x1, . . . , xk ∈ Zq. However, for multiplication gates g×,
we require that the inputs are somewhat smaller than q, namely in the range [−p, p] for some p < q.
(In fact, our construction allows for one of the inputs to g× to be arbitrarily large in Zq). Hence,
while f : Z`q → Zq can be an arbitrary polynomial-size arithmetic circuit, decryption will succeed
only for attribute vectors x for which f(x) = 0 and the inputs to all multiplication gates in the
circuit are in [−p, p]. We discuss the relation between p and q at the end of the section.

We can in turn apply our arithmetic ABE construction to Boolean circuits with large fan-in
resulting in potentially large savings over constructions restricted to fan-in two gates. An AND
gate can be implemented as ∧(x1, . . . , xk) = x1 · · ·xk and an OR gate as ∨(x1, . . . , xk) = 1− (1−
x1) · · · (1 − xk). In this setting, the inputs to the gates g+ and g× are naturally small, namely
in {0, 1}. Thus, unbounded fan-in allows us to consider circuits with smaller size and depth, and
results in smaller overall parameters.

ABE with key delegation. Our first ABE system also supports key delegation. That is, using
the master secret key, user Alice can be given a secret key skf for a function f that lets her decrypt
whenever the attribute vector x satisfies f(x) = 0. In our system, for any function g, Alice can
then issue a delegated secret key skf∧g to Bob that lets Bob decrypt if and only if the attribute
vector x satisfies f(x) = g(x) = 0. Bob can further delegate to Charlie, and so on. The size of the
secret key increases quadratically with the number of delegations.

We note that Gorbunov et al. [GVW13] showed that their ABE system for Boolean circuits
supports a somewhat restricted form of delegation. Specifically, they demonstrated that using a
secret key skf for a function f , and a secret key skg for a function g, it is possible to issue a secret
key skf∧g for the function f ∧ g. In this light, our work resolves the naturally arising open problem
of providing full delegation capabilities (i.e., issuing skf∧g using only skf).

1.1 Building an ABE for arithmetic circuits with short keys

Key-homomorphic public-key encryption. We obtain our ABE by constructing a public-key
encryption scheme that supports computations on public keys. Basic public keys in our system
are vectors x in Z`q for some `. Now, let x be a tuple in Z`q and let f : Z`q → Zq be a function
represented as a polynomial-size arithmetic circuit. Key-homomorphism means that:

anyone can transform an encryption under key x into an encryption under key f(x).

4

296
Approved for Public Release; Distribution Unlimited.

More precisely, suppose c is an encryption of message µ under public-key x ∈ Z`q. There is a
public algorithm Evalct(f,x, c) −→ cf that outputs a ciphertext cf that is an encryption of µ
under the public-key f(x) ∈ Zq. In our constructions Evalct is deterministic and its running time
is proportional to the size of the arithmetic circuit for f .

If we give user Alice the secret-key for the public-key 0 ∈ Zq then Alice can use Evalct to decrypt c
whenever f(x) = 0, as required for ABE. Unfortunately, this ABE is completely insecure! This is
because the secret key is not bound to the function f : Alice could decrypt any ciphertext encrypted
under x by simply finding some function g such that g(x) = 0.

To construct a secure ABE we slightly extend the basic key-homomorphism idea. A base
encryption public-key is a tuple x ∈ Z`q as before, however Evalct produces ciphertexts encrypted
under the public key (f(x), 〈f〉) where f(x) ∈ Zq and 〈f〉 is an encoding of the circuit computing
f . Transforming a ciphertext c from the public key x to (f(x), 〈f〉) is done using algorithm
Evalct(f,x, c) −→ cf as before. To simplify the notation we write a public-key (y, 〈f〉) as simply
(y, f). The precise syntax and security requirements for key-homomorphic public-key encryption
are provided in Section 3.

To build an ABE we simply publish the parameters of the key-homomorphic PKE system. A
message µ is encrypted with attribute vector x = (x1, . . . , x`) ∈ Z`q that serves as the public key.
Let c be the resulting ciphertext. Given an arithmetic circuit f , the key-homomorphic property
lets anyone transform c into an encryption of µ under key (f(x), f). The point is that now the
secret key for the function f can simply be the decryption key for the public-key (0, f). This key
enables the decryption of c when f(x) = 0 as follows: the decryptor first uses Evalct(f,x, c) −→ cf
to transform the ciphertext to the public key (f(x), f). It can then decrypt cf using the decryption
key it was given whenever f(x) = 0. We show that this results in a secure ABE.

A construction from learning with errors. Fix some n ∈ Z+, prime q, and m = Θ(n log q).
Let A, G and B1, . . . ,B` be matrices in Zn×mq that will be part of the system parameters. To

encrypt a message µ under the public key x = (x1, . . . , x`) ∈ Z`q we use a variant of dual Regev
encryption [Reg05, GPV08] using the following matrix as the public key:(

A | x1G + B1 | · · · | x`G + B`

)
∈ Zn×(`+1)m

q (1)

We obtain a ciphertext cx. We note that this encryption algorithm is the same as encryption in the
hierarchical IBE system of [ABB10] and encryption in the predicate encryption for inner-products
of [AFV11].

We show that, remarkably, this system is key-homomorphic: given a function f : Z`q → Zq
computed by a poly-size arithmetic circuit, anyone can transform the ciphertext cx into a dual
Regev encryption for the public-key matrix(

A | f(x) ·G + Bf

)
∈ Zn×2m

q

where the matrix Bf ∈ Zn×mq serves as the encoding of the circuit for the function f . This Bf is
uniquely determined by f and B1, . . . ,B`. The work needed to compute Bf is proportional to the
size of the arithmetic circuit for f .

To illustrate the idea, assume that we have the ciphertext under the public key (x, y): cx =
(c0 | cx | cy). Here c0 = AT s + e, cx = (xG + B1)T s + e1 and cy = (yG + B2)T s + e2. To compute
the ciphertext under the public key (x + y, B+) one takes the sum of the ciphertexts cx and cy.

5

297
Approved for Public Release; Distribution Unlimited.

The result is the encryption under the matrix

(x+ y)G + (B1 + B2) ∈ Zn×mq

where B+ = B1 + B2. One of the main contributions of this work is a novel method of multiplying
the public keys. Together with addition, described above, this gives full key-homomorphism. To
construct the ciphertext under the public key (xy, B×), we first compute a small-norm matrix
R ∈ Zm×mq , s.t. GR = −B1. With this in mind we compute

RT cy = RT ·
[
(yG + B2)T s + e2

]
≈ (−yB1 + B2R)T s, and

y · cx = y
[
(xG + B1)T s + e1

]
≈ (xyG + yB1)T s

Adding the two expressions above gives us

(xyG + B2R)T s + noise

which is a ciphertext under the public key (xy, B×) where B× = B2R. Note that performing this
operation requires that we know y. This is the reason why this method gives an ABE and not
(private index) predicate encryption. In Section 4.1 we show how to generalize this mechanism to
arithmetic circuits with arbitrary fan-in gates.

As explained above, this key-homomorphism gives us an ABE for arithmetic circuits: the public
parameters contain random matrices B1, . . . ,B` ∈ Zn×mq and encryption to an attribute vector x in

Z`q is done using dual Regev encryption to the matrix (1). A decryption key skf for an arithmetic

circuit f : Z`q → Zq is a decryption key for the public-key matrix (A | 0 ·G + Bf) = (A|Bf). This
key enables decryption whenever f(x) = 0. The key skf can be easily generated using a short basis
for the lattice Λ⊥q (A) which serves as the master secret key.

We prove selective security from the learning with errors problem (LWE) by using another
homomorphic property of the system implemented in an algorithm called Evalsim. Using Evalsim the
simulator responds to the adversary’s private key queries and then solves the given LWE challenge.

Parameters and performance. Applying algorithm Evalct(f,x, c) to a ciphertext c increases
the magnitude of the noise in the ciphertext by a factor that depends on the depth of the circuit
for f . A k-way addition gate (g+) increases the norm of the noise by a factor of O(km). A k-way
multiplication gate (g×) where all (but one) of the inputs are in [−p, p] increases the norm of the
noise by a factor of O(pk−1m). Therefore, if the circuit for f has depth d, the noise in c grows in
the worst case by a factor of O((pk−1m)d). Note that the weights αi used in the gates g+ and g×
have no effect on the amount of noise added.

For decryption to work correctly the modulus q should be slightly larger than the noise in the
ciphertext. Hence, we need q on the order of Ω(B · (pk−1m)d) where B is the maximum magnitude
of the noise added to the ciphertext during encryption. For security we rely on the hardness of
the learning with errors (LWE) problem, which requires that the ratio q/B is not too large. In
particular, the underlying problem is believed to be hard even when q/B is 2(nε) for some fixed
0 < ε < 1/2. In our settings q/B = Ω

(
(pk−1m)d

)
. Then to support circuits of depth t(λ) for

some polynomial t(·) we choose n such that n ≥ t(λ)(1/ε) · (2 log2 n + k log p)1/ε, set q = 2(nε),
m = Θ(n log q), and the LWE noise bound to B = O(n). This ensures correctness of decryption
and hardness of LWE since we have Ω((pkm)t(λ)) < q ≤ 2(nε), as required. The ABE system
of [GVW13] uses similar parameters due to a similar growth in noise as a function of circuit depth.

6

298
Approved for Public Release; Distribution Unlimited.

Secret key size. A decryption key in our system is a single 2m ×m low-norm matrix, namely
the trapdoor for the matrix (A|Bf). Since m = Θ(n log q) and log2 q grows linearly with the circuit
depth d, the overall secret key size grows as O(d2) with the depth. In previous ABE systems for
circuits [GVW13, GGH+13c] secret keys grew as O(d2s) where s is the number of boolean gates or
wires in the circuit.

Other related work. Predicate encryption [BW07, KSW08] provides a stronger privacy guaran-
tee than ABE by additionally hiding the attribute vector x. Predicate encryption systems for inner
product functionalities can be built from bilinear maps [KSW08] and LWE [AFV11]. More recently,
Garg et al. [GGH+13b] constructed functional encryption (which implies predicate encryption) for
all polynomial-size functionalities using indistinguishability obfuscation.

The encryption algorithm in our system is similar to that in the hierarchical-IBE of Agrawal,
Boneh, and Boyen [ABB10]. We show that this system is key-homomorphic for polynomial-size
arithmetic circuits which gives us an ABE for such circuits. The first hint of the key homo-
morphic properties of the [ABB10] system was presented by Agrawal, Freeman, and Vaikun-
tanathan [AFV11] who showed that the system is key-homomorphic with respect to low-weight
linear transformations and used this fact to construct a (private index) predicate encryption system
for inner-products. To handle high-weight linear transformations [AFV11] used bit decomposition
to represent the large weights as bits. This expands the ciphertext by a factor of log2 q, but adds
more functionality to the system. Our ABE, when presented with a circuit containing only lin-
ear gates (i.e. only g+ gates), also provides a predicate encryption system for inner products in
the same security model as [AFV11], but can handle high-weight linear transformations directly,
without bit decomposition, thereby obtaining shorter ciphertexts and public-keys.

A completely different approach to building circuit ABE was presented by Garg, Gentry, Sahai,
and Waters [GGSW13] who showed that a general primitive they named witness encryption implies
circuit ABE when combined with witness indistinguishable proofs.

2 Preliminaries

For a random variable X we denote by x← X the process of sampling a value x according to the
distribution of X. Similarly, for a finite set S we denote by x← S the process of sampling a value
x according to the uniform distribution over S. A non-negative function ν(λ) is negligible if for
every polynomial p(λ) it holds that ν(λ) ≤ 1/p(λ) for all sufficiently large λ ∈ N.

The statistical distance between two random variables X and Y over a finite domain Ω is defined
as

SD(X,Y) =
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω] |.

Two random variables X and Y are δ-close if SD(X,Y) ≤ δ. Two distribution ensembles {Xλ}λ∈N
and {Yλ}λ∈N are statistically indistinguishable if it holds that SD(Xλ, Yλ) is negligible in λ. Such
random variables are computationally indistinguishable if for every probabilistic polynomial-time
algorithm A it holds that ∣∣∣∣ Pr

x←Xλ

[
A(1λ, x) = 1

]
− Pr
y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣
is negligible in λ.

7

299
Approved for Public Release; Distribution Unlimited.

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a class of functions Fλ = {f : Xλ → Yλ} is a
quadruple Π = (Setup,Keygen,Enc,Dec) of probabilistic polynomial-time algorithms. Setup takes a
unary representation of the security parameter λ and outputs public parameters mpk and a master
secret key msk; Keygen(msk, f ∈ Fλ) output a decryption key skf ; Enc(mpk, x ∈ Xλ, µ) outputs
a ciphertext c, the encryption of message µ labeled with attribute vector x; Dec(skf , c) outputs
a message µ or the special symbol ⊥. (When clear from the context, we drop the subscript λ from
Xλ, Yλ and Fλ.)

Correctness. We require that for every circuit f ∈ F , attribute vector x ∈ X where f(x) = 0,
and message µ, it holds that Dec(skf , c) = µ with an overwhelming probability over the choice of
(mpk,msk)← Setup(λ), c← Enc(mpk, x, µ), and skf ← Keygen(msk, f).

Security. For the most part, we consider the standard notion of selective security for ABE
schemes [GPSW06]. Specifically, we consider adversaries that first announce a challenge attribute
vector x∗, and then receive the public parameters mpk of the scheme and oracle access to a key-
generation oracle KG(msk, x∗, f) that returns the secret key skf for f ∈ F if f(x∗) 6= 0 and returns
⊥ otherwise. We require that any such efficient adversary has only a negligible probability in distin-
guishing between the ciphertexts of two different messages encrypted under the challenge attribute
x∗. Formally, security is captured by the following definition.

Definition 2.1 (Selectively-secure ABE). An ABE scheme Π = (Setup,Keygen,Enc,Dec) for a
class of functions Fλ = {f : Xλ → Yλ} is selectively secure if for all probabilistic polynomial-time
adversaries A where A = (A1,A2,A3), there is a negligible function ν(λ) such that

AdvselABE
Π,A (λ)

def
=
∣∣∣Pr
[
EXP

(0)
ABE,Π,A(λ) = 1

]
− Pr

[
EXP

(1)
ABE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP
(b)
ABE,Π,A(λ) is defined as follows:

1. (x∗, state1)← A1(λ), where x∗ ∈ Xλ // A commits to challenge index x∗

2. (mpk,msk)← Setup(λ)

3. (µ0, µ1, state2)← AKG(msk,x∗,·)
2 (mpk, state1) // A outputs messages µ0, µ1

4. c∗ ← Enc(mpk, x∗, µb)

5. b′ ← AKG(msk,x∗,·)
3 (c∗, state2) // A outputs a guess b′ for b

6. Output b′ ∈ {0, 1}

where KG(msk, x∗, f) returns a secret key skf = Keygen(msk, f) if f(x∗) 6= 0 and ⊥ otherwise.

A fully secure ABE scheme is defined similarly, except that the adversary can choose the chal-
lenge attribute x∗ after seeing the master public key and making polynomially many secret key
queries. The following lemma, attributed to [BB11], says that any selectively secure ABE scheme
is also fully secure with an exponential loss in parameters.

Lemma 2.2. For any selectively secure ABE scheme with attribute vectors of length ` = `(λ), there
is a negligible function ν(λ) such that AdvfullABE

Π,A (λ) ≤ 2`(λ) · ν(λ).

8

300
Approved for Public Release; Distribution Unlimited.

2.2 Background on Lattices

Lattices. Let q, n,m be positive integers. For a matrix A ∈ Zn×mq we let Λ⊥q (A) denote the
lattice {x ∈ Zm : Ax = 0 in Zq}. More generally, for u ∈ Znq we let Λu

q (A) denote the coset
{x ∈ Zm : Ax = u in Zq}.

We note the following elementary fact: if the columns of TA ∈ Zm×m are a basis of the lattice
Λ⊥q (A), then they are also a basis for the lattice Λ⊥q (xA) for any nonzero x ∈ Zq.

Learning with errors (LWE) [Reg05]. Fix integers n,m, a prime integer q and a noise dis-
tribution χ over Z. The (n,m, q, χ)-LWE problem is to distinguish the following two distributions:

(A, ATs + e) and (A,u)

where A← Zn×mq , s← Znq , e← χm, u← Zmq are independently sampled. Throughout the paper
we always set m = Θ(n log q) and simply refer to the (n, q, χ)-LWE problem.

We say that a noise distribution χ is B-bounded if its support is in [−B,B]. For any fixed d > 0
and sufficiently large q, Regev [Reg05] (through a quantum reduction) and Peikert [Pei09] (through
a classical reduction) show that taking χ as a certain q/nd-bounded distribution, the (n, q, χ)-LWE
problem is as hard as approximating the worst-case GapSVP to nO(d) factors, which is believed to
be intractable. More generally, let χmax < q be the bound on the noise distribution. The difficulty
of the LWE problem is measured by the ratio q/χmax. This ratio is always bigger than 1 and the
smaller it is the harder the problem. The problem appears to remain hard even when q/χmax < 2n

ε

for some fixed ε ∈ (0, 1/2).

Matrix norms. For a vector u we let ‖u‖ denote its `2 norm. For a matrix R ∈ Zk×m, let R̃ be
the result of applying Gram-Schmidt (GS) orthogonalization to the columns of R. We define three
matrix norms:

• ‖R‖ denotes the `2 length of the longest column of R.

• ‖R‖GS = ‖R̃‖ where R̃ is the GS orthogonalization of R.

• ‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

We will use the following algorithm, throughout our paper:

BD(A) −→ R where m = ndlog qe: a deterministic algorithm that takes in a matrix A ∈ Zn×mq

and outputs a matrix R ∈ Zm×mq , where each element a ∈ Zq that belongs to the matrix A

gets transformed into a column vector r ∈ Zdlog qe
q , r = [a0, ..., adlog qe−1]T . Here ai is the i-th

bit of the binary decomposition of a ordered from LSB to MSB.

Claim 2.3. For any matrix A ∈ Zn×mq , matrix R = BD(A) has the norm ‖R‖2 ≤ m and ‖RT ‖2 ≤
m.

9

301
Approved for Public Release; Distribution Unlimited.

Trapdoor generators. The following lemma states properties of algorithms for generating short
basis of lattices.

Lemma 2.4. Let n,m, q > 0 be integers with q prime. There are polynomial time algorithms with
the properties below:

• TrapGen(1n, 1m, q) −→ (A,TA) ([Ajt99, AP09, MP12]): a randomized algorithm that, when
m = Θ(n log q), outputs a full-rank matrix A ∈ Zn×mq and basis TA ∈ Zm×m for Λ⊥q (A) such
that A is negl(n)-close to uniform and ‖T‖GS = O(

√
n log q), with all but negligible probability

in n.

• ExtendRight(A,TA,B) −→ T(A|B) ([CHKP10]): a deterministic algorithm that given full-

rank matrices A,B ∈ Zn×mq and a basis TA of Λ⊥q (A) outputs a basis T(A|B) of Λ⊥q (A|B)
such that ‖TA‖GS = ‖T(A|B)‖GS.

• ExtendLeft(A,G,TG,S) −→ TH where H = (A | G + AS) ([ABB10]): a deterministic
algorithm that given full-rank matrices A,G ∈ Zn×mq and a basis TG of Λ⊥q (G) outputs a

basis TH of Λ⊥q (H) such that ‖TH‖GS ≤ ‖TG‖GS · (1 + ‖S‖2).

• For m = ndlog qe there is a fixed full-rank matrix G ∈ Zn×mq s.t. the lattice Λ⊥q (G) has a

publicly known basis TG ∈ Zm×m with ‖TG‖GS ≤
√

5. The matrix G is such that for any
matrix A ∈ Zn×mq , G · BD(A) = A.

To simplify the notation we will always assume that the matrix G from part 4 of Lemma 2.4 has
the same width m as the matrix A output by algorithm TrapGen from part 1 of the lemma. We
do so without loss of generality since G can always be extended to the size of A by adding zero
columns on the right of G.

Discrete Gaussians. Regev [Reg05] defined a natural distribution on Λu
q (A) called a discrete

Gaussian parameterized by a scalar σ > 0. We use Dσ(Λu
q (A)) to denote this distribution. For a

random matrix A ∈ Zn×mq and σ = Ω̃(
√
n), a vector x sampled from Dσ(Λu

q (A)) has `2 norm less
than σ

√
m with probability at least 1− negl(m).

For a matrix U = (u1| · · · |uk) ∈ Zn×kq we let Dσ(ΛU
q (A)) be a distribution on matrices in Zm×k

where the i-th column is sampled from Dσ(Λui
q (A)) independently for i = 1, . . . , k. Clearly if R is

sampled from Dσ(ΛU
q (A)) then AR = U in Zq.

Lemma 2.5. For integers n,m, k, q, σ > 0, matrices A ∈ Zn×mq and U ∈ Zn×kq , if R ∈ Zm×k is

sampled from Dσ(ΛU
q (A)) and S is sampled uniformly in {±1}m×m then

‖RT‖2 ≤ σ
√
mk , ‖R‖2 ≤ σ

√
mk , ‖S‖2 ≤ 20

√
m

with overwhelming probability in m.

Proof. For the {±1} matrix S the lemma follows from Litvak et al. [LPRTJ05] (Fact 2.4). For the
matrix R the lemma follow from the fact that ‖RT‖2 ≤

√
k · ‖R‖ <

√
k(σ
√
m).

10

302
Approved for Public Release; Distribution Unlimited.

Solving AX = U. We review algorithms for finding a low-norm matrix X ∈ Zm×k such that
AX = U.

Lemma 2.6. Let A ∈ Zn×mq and TA ∈ Zm×m be a basis for Λ⊥q (A). Let U ∈ Zn×kq . There are

polynomial time algorithms that output X ∈ Zm×k satisfying AX = U with the properties below:

• SampleD(A,TA,U, σ) −→ X ([GPV08]): a randomized algorithm that, when σ = ‖TA‖GS ·
ω(
√

logm), outputs a random sample X from a distribution that is statistically close to
Dσ(ΛU

q (A)).

• RandBasis(A,TA, σ) −→ T′A ([CHKP10]): a randomized algorithm that, when σ = ‖TA‖GS ·
ω(
√

logm), outputs a basis T′A of Λ⊥q (A) sampled from a distribution that is statistically close

to (Dσ(Λ⊥q (A)))m. Note that ‖T′A‖GS < σ
√
m with all but negligible probability.

Randomness extraction. We conclude with a variant of the left-over hash lemma from [ABB10].

Lemma 2.7. Suppose that m > (n+1) log2 q+ω(log n) and that q > 2 is prime. Let S be an m×k
matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let A and B
be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors e in Zmq , the

distribution (A, AS, STe) is statistically close to the distribution (A, B, STe).

Note that the lemma holds for every vector e in Zmq , including low norm vectors.

Additional algorithms Throughout the paper we will use the following algorithms:

Lemma 2.8. • SampleRight(A,TA,B,U, σ) : a randomized algorithm that given full-rank ma-
trices A,B ∈ Zn×mq , matrix U ∈ Zn×mq , a basis TA of Λ⊥q (A) and σ = ‖TA‖GS · ω(

√
logm),

outputs a random sample X ∈ Z2m×m
q from a distribution that is statistically close to Dσ(ΛU

q ((A|B))).
This algorithm is the composition of two algorithms: ExtendRight(A,TA,B) −→ T(A|B) and
SampleD((A|B),T(A|B),U, σ) −→ X.

• SampleLeft(A,S, y,U, σ) : a randomized algorithm that given full-rank matrix A ∈ Zn×mq , ma-

trices S,U ∈ Zn×mq , y 6= 0 ∈ Zq and σ =
√

5 ·(1+‖S‖2) ·ω(
√

logm), outputs a random sample

X ∈ Z2m×m
q from a distribution that is statistically close to Dσ(ΛU

q ((A|yG + AS))), where
G is the matrix from Lemma 2.4, part 4. This algorithm is the composition of two algorithms:
ExtendLeft(A, yG,TG,S) −→ T(A|yG+AS) and SampleD((A|yG+AS),T(A|yG+AS),U, σ) −→
X.

2.3 Multilinear Maps

Assume there exists a group generator G that takes the security parameter 1λ and the pairing
bound k and outputs groups G1, . . . , Gk each of large prime order q > 2λ. Let gi be the generator
of group Gi and let g = g1. In addition, the algorithm outputs a description of a set of bilinear
maps:

{eij : Gi ×Gj → Gi+j | i, j ≥ 1, i+ j ≤ k}

satisfying eij(g
a
i , g

b
j) = gabi+j for all a, b ∈ Zq. We sometimes omit writing eij and for convince simply

use e as the map descriptor.

11

303
Approved for Public Release; Distribution Unlimited.

Definition 2.9. [(k, `)-Multilinear Diffie-Hellman Exponent Assumption] The challenger runs G(1λ, k)
to generate groups G1, . . . , Gk, generators g1, . . . , gk and the map descriptions eij . Next, it picks
c1, c2, . . . , ck ∈ Zq at random. The (k, `)-MDHE problem is hard if no adversary can distinguish
between the following two experiments with better than negligible advantage in λ:(

gc1 , . . . , gc
`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β = g

c`+1
1

∏
2≤i≤k ci

k

)
and (

gc1 , . . . , gc
`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β

)
where β is a randomly chosen element in Gk.

We note that if k = 2, then this corresponds exactly to the bilinear Diffie-Hellman Exponent

Assumption (BDHE). Also, is easy to compute g
c`+1
1

∏
2≤i≤k−1 ci

k by repeated pairing of the challenge
components.

3 Fully Key-Homomorphic PKE (FKHE)

Our new ABE constructions are a direct application of fully key-homomorphic public-key encryption
(FKHE), a notion that we introduce. Such systems are public-key encryption schemes that are
homomorphic with respect to the public encryption key. We begin by precisely defining FKHE and
then show that a key-policy ABE with short keys arises naturally from such a system.

Let {Xλ}λ∈N and {Yλ}λ∈N be sequences of finite sets. Let {Fλ}λ∈N be a sequence of sets of
functions, namely Fλ = {f : X `λ → Yλ} for some ` > 0. Public keys in an FKHE scheme are pairs
(x, f) ∈ Yλ × Fλ. We call x the “value” and f the associated function. All such pairs are valid
public keys. We also allow tuples x ∈ X `λ to function as public keys. To simplify the notation we
often drop the subscript λ and simply refer to sets X , Y and F .

In our constructions we set X = Zq for some q and let F be the set of `-variate functions on Zq
computable by polynomial size arithmetic circuits.

Now, an FKHE scheme for the family of functions F consists of five PPT algorithms:

• SetupFKHE(1λ) → (mpkFKHE,mskFKHE) : outputs a master secret key mskFKHE and public pa-
rameters mpkFKHE.

• KeyGenFKHE
(
mskFKHE, (y, f)

)
→ sky,f : outputs a decryption key for the public key (y, f) ∈

Y × F .

• EFKHE

(
mpkFKHE, x ∈ X `, µ

)
−→ cx : encrypts message µ under the public key x.

• Eval : a deterministic algorithm that implements key-homomorphism. Let c be an encryption
of message µ under public key x ∈ X `. For a function f : X ` → Y ∈ F the algorithm does:

Eval
(
f, x, c

)
−→ cf

where if y = f(x1, . . . , x`) then cf is an encryption of message µ under public-key (y, f).

• DFKHE(sky,f , c) : decrypts a ciphertext c with key sky,f . If c is an encryption of µ under public
key (x, g) then decryption succeeds only when x = y and f and g are identical arithmetic
circuits.

12

304
Approved for Public Release; Distribution Unlimited.

Algorithm Eval captures the key-homomorphic property of the system: ciphertext c encrypted with
key x = (x1, . . . , x`) is transformed to a ciphertext cf encrypted under key

(
f(x1, . . . , x`), f

)
.

Correctness. The key-homomorphic property is stated formally in the following requirement:
For all (mpkFKHE,mskFKHE) output by Setup, all messages µ, all f ∈ F , and x = (x1, . . . , x`) ∈ X `:

If c← EFKHE

(
mpkFKHE, x ∈ X `, µ

)
, y = f(x1, . . . , x`),

cf = Eval
(
f, x, c

)
, sk← KeyGenFKHE(mskFKHE, (y, f))

Then DFKHE(sk, cf) = µ.

An ABE from a FKHE. A FKHE for a family of functions F = {f : X ` → Y} immediately
gives a key-policy ABE. Attribute vectors for the ABE are `-tuples over X and the supported
key-policies are functions in F . The ABE system works as follows:

• Setup(1λ, `) : Run SetupFKHE(1λ) to get public parameters mpk and master secret msk. These
function as the ABE public parameters and master secret.

• Keygen(msk, f) : Output skf ← KeyGenFKHE

(
mskFKHE, (0, f)

)
.

Jumping ahead, we remark that in our FKHE instantiation (in Section 4), the number of bits
needed to encode the function f in skf depends only on the depth of the circuit computing
f , not its size. Therefore, the size of skf depends only on the depth complexity of f .

• Enc(mpk, x ∈ X `, µ) : output (x, c) where c← EFKHE(mpkFKHE, x, µ
)
.

• Dec
(
skf , (x, c)

)
: if f(x) = 0 set cf = Eval

(
f, x, c

)
and output the decrypted answer

DFKHE(skf , cf).
Note that cf is the encryption of the plaintext under the public key (f(x), f). Since skf is
the decryption key for the public key (0, f), decryption will succeed whenever f(x) = 0 as
required.

The security of FKHE systems. Security for a fully key-homomorphic encryption system is
defined so as to make the ABE system above secure. More precisely, we define security as follows.

Definition 3.1 (Selectively-secure FKHE). A fully key homomorphic encryption scheme Π =

(SetupFKHE,KeyGenFKHE,EFKHE,Eval) for a class of functions Fλ = {f : X `(λ)
λ → Yλ} is selectively

secure if for all p.p.t. adversaries A where A = (A1,A2,A3), there is a negligible function ν(λ)
such that

AdvFKHE
Π,A (λ)

def
=
∣∣∣Pr
[
EXP

(0)
FKHE,Π,A(λ) = 1

]
− Pr

[
EXP

(1)
FKHE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP
(b)
FKHE,Π,A(λ) is defined as:

1.
(
x∗ ∈ X `(λ)

λ , state1

)
← A1(λ)

2. (mpkFKHE,mskFKHE)← SetupFKHE(λ)

3. (µ0, µ1, state2)← AKGKH(mskFKHE,x
∗,·,·)

2 (mpkFKHE, state1)

13

305
Approved for Public Release; Distribution Unlimited.

4. c∗ ← EFKHE(mpkFKHE, x∗, µb)

5. b′ ← AKGKH(mskFKHE,x
∗,·,·)

3 (c∗, state2) // A outputs a guess b′ for b

6. output b′ ∈ {0, 1}

where KGKH(mskFKHE, x
∗, y, f) is an oracle that on input f ∈ F and y ∈ Yλ, returns ⊥ whenever

f(x∗) = y, and otherwise returns KeyGenFKHE

(
mskFKHE, (y, f)

)
.

With Definition 3.1 the following theorem is now immediate.

Theorem 3.2. The ABE system above is selectively secure provided the underlying FKHE is se-
lectively secure.

4 An ABE and FKHE for arithmetic circuits from LWE

We now turn to building an FKHE for arithmetic circuits from the learning with errors (LWE)
problem. This directly gives an ABE with short private keys as explained in Section 3. Our
construction follows the key-homomorphism paradigm outlined in the introduction.

For integers n and q = q(n) let m = Θ(n log q). Let G ∈ Zn×mq be the fixed matrix from
Lemma 2.4 (part 4). For x ∈ Zq, B ∈ Zn×mq , s ∈ Znq , and δ > 0 define the set

Es,δ(x,B) =
{

(xG + B)Ts + e ∈ Zmq where ‖e‖ < δ
}

For now we will assume the existence of three efficient deterministic algorithms Evalpk,Evalct,Evalsim
that implement the key-homomorphic features of the scheme and are at the heart of the construc-
tion. We present them in the next section. These three algorithms must satisfy the following prop-
erties with respect to some family of functions F = {f : (Zq)` → Zq} and a function αF : Z→ Z.

• Evalpk(f ∈ F , ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq .

• Evalct(f ∈ F ,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq . Here xi ∈ Zq, Bi ∈ Zn×mq and
ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0. Note that the same s is used for all ci. The
output cf must satisfy

cf ∈ Es,∆(f(x),Bf) where Bf = Evalpk(f, (B1, . . . ,B`))

and x = (x1, . . . , x`). We further require that ∆ < δ · αF(n) for some function αF(n) that
measures the increase in the noise magnitude in cf compared to the input ciphertexts.

This algorithm captures the key-homomorphic property: it translates ciphertexts encrypted
under public-keys {xi}`i=1 into a ciphertext cf encrypted under public-key (f(x), f).

• Evalsim(f ∈ F ,
(
(x∗i ,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq . Here x∗i ∈ Zq and Si ∈ Zm×mq . With

x∗ = (x∗1, . . . , x
∗
n), the output Sf satisfies

ASf − f(x∗)G = Bf where Bf = Evalpk

(
f, (AS1 − x∗1G, . . . ,AS` − x∗`G)

)
.

We further require that for all f ∈ F , if S1, . . . ,S` are random matrices in {±1}m×m then
‖Sf‖2 < αF(n) with all but negligible probability.

14

306
Approved for Public Release; Distribution Unlimited.

Definition 4.1. The deterministic algorithms (Evalpk,Evalct,Evalsim) are αF-FKHE enabling for
some family of functions F = {f : (Zq)` → Zq} if there are functions q = q(n) and αF = αF(n) for
which the properties above are satisfied.

We want αF -FKHE enabling algorithms for a large function family F and the smallest possible
αF . In the next section we build these algorithms for polynomial-size arithmetic circuits. The
function αF(n) will depend on the depth of circuits in the family.

The FKHE system. Given FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a family of
functions F = {f : (Zq)` → Zq} we build an FKHE for the same family of functions F . We prove
selective security based on the learning with errors problem.

• Parameters : Choose n and q = q(n) as needed for (Evalpk,Evalct,Evalsim) to be αF-FKHE
enabling for the function family F . In addition, let χ be a χmax-bounded noise distribution
for which the (n, q, χ)-LWE problem is hard as discussed in Appendix 2.2. As usual, we set
m = Θ(n log q).

Set σ = ω(αF ·
√

logm). We instantiate these parameters concretely in the next section.

For correctness of the scheme we require that α2
F ·m < 1

12 · (q/χmax) and αF >
√
n logm .

• SetupFKHE(1λ) → (mpkFKHE,mskFKHE) : Run algorithm TrapGen(1n, 1m, q) from Lemma 2.4
(part 1) to generate (A,TA) where A is a uniform full-rank matrix in Zn×mq .
Choose random matrices D,B1, . . . ,B` ∈ Zn×mq and output a master secret key mskFKHE and
public parameters mpkFKHE:

mpkFKHE = (A,D,B1, . . . ,B`) ; mskFKHE = (TA)

• KeyGenFKHE
(
mskFKHE, (y, f)

)
→ sky,f : Let Bf = Evalpk(f, (B1, . . . ,B`)).

Output sky,f := Rf where Rf is a low-norm matrix in Z2m×m sampled from the discrete
Gaussian distribution Dσ(ΛD

q (A|yG + Bf)) so that (A|yG + Bf) ·Rf = D.

To construct Rf run algorithm SampleRight(A,TA, yG + Bf ,D, σ) from Lemma 2.8, part 1.
Here σ is sufficiently large for algorithm SampleRight since σ = ‖TA‖GS · ω(

√
logm), where

‖TA‖GS = O(
√
n log q).

Note that the secret key sky,f is always in Z2m×m independent of the complexity of the
function f . We assume sky,f also implicitly includes mpkFKHE.

• EFKHE

(
mpkFKHE, x ∈ X `, µ

)
−→ cx : Choose a random n dimensional vector s ← Znq and

error vectors e0, e1 ← χm. Choose ` uniformly random matrices Si ← {±1}m×m for i ∈ [`].

Set H ∈ Zn×(`+1)m
q and e ∈ Z(`+1)m

q as

H = (A | x1G + B1 | · · · | x`G + B`) ∈ Zn×(`+1)m
q

e = (Im|S1| . . . |S`)T · e0 ∈ Z(`+1)m
q

Let cx = (HT s + e, DT s + e1 + dq/2eµ) ∈ Z(`+2)m
q . Output the ciphertext cx.

15

307
Approved for Public Release; Distribution Unlimited.

• DFKHE(sky,f , c) : Let c be the encryption of µ under public key (x, g). If x 6= y or f and g
are not identical arithmetic circuits, output ⊥. Otherwise, let c = (cin, c1, . . . , c`, cout) ∈
Z(`+2)m
q .

Set cf = Evalct

(
f, {(xi,Bi, ci)}`i=1

)
∈ Zmq .

Let c′f = (cin|cf) ∈ Z2m
q and output Round(cout −RT

f c′f) ∈ {0, 1}m.

This completes the description of the system.

Correctness. The correctness of the scheme follows from our choice of parameters and, in par-
ticular, from the requirement α2

F ·m < 1
12 · (q/χmax). Specifically, to show correctness, first note

that when f(x) = y we know by the requirement on Evalct that cf is in Es,∆(y,Bf) so that
cf = yG + BT

f s + e with ‖e‖ < ∆. Consequently,

c′f = (cin|cf) = (A|yG + Bf)Ts + e′ where ‖e′‖ < ∆ + χmax < (αF + 1)χmax .

Since Rf ∈ Z2m×m is sampled from the distribution Dσ(ΛD
q (A|yG + Bf)) we know that (A|yG +

Bf) ·Rf = D and, by Lemma 2.5, ‖RT
f ‖2 < 2mσ with overwhelming probability. Therefore

cout −RT
f c′f = (DTs + e1)− (DTs + RT

f e′) = e1 −RT
f e′

and ‖e1 −RT
f e′‖ ≤ χmax + 2mσ · (αF + 1)χmax ≤ 3α2

F · χmax ·m with overwhelming probability.
By the bounds on αF this quantity is less than q/4 thereby ensuring correct decryption of all bits
of µ ∈ {0, 1}m.

Security. Next we prove that our FKHE is selectively secure for the family of functions F for
which algorithms (Evalpk,Evalct,Evalsim) are FKHE-enabling.

Theorem 4.2. Given the three algorithms (Evalpk,Evalct,Evalsim) for the family of functions F , the
FKHE system above is selectively secure with respect to F , assuming the (n, q, χ)-LWE assumption
holds where n, q, χ are the parameters for the FKHE.

Proof idea. Before giving the complete proof we first briefly sketch the main proof idea which
hinges on the properties of algorithms (Evalpk,Evalct,Evalsim) and also employs ideas from [CHKP10,
ABB10]. We build an LWE algorithm B that uses a selective FKHE attacker A to solve LWE. B
is given an LWE challenge matrix (A|D) ∈ Zn×2m

q and two vectors cin, cout ∈ Zmq that are either

random or their concatenation equals (A|D)Ts + e for some small noise vector e.
A starts by committing to the target attribute vector x = (x∗1, . . . , x

∗
`) ∈ Z`q. In response B

constructs the FKHE public parameters by choosing random matrices S∗1, . . . ,S
∗
` in {±1}m×m and

setting Bi = A S∗i − x∗iG. It gives A the public parameters mpkFKHE = (A,D,B1, . . . ,B`). A
standard argument shows that each of A S∗i is uniformly distributed in Zn×mq so that all Bi are
uniform as required for the public parameters.

Now, consider a private key query from A for a function f ∈ F and attribute y ∈ Zq.
Only functions f and attributes y for which y∗ = f(x∗1, . . . , x

∗
`) 6= y are allowed. Let Bf =

Evalpk

(
f, (B1, . . . ,B`)

)
. Then B needs to produce a matrix Rf in Z2m×m satisfying (A|Bf)·Rf =

16

308
Approved for Public Release; Distribution Unlimited.

D. To do so B needs a recoding matrix from the lattice Λ⊥q (F) where F = (A|Bf) to the lattice

Λ⊥q (D). In the real key generation algorithm this short basis is derived from a short basis for Λ⊥q (A)

using algorithm SampleRight. Unfortunately, B has no short basis for Λ⊥q (A).
Instead, as explained below, B builds a low-norm matrix Sf ∈ Zm×mq such that Bf = ASf−y∗G.

Because y∗ 6= y, algorithm B can construct the required key as Rf ← SampleLeft(A,Sf , (y −
y∗),D, σ).

The remaining question is how does algorithm B build a low-norm matrix Sf ∈ Zm×mq such
that Bf = ASf − y∗G. To do so B uses Evalsim giving it the secret matrices S∗i . More precisely, B
runs Evalsim(f,

(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains the required Sf . This lets B answer all private key

queries.
To complete the proof it is not difficult to show that B can build a challenge ciphertext c∗

for the attribute vector x ∈ Z`q that lets it solve the given LWE instance using adversary A. An
important point is that B cannot construct a key that decrypts c∗. The reason is that it cannot
build a secret key sky,f for functions where f(x∗) = y and these are the only keys that will decrypt
c∗.

Proof of Theorem 4.2. The proof proceeds in a sequence of games where the first game is iden-
tical to the ABE game from Definition 2.1. In the last game in the sequence the adversary has
advantage zero. We show that a PPT adversary cannot distinguish between the games which will
prove that the adversary has negligible advantage in winning the original ABE security game. The
LWE problem is used in proving that Games 2 and 3 are indistinguishable.

Game 0. This is the original ABE security game from Definition 2.1 between an attacker A against
our scheme and an ABE challenger.

Game 1. Recall that in Game 0 part of the public parameters mpk are generated by choosing
random matrices B1, . . . ,B` in Zn×mq . At the challenge phase (step 4 in Definition 2.1) a challenge
ciphertext c∗ is generated. We let S∗1, . . . ,S

∗
` ∈ {−1, 1}m×m denote the random matrices generated

for the creation of c∗ in the encryption algorithm Enc.
In Game 1 we slightly change how the matrices B1, . . . ,B` are generated for the public param-

eters. Let x∗ = (x∗1, . . . , x
∗
`) ∈ Z`q be the target point that A intends to attack. In Game 1 the

random matrices S∗1, . . . ,S
∗
` in {±1}m×m are chosen at the setup phase (step 2) and the matrices

B1, . . . ,B` are constructed as
Bi := A S∗i − x∗iG (2)

The remainder of the game is unchanged.
We show that Game 0 is statistically indistinguishable from Game 1 by Lemma 2.7. Observe

that in Game 1 the matrices S∗i are used only in the construction of Bi and in the construction of the
challenge ciphertext where e := (Im|S∗1| · · · |S∗`)T · e0 is used as the noise vector for some e0 ∈ Zmq .
Let S∗ = (S∗1| · · · |S∗`), then by Lemma 2.7 the distribution (A, A S∗, e) is statistically close to the
distribution (A, A′, e) where A′ is a uniform matrix in Zn×`mq . It follows that in the adversary’s
view, all the matrices A S∗i are statistically close to uniform and therefore the Bi as defined in (2)
are close to uniform. Hence, the Bi in Games 0 and 1 are statistically indistinguishable.

Game 2. We now change how A in mpk is chosen. In Game 2 we generate A as a random matrix
in Zn×mq . The construction of B1, . . . ,B` remains as in Game 1, namely Bi = A S∗i − x∗iG.

The key generation oracle responds to private key queries (in steps 3 and 5 of Definition 2.1)
using the trapdoor TG. Consider a private key query for function f ∈ F and element y ∈ Y. Only

17

309
Approved for Public Release; Distribution Unlimited.

f such that y∗ = f(x∗1, . . . , x
∗
`) 6= y are allowed. To respond, the key generation oracle computes

Bf = Evalpk

(
f, (B1, . . . ,B`)

)
and needs to produce a matrix Rf in Z2m×m satisfying

(A|yG + Bf) ·Rf = D in Zq .

To do so the key generation oracle does:

• It runs Sf ← Evalsim(f,
(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains a low-norm matrix Sf ∈ Zm×mq such

that ASf − y∗G = Bf . By definition of Evalsim we know that ‖Sf‖2 ≤ αF .

• Finally, it responds with Rf = SampleLeft(A,Sf , y,D, σ). By definition of SampleLeft we
know that Rf is distributed as required. Indeed because ‖Sf‖2 ≤ αF(n), σ =

√
5 · (1 +

‖Sf‖2) · ω(
√

logm) as needed for algorithm SampleLeft in Lemma 2.8, part 2.

Game 2 is otherwise the same as Game 1. Since the public parameters and responses to private
key queries are statistically close to those in Game 1, the adversary’s advantage in Game 2 is at
most negligibly different from its advantage in Game 1.

Game 3. Game 3 is identical to Game 2 except that in the challenge ciphertext (x∗, c∗) the vector

c∗ = (cin|c1| · · · |c`|cout) ∈ Z(`+2)m
q is chosen as a random independent vector in Z(`+2)m

q . Since the
challenge ciphertext is always a fresh random element in the ciphertext space, A’s advantage in
this game is zero.

It remains to show that Game 2 and Game 3 are computationally indistinguishable for a PPT
adversary, which we do by giving a reduction from the LWE problem.

Reduction from LWE. Suppose A has non-negligible advantage in distinguishing Games 2 and 3.
We use A to construct an LWE algorithm B.

LWE Instance. B begins by obtaining an LWE challenge consisting of two random matrices A,D
in Zn×mq and two vectors cin, cout in Zmq . We know that cin, cout are either random in Zmq or

cin = ATs + e0 and cout = DTs + e1 (3)

for some random vector s ∈ Znq and e0, e1 ← χm. Algorithm B’s goal is to distinguish these
two cases with non-negligible advantage by using A.

Public parameters. A begins by committing to a target point x = (x∗1, . . . , x
∗
`) ∈ Zmq where

it wishes to be challenged. B assembles the public parameters mpk as in Game 2: choose
random matrices S∗1, . . . ,S

∗
` in {±1}m×m and set Bi = A S∗i − x∗iG. It gives A the public

parameters
mpk = (A,D,B1, . . . ,B`)

Private key queries. B answers A’s private-key queries (in steps 3 and 5 of Definition 2.1) as in
Game 2.

Challenge ciphertext. When B receives two messages µ0, µ1 ∈ {0, 1}m from A, it prepares a
challenge ciphertext by choosing a random b← {0, 1} and computing

c∗0 = (Im|S∗1| . . . |S∗`)T · cin ∈ Z(`+1)m
q (4)

18

310
Approved for Public Release; Distribution Unlimited.

and c∗ = (c∗0, cout + dq/2eµb) ∈ Z(`+2)m
q . B sends (x∗, c∗) as the challenge ciphertext to A.

We argue that when the LWE challenge is pseudorandom (namely (3) holds) then c∗ is
distributed exactly as in Game 2. First, observe that when encrypting (x∗, µb) the matrix H
constructed in the encryption algorithm Enc is

H = (A | x∗1G + B1 | · · · | x∗`G + B`)

=
(
A | x∗1G + (AS∗1 − x∗1G) | · · · | x∗`G + (AS∗` − x∗`G)

)
= (A | AS∗1 | · · · | AS∗`)

Therefore, c∗0 defined in (4) satisfies:

c∗0 = (Im|S∗1| . . . |S∗`)T · (ATs + e0)

= (A|AS∗1 | · · · | AS∗`)
T · s + (Im|S∗1| · · · |S∗`)T · e0 = HTs + e

where e = (Im|S∗1| · · · |S∗`)T · e0. This e is sampled from the same distribution as the noise
vector e in algorithm Enc. We therefore conclude that c∗0 is computed as in Game 2. Moreover,
since cout = DTs + e1 we know that the entire challenge ciphertext c∗ is a valid encryption
of (x∗, µb) as required.

When the LWE challenge is random we know that cin and cout are uniform in Zmq . Therefore

the public parameters and c∗0 defined in (4) are uniform and independent in Z(`+1)m
q by a

standard application of the left over hash lemma (e.g. Theorem 8.38 of [Sho08]) where the
universal hash function is defined as multiplication by the random matrix (AT|cin)T. Since

cout is also uniform, the challenge ciphertext overall is uniform in Z(`+2)m
q , as in Game 3.

Guess. Finally, A guesses if it is interacting with a Game 2 or Game 3 challenger. B outputs A’s
guess as the answer to the LWE challenge it is trying to solve.

We already argued that when the LWE challenge is pseudorandom the adversary’s view is as
in Game 2. When the LWE challenge is random the adversary’s view is as in Game 3. Hence,
B’s advantage in solving LWE is the same as A’s advantage in distinguishing Games 2 and 3, as
required. This completes the description of algorithm B and completes the proof.

Remark 4.3. We note that the matrix Rf in KeyGenFKHE can alternatively be generated using
a sampling method from [MP12]. To do so we choose FKHE public parameters as we do in the
security proof by choosing random matrices Si, . . . ,S` in {±1}m×m and setting Bi = A Si. We
then define the matrix Bf as Bf := ASf where Sf = Evalsim(f, ((0,Si))

`
i=1, A). We could

then build the secret key matrix sky,f = Rf satisfying (A|yG + Bf) ·Rf = D directly from the
bit decomposition of D/y. Adding suitable low-norm noise to the result will ensure that sky,f is
distributed as in the simulation in the security proof. Note that this approach can only be used to
build secret keys sky,f when y 6= 0 where as the method in KeyGenFKHE works for all y.

4.1 Evaluation Algorithms for Arithmetic Circuits

In this section we build the FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) that are at the heart
of the FKHE construction in Section 4. We do so for the family of polynomial depth, unbounded
fan-in arithmetic circuits.

19

311
Approved for Public Release; Distribution Unlimited.

4.2 Evaluation algorithms for gates

We first describe Eval algorithms for single gates, i.e. when G is the set of functions that each takes
k inputs and computes either weighted addition or multiplication:

G =
⋃

α,α1,...,αk∈Zq

g | g : Zkq → Zq,
g(x1, . . . , xk) = α1x1 + α2x2 + . . .+ αkxk

or
g(x1, . . . , xk) = α · x1 · x2 · . . . · xk

 (5)

We assume that all the inputs to a multiplication gate (except possibly one input) are integers in
the interval [−p, p] for some bound p < q.

We present all three deterministic Eval algorithms at once:

Evalpk(g ∈ G, ~B ∈ (Zn×mq)k) −→ Bg ∈ Zn×mq

Evalct(g ∈ G,
(
(xi,Bi, ci)

)k
i=1

) −→ cg ∈ Zmq
Evalsim(g ∈ G,

(
(x∗i ,Si)

)k
i=1
, A) −→ Sg ∈ Zm×mq

• For a weighted addition gate g(x1, . . . , xk) = α1x1 + · · ·+ αkxk do:
For i ∈ [k] generate matrix Ri ∈ Zm×mq such that

GRi = αiG : Ri = BD(αiG) (as in Lemma 2.4 part 4). (6)

Output the following matrices and the ciphertext:

Bg =
k∑
i=1

BiRi, Sg =
k∑
i=1

SiRi, cg =
k∑
i=1

RT
i ci (7)

• For a weighted multiplication gate g(x1, . . . , xk) = αx1 · . . . · xk do:
For i ∈ [k] generate matrices Ri ∈ Zm×mq such that

GR1 = αG : R1 = BD(αG) (8)

GRi = −Bi−1Ri−1 : Ri = BD(−Bi−1Ri−1) for all i ∈ {2, 3, . . . , k} (9)

Output the following matrices and the ciphertext:

Bg = BkRk, Sg =

k∑
j=1

 k∏
i=j+1

x∗i

SjRj , cg =
k∑
j=1

 k∏
i=j+1

xi

RT
j cj (10)

For example, for k = 2, Bg = B2R2, Sg = x∗2S1R1 + S2R2, cg = x∗2R
T
1 c1 + RT

2 c2.

For multiplication gates, the reason we need an upper bound p on all but one of the inputs xi is
that these xi values are used in (10) and we need the norm of Sg and the norm of the noise in the
ciphertext cg to be bounded from above. The next two lemmas show that these algorithms satisfy
the required properties to be FKHE-enabling.

Lemma 4.4. Let βg(m) = km. For a weighted addition gate g(x) = α1x1 + . . .+αkxk we have:

20

312
Approved for Public Release; Distribution Unlimited.

1. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0, then cg ∈ Es,∆(g(x),Bg) where ∆ ≤ βg(m)·δ
and Bg = Evalpk(g, (B1, . . . ,Bk)).

2. The output Sg satisfies ASg − g(x∗)G = Bg where ‖Sg‖2 ≤ βg(m) ·maxi∈[k] ‖Si‖2

and Bg = Evalpk
(
g, (AS1 − x∗1G, . . . ,ASk − x∗kG)

)
.

Proof. By Eq. 7 the output ciphertext is computed as follows:

cg =
k∑
i=1

RT
i · ci =

k∑
i=1

RT
i ·
(

(xiG + Bi)
T s + ei

)
= // substitute for ci = (xiG + Bi)

T s + ei

=
k∑
i=1

(xiGRi)
T s +

k∑
i=1

(BiRi)
T s +

k∑
i=1

(RT
i ei) = // break the product into components

=

(
k∑
i=1

αixi

)
GT s + BT

g s + eg = // GRi = αiRi from Eq. 6 and Bg =

k∑
i=1

BiRi from Eq. 7

= [g(x)G + Bg]
T s + eg

The noise bound is: ‖eg‖ = ‖RT
1 e1+· · ·+RT

k ek‖ ≤ k·maxj∈[k]

(
‖RT

j ‖2 · ‖ej‖
) Lemma 2.4,part 4

≤ km·δ.
This completes the proof of the first part of the lemma.

In the second part of the lemma, by Eq. 7 the output matrix Bg is computed as follows:

Bg =
k∑
i=1

(ASi − x∗iG)Ri = // plug-in matrices given in the lemma into Eq. 7

=A
k∑
i=1

SiRi −
k∑
i=1

αix
∗
iG = ASg − g(x∗)G // GRi = αiRi from Eq. 6

Then ‖Sg‖2 = ‖
∑k

i=1 SiRi‖2 ≤ k ·maxi∈[k] (‖Si‖2 · ‖Ri‖2)
Lemma 2.4,part 4

≤ km ·maxi∈[k] (‖Si‖2)
as required.

The next Lemma proves similar bounds for a multiplication gate.

Lemma 4.5. For a multiplication gate g(x) = α
∏k
i=1 xi we have the same bounds on cg and Sg

as in Lemma 4.4 with βg(m) = pk−1
p−1 m.

21

313
Approved for Public Release; Distribution Unlimited.

Proof. Set eg =
∑k

j=1

(∏k
i=j+1 xi

)
RT
j ej . Then the output ciphertext is computed as follows:

cg =
k∑
j=1

 k∏
i=j+1

xi

RT
j cj =

k∑
j=1

 k∏
i=j+1

xi

RT
j

(
(xjG + Bj)

T s + ej

)
= // substitute for cj

=

(k∏
i=1

xi

)
GR1 +

k∑
j=2

 k∏
i=j

xi

(((

((((
(((

(GRj + Bj−1Rj−1) + BkRk

T s + eg = // regroup

=

[(
k∏
i=1

xi

)
GR1 + BkRk

]T
s + eg = // use Eq. 9 to cancel terms

= [g(x)G + Bg]
T s + eg // use the facts GR1 = αG (Eq. 8), Bg = BkRk (Eq. 10)

The bound on the noise ‖eg‖ is:

‖eg‖ =

∥∥∥∥∥∥
k∑
j=1

 k∏
i=j+1

xi

RT
j ej

∥∥∥∥∥∥ ≤
(

1 + p+ . . .+ pk−1
)
·max
j∈[k]

[
‖RT

j ‖2 · ‖ej‖
] Lemma. 2.3

≤ pk − 1

p− 1
m · δ

This completes the first part of the lemma. In the second part of the lemma, the output matrix
Bg is computed as follows:

Bg =(ASk − xkG)Rk
Eq. 9

= // by (9) we have GRk = −(ASk−1 − xk−1G)Rk−1

= (ASkRk + xkASk−1Rk−1 − xk · xk−1GRk−1)
Eq. 9

= . . .
Eq. 9

=

= (ASkRk + xkASk−1Rk−1 + xk · xk−1ASk−2Rk−2 + . . .+ (−x1 · · ·xkGR1))
Eq. 8

=

= (ASg − αx1 · · ·xkG) = (ASg − g(x)G)

Moreover, the bound on the norm of Sg is:

‖Sg‖2 =

∥∥∥∥∥∥
k∑
j=1

 k∏
i=j+1

xi

SjRj

∥∥∥∥∥∥
2

≤
(

1 + p+ . . .+ pk−1
)

max
i∈[k]

(‖Si‖2 · ‖Ri‖2)
Lemma. 2.3
≤ pk − 1

p− 1
m ·max

i∈[k]
(‖Si‖2)

as required.

4.3 Evaluation algorithms for circuits

We will now show how using the algorithms for single gates, that compute weighted additions and
multiplications as described above, to build algorithms for the depth d, unbounded fan-in circuits.

Let {Cλ}λ∈N be a family of polynomial-size arithmetic circuits. For each C ∈ Cλ we index the
wires of C following the notation in [GVW13]. The input wires are indexed 1 to `, the internal
wires have indices `+ 1, `+ 2, . . . , |C| − 1 and the output wire has index |C|, which also denotes the
size of the circuit. Every gate gw : Zkwq → Zq (in G as per 5) is indexed as a tuple (w1, . . . , wkw , w)

22

314
Approved for Public Release; Distribution Unlimited.

where kw is the fan-in of the gate. We assume that all (but possibly one) of the input values to
the multiplication gates are bounded by p which is smaller than scheme modulus q. The “fan-out
wires” in the circuit are given a single number. That is, if the outgoing wire of a gate feeds into
the input of multiple gates, then all these wires are indexed the same. For some λ ∈ N, define the
family of functions F = {f : f can be computed by some C ∈ Cλ}. Again we will describe the three
Eval algorithms together, but it is easy to see that they can be separated.

Evalpk(f ∈ F , ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq

Evalct(f ∈ F ,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq
Evalsim(f ∈ F ,

(
(x∗i ,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq

Let f be computed by some circuit C ∈ Cλ, that has ` input wires. We construct the required
matrices inductively input to output gate-by-gate.

For all w ∈ [C] denote the value that wire w carries when circuit C is evaluated on x or x∗ to be
xw or x∗w respectively. Consider an arbitrary gate of fan-in kw (we will omit the subscript w where
it is clear from the context): (w1, . . . , wk, w) that computes the function gw : Zkq → Zq. Each wire
wi caries a value xwi . Suppose we already computed Bw1 , . . . ,Bwk , Sw1 , . . . ,Swk and cw1 , . . . , cwk ,
note that if w1, . . . , wk are all in {1, 2, . . . , `} then these matrices and vectors are the inputs of the
corresponding Eval functions.

Using Eval algorithms described in Section 4.2, compute

Bw = Evalpk(gw, (Bw1 , . . . , Bwk))

cw = Evalct(gw,
(
(xwi ,Bwi , cwi)

)k
i=1

)

Sw = Evalsim(gw,
(
(x∗wi ,Swi)

)k
i=1
, A)

Output Bf := B|C|, cf := c|C|, Sf := S|C|. Next we show that these outputs satisfy the required
properties.

Lemma 4.6. Let β(m) = pk−1
p−1 m. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq and δ > 0, then

cf ∈ Es,∆(f(x),Bf) where ∆ < (β(m))d · δ and Bf = Evalpk(f, (B1, . . . ,B`)).

Proof. By Lemma 4.4 and 4.5, after each level of the circuit the noise is multiplied by βgw(m),
which is upperbounded by β(m) and the total number of levels is equal to the depth d of the
circuit. The lemma follows.

Lemma 4.7. Let β(m) be as defined in Lemma 4.6. If S1, . . . ,S` are random matrices in {±1}m×m,
then the output Sf satisfies ASf − f(x∗)G = Bf where ‖Sf‖2 ≤ (β(m))d · 20

√
m and

Bf = Evalpk
(
f, (AS1 − x∗1G, . . . ,AS` − x∗`G)

)
.

Proof. Since the input Si for i ∈ [`] are random matrices in {±1}m×m, by Lemma 2.5 for all i ∈ [`],
‖Si‖2 < 20

√
m. By Lemma 4.4 and 4.5, after each level of the circuit the bound on S gets multiplied

by at most β(m), therefore after d levels, which is the depth of the circuit, the bound on the output
matrix will be ‖Sf‖2 ≤ (β(m))d · 20

√
m. The lemma follows.

In summary, algorithms (Evalpk,Evalct,Evalsim) are αF -FKHE enabling for

αF(n) = (β(m))d · 20
√
m = O

(
(pk−1m)d

√
m
)
, where m = Θ(n log q). (11)

This is sufficient for polynomial depth arithmetic circuits as discussed in the introduction.

23

315
Approved for Public Release; Distribution Unlimited.

4.4 ABE with Short Secret Keys for Arithmetic Circuits from LWE

The FKHE for a family of functions F = {f : (Zq)` → Zq} we constructed in Section 4 immediately
gives a key-policy ABE as discussed in Section 3. For completeness we briefly describe the resulting
ABE system.

Given FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a family of functions F from Sec-
tion 4.1, the ABE system works as follows:

• Setup(1λ, `): Choose n, q, χ,m and σ as in “Parameters” in Section 4.
Run algorithm TrapGen(1n, 1m, q) (Lemma 2.4, part 1) to generate (A,TA).
Choose random matrices D,B1, . . . ,B` ∈ Zn×mq and output the keys:

mpk = (A,D,B1, . . . ,B`) ; msk = (TA,D,B1, . . . ,B`)

• Keygen(msk, f): Let Bf = Evalpk(f, (B1, . . . ,B`)).
Output skf := Rf where Rf is a low-norm matrix in Z2m×m sampled from the discrete
Gaussian distribution Dσ(ΛD

q (A|Bf)) so that (A|Bf) ·Rf = D.

To construct Rf run algorithm SampleRight(A,TA, yG + Bf ,D, σ) from Lemma 2.8, part 1.

Note that the secret key skf is always in Z2m×m independent of the complexity of the func-
tion f .

• Enc(mpk, x ∈ Z`q, µ ∈ {0, 1}m): Choose a random vector s← Znq and error vectors e0, e1 ←
χm. Choose ` uniformly random matrices Si ← {±1}m×m for i ∈ [`]. Set

H = (A | x1G + B1 | · · · | x`G + B`) ∈ Zn×(`+1)m
q

e = (Im|S1| . . . |S`)T · e0 ∈ Z(`+1)m
q

Output c = (HT s + e, DT s + e1 + dq/2eµ) ∈ Z(`+2)m
q .

• Dec
(
skf , (x, c)

)
: If f(x) 6= 0 output⊥. Otherwise, let the ciphertext c = (cin, c1, . . . , c`, cout) ∈

Z(`+2)m
q , set cf = Evalct

(
f, {(xi,Bi, ci)}`i=1

)
∈ Zmq .

Let c′f = (cin|cf) ∈ Z2m
q and output Round(cout −RT

f c′f) ∈ {0, 1}m.

This completes the description of the system. The proof of the following security theorem follows
from Theorems 4.2 and 3.2.

Theorem 4.8. For FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for the family of functions
F , the ABE system above is correct and selectively-secure with respect to F , assuming the (n, q, χ)-
LWE assumption holds where n, q, χ are the parameters for the FKHE-enabling algorithms.

5 Extensions

5.1 Key Delegation

Our ABE easily extends to support full key delegation. We first sketch the main idea for adding
key delegation and then describe the resulting ABE system.

24

316
Approved for Public Release; Distribution Unlimited.

In the ABE scheme from Section 4.4, a secret key for a function f is a matrix Rf that maps
(A|Bf) to some fixed matrix D. Instead, we can give as a secret key for f a trapdoor (i.e. a
short basis) TF for the matrix F = (A|Bf). The decryptor could use TF to generate the matrix
Rf herself using algorithm SampleD. Now, for a given function g, to construct a secret key that
decrypts whenever the attribute vector x satisfies f(x) = g(x) = 0 we extend the trapdoor for
F into a trapdoor for (F|Bg) = (A|Bf |Bg) using algorithm ExtendRight. We give a randomized
version of this trapdoor as a delegated secret key for f ∧ g. Intuitively this trapdoor can only be
used to decrypt if the decryptor can obtain the ciphertexts under matrices Bf and Bg which by
security of ABE can only happen if the ciphertexts was created for an attribute vector x satisfying
f(x) = g(x) = 0.

The top level secret key generated by Keygen is a (2m×2m) matrix in Z. After k delegations the
secret key becomes a ((k + 1)m× (k + 1)m) matrix. Hence, the delegated key grows quadratically
with the number of delegations k.

Definition. Formally, a delegatable attribute-based encryption (DABE) scheme is an attribute-
based encryption scheme that in addition to four standard algorithms (Setup,Keygen,Enc,Dec)
offers a delegation algorithm Delegate. Consider a ciphertext c encrypted for index vector x. The
algorithm Keygen returns the secret key skf for function f and this key allows to decrypt the
ciphertext c only if f(x) = 0. The delegation algorithm given the key skf and a function g outputs
a “delegated” secret key that allows to decrypt the ciphertext only if f(x) = 0 ∧ g(x) = 0, which
is a more restrictive condition. The idea can be generalized to arbitrary number of delegations:

Delegate(mpk, skf1,...,fk , fk+1)→ skf1,...,fk+1
:

Takes as input the master secret key msk, the function fk+1 ∈ F and the secret key skf1,...,fk

that was generated either by algorithm Keygen, if k = 1 or by algorithm Delegate, if k > 1.
Outputs a secret key skf1,...,fk+1

.

Correctness. We require the scheme to give a correct ABE as discussed in Section 2.1 and in
addition to satisfy the following requirement. For all sequence of functions f1, . . . , fk ∈ F , a message
m ∈M and index x ∈ Z`q, s.t. f1(x) = 0 ∧ . . . ∧ fk(x) = 0 it holds that µ = Dec(skf1,...,fk , (x, c))

with an overwhelming probability over the choice of (mpk,msk)← Setup(1λ, `), c← Enc(mpk, x ∈
X `, µ), skf1 ← Keygen(msk, f1) and skf1,...,fi+1

← Delegate(mpk, skf1,...,fi , fi+1) for all i ∈ [k].

Security. The security of DABE schemes is derived from definition of selective security for ABE
scheme (see Definition 2.1) by providing the adversary with access to a key-generation oracle.

Definition 5.1 (Selectively-secure DABE). A DABE scheme Π = (Setup,Keygen,Enc,Dec,Delegate)
for a class of functions F = {Fλ}λ∈N with ` = `(λ) inputs over an index space X ` = {X `λ}λ∈N and a
message spaceM = {Mλ}λ∈N is selectively secure if for any probabilistic polynomial-time adversary
A, there exists a negligible function ν(λ) such that

AdvsDABE
Π,A (λ)

def
=
∣∣∣Pr
[
Expt

(0)
sDABE,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDABE,Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
sDABE,Π,A(λ) is defined as follows:

25

317
Approved for Public Release; Distribution Unlimited.

1. (x∗, state1)← A(λ), where x∗ ∈ X `.

2. (mpk,msk)← Setup(λ).

3. (µ0, µ1, state2)← AKG(msk,x∗,·)(mpk, state1), where µ0, µ1 ∈Mλ.

4. c∗ ← Enc(mpk,x∗, µb).

5. b′ ← AKG(msk,x∗,·)(c∗, state2).

6. Output b′ ∈ {0, 1}.

Here the key-generation oracle KG(msk,x∗, (f1, . . . , fk)) takes a set of functions f1, . . . , fk ∈ F and
returns the secret key skf1,...,fk if f1(x∗) 6= 0 ∨ . . . ∨ fk(x∗) 6= 0 and otherwise the oracle returns
⊥. The secret key skf1,...,fk is defined as follows: skf1 = KeyGen(msk, f1) and for all
i ∈ {2, . . . , k} skf1,...,fi = Delegate(mpk, skf1,...,fi−1

, fi).

5.1.1 A delegatable ABE scheme from LWE

The DABE scheme will be almost identical to ABE scheme described earlier, except as a secret key
for function f instead of recoding matrix from (A|Bf) to D we will give the rerandomized trapdoor
for (A|Bf) and then the decryptor can build the recoding matrix to D himself.

KeyGen(msk, f) :
Let Bf = Evalpk(f, (B1, . . . ,B`)).
Build the basis Tf for F = (A|Bf) ∈ Zn×2m

q as Tf ← RandBasis(F,ExtendRight(A,TA,Bf), σ),
for big enough σ = ‖TA‖GS · ω(

√
logm) (we will set σ as before: σ = ω(αF ·

√
logm)).

Output skf := Tf .

Delegate(mpk, skf1,...,fk , g) :

Parse the secret key skf1,...,fk as a matrix Tk ∈ Z(k+1)m×(k+1)m
q which is a trapdoor for the

matrix (A|Bf1 | . . . |Bfk) ∈ Zn×(k+1)m
q .

Let Bg = Evalpk(g, (B1, . . . ,B`)).

Build the basis for matrix F = (A|Bf1 | . . . |Bfk |Bg) ∈ Zn×(k+2)m
q :

Tk+1 = RandBasis(F,ExtendRight((A|Bf1 | . . . |Bfk),Tk,Bg), σk).

Here σk = σ · (
√
m logm)k. Output skf1,...,fk,g := Tk+1 ∈ Z(k+2)m×(k+2)m

q . Note that the size
of the key grows quadratically with the number of delegations k.

Dec
(
skf1,...,fk , (x, c)

)
: If f1(x) 6= 0 ∨ . . . ∨ fk(x) 6= 0 output ⊥.

Otherwise parse the secret key skf1,...,fk as a matrix Tk ∈ Z(k+1)m×(k+1)m
q which is a trapdoor

for the matrix (A|Bf1 | . . . |Bfk).
Run R← SampleD((A|Bf1 | . . . |Bfk), Tk, D, σk) to generate a low-norm matrix

R ∈ Z(k+1)m×m
q such that (A|Bf1 | . . . |Bfk) ·R = D.

For all j ∈ [k], compute (cin, cj , cout) = Evalct

(
{(xi,Bi)}`i=1, c, fi

)
∈ Z3m

q . Note that cin
and cout stay the same across all i ∈ [k].

Let c′ = (cin|c1| . . . |ck) ∈ Z(k+1)m
q . Output µ = Round(cout −RT c′).

26

318
Approved for Public Release; Distribution Unlimited.

Correctness. To show correctness, note that when f1(x) = 0∧ . . .∧fk(x) = 0 we know by the
requirement on Evalct that the resulting ciphertexts cfi ∈ Es,∆(0,Bfi) for ∀i ∈ [k]. Consequently,

(cin|cf1 | . . . |cfk) = (A|Bf1 | . . . |Bfk)T s + e′ where ||e′|| < k∆ + χmax < (kαF + 1)χmax.

We know that (A|Bf1 | . . . |Bfk) ·R = D and ||RT ||2 < (k + 1)mσk with overwhelming probability
by Lemma 2.5. Therefore

cout −RTc′f = (DTs + e1)− (DTs + RTe′) = e1 −RTe′ .

Finally,

‖e1 −RTe′‖ ≤ χmax + (k + 1)mσk · (αF + 1)χmax ≤ (k + 2)α2
F · χmax ·mk/2+1

with overwhelming probability. The bound on αF : α2
Fm

k/2+1 < 1
4(k+2) · (q/χmax) ensures that this

quantity is less than q/4 thereby ensuring correct decryption of all bits of µ ∈ {0, 1}m.

Security. The security game is similar to the security game for FKHE, described in Section 4,
except in Game 2 we need to answer delegated key queries. Consider a private key query skf1,...,fk ,
where f1, . . . , fk ∈ F . This query is only allowed when f1(x∗) 6= 0 ∨ . . . ∨ fk(x∗) 6= 0. Without
loss of generality, assume that f1(x∗) = 0 ∧ . . . ∧ fk−1(x∗) = 0 and fk(x

∗) 6= 0. Indeed for all other
cases, the adversary may ask for the key for a smaller sequence of functions and delegate herself.
The key generation oracle for all i ∈ [k] computes Bfi = Evalpk

(
fi, (B1, . . . ,B`)

)
and needs to

produce a trapdoor Tk ∈ Z(k+1)m×(k+1)m for the matrix (A|Bf1 | . . . |Bfk) ∈ Zn×(k+1)m
q .

To do so the key generation oracle does:

• Run Sfk ← Evalsim(fk,
(
(x∗i ,S

∗
i)
)`
i=1
, A) and obtains a low-norm matrix Sfk ∈ Zm×mq such

that ASfk − fk(x∗)G = Bfk . By definition of Evalsim we know that ‖Sfk‖2 ≤ αF .

• Let F = (A|Bf1 | . . . |Bfk) = (A|Bf1 | . . . |Bfk−1
|ASfk − y∗G). Because y∗ 6= 0 the key gener-

ation oracle can obtain a trapdoor T(A|Bfk) by running

T(A|Bfk) ← ExtendLeft(y∗G,TG,A,Sfk)

And then produce T(A|Bfk |Bf1 |...|Bfk−1
) by running

T(A|Bfk |Bf1 |...|Bfk−1
) ← ExtendRight(G,TG, (Bf1 | . . . |Bfk−1

))

Now we can switch the rows of the matrix T(A|Bfk |Bf1 |...|Bfk−1
) to get the matrix TF , which

is a trapdoor for (A|Bf1 | . . . |Bfk). This operation, as well as ExtendRight function (according
to Lemma 2.4, part 2) does not change the Gram-Schmidt norm of the basis, therefore this
trapdoor satisfies

‖TF‖GS ≤ ‖TG‖GS · ‖Sfk‖2 ≤
√

5αF(n)

where the bound on ‖TG‖GS is from Lemma 2.4 (part 4).

• Finally, it responds with rerandomized trapdoor Tk = RandBasis(F,TF, σk).
By definition of RandBasis we know that Tk is distributed as Dσk(ΛF

q (F)) as required. Indeed
σk = ‖TF‖GS · ω(

√
logm) as needed for algorithm RandBasis in Lemma 2.6 (part 3).

27

319
Approved for Public Release; Distribution Unlimited.

5.2 Polynomial gates

We can further reduce the depth of a given arithmetic circuit (and thereby shrink the required lattice
sizes) by allowing the circuit to use more general gates than simple addition and multiplication.
For example, the k-way OR gate polynomial can be implemented using a single gate.

Definition 5.2. An `-variate polynomial is said to have restricted arithmetic complexity (`, d, g) if
it can be computed by a depth-d circuit that takes ` inputs x1, . . . , x` ∈ Zq and outputs a single
x ∈ Zq. The circuit contains g gates, each of them is either a fan-in 2 addition gate or a fan-in 2
multiplication gate. Multiplication gates are further restricted to have one of their two inputs be
one of the inputs to the circuit: x1, . . . , x`.

We build the Eval algorithms for polynomials with complexity (`, d, g) whose running time is
proportional to g and that increase the magnitude of the noise in a given ciphertext by a factor of
at most O(pd ·m), where p is the bound on all the intermediate values. Were we to directly use
the Eval algorithms from the previous section on this polynomial, the magnitude of the noise would
increase by O((pm)d) which is considerably larger, especially when p is small (e.g. p = 1).

We can build arithmetic circuits using polynomials with complexity (`, d, g) as gates. Evaluating
a depth D arithmetic circuit with such polynomial gates would increase the magnitude of the noise
by at most a factor of O((pd ·m)D). Again, if we were to simply treat the circuit as a standard
arithmetic circuit with basic addition and multiplication gates the noise would instead grow as
O((pm)dD) which is larger.

Next we present ABE-enabling algorithms Evalpk,Evalct,Evalsim for these enhanced polynomial
gates with the noise bounds discussed in the previous paragraph. To support multiplication and
addition of constants, we may assume that we have an extra 0-th input to the circuit that always
carries the value 1. We present all three algorithms at the same time. Suppose that f is a polyno-
mial with complexity (`, d, g), then the three algorithms work as follows:

Evalpk(f, ~B ∈ (Zn×mq)`) −→ Bf ∈ Zn×mq

Evalct(f,
(
(xi,Bi, ci)

)`
i=1

) −→ cf ∈ Zmq
Evalsim(f,

(
(xi,Si)

)`
i=1
, A) −→ Sf ∈ Zm×mq

For each wire w ∈ [|f |] (here |f | denotes the total number of wires in the circuit and the notation
of naming the wires is as described in Section 4.3) starting from the input wires and proceeding to
the output we will construct the matrices Bw ∈ Zn×mq , Sw ∈ Zm×mq , cw ∈ Zmq . Finally we output
Bf = B|f |, Sf = S|f |, cf = c|f |. Consider an arbitrary gate and suppose that matrices on the input
wires are computed, then to compute the matrices on the output wire do the following:

• Suppose the gate computes addition, has input wires w1 and w2 and output wire w. Then
set the output matrices on wire w to be:

Bw = Bw1 + Bw2 , Sw = Sw1 + Sw2 , cw = cw1 + cw2 .

• Suppose the gate computes the multiplication by xi for some i ∈ [`], the input wires are u
and i, the output wire is w. Then generate matrix R ∈ Zm×mq to satisfy GR = −Bu by
running R = BD(−Bu). Output

Bw = BiR, Sw = SiR + xwSu, cw = xicu + RT ci .

28

320
Approved for Public Release; Distribution Unlimited.

Note that the amount of work required to run the Eval algorithms is proportional to the number
of gates g in the circuit.

The following lemma shows that the noise in the output ciphertext grows by at most the factor
of O(pdm), where p is the upper bound on the intermediate values in the circuit.

Lemma 5.3. If ci ∈ Es,δ(xi,Bi) for some s ∈ Znq , δ > 0 and the bound on the numbers p ≥ 2, then

for the polynomial f of complexity (`, d, g) with βd = (1 + p+ . . .+ pd) ·m we have:

• cf satisfies cf ∈ Es,∆(f(x),Bf) where Bf = Evalpk(f, (B1, . . . ,B`)) and ∆ < βd(m) · δ,

• Sf satisfies ASf − f(x)G = Bf where Bf = Evalpk
(
f, (AS1 − x1G, . . . ,AS` − x`G)

)
and ||Sf ||2 ≤ βd(m) · γ where γ = maxi∈[`] ||Si||2.

Proof. We prove the lemma by induction.

• Consider an addition gate at level i with input wires w1 and w2 and output wire w. Suppose
for j ∈ [2], the noise in the ciphertexts ||ewj || ≤ βi−1(m)δ and ||Swi ||2 ≤ βi−1(m) · γ.

– cw = cw1 +cw2 = (xw1G+Bw1)T s+ew1 +(xw2G+Bw2)T s+ew2 = (xwG+Bw)T s+ew

– ||ew|| = ||ew1 + ew2 || ≤ ||ew1 ||+ ||ew2 || ≤ (βi−1(m) + βi−1(m))δ ≤ βi(m)δ

– Bw = Bw1 +Bw2 = (ASw1−xw1G)+(ASw2−xw2G) = A(Sw1 +Sw2)−(xw1 +xw2)G =
ASw − xwG

– ||Sw||2 = ||Sw1 + Sw2 ||2 ≤ ||Sw1 ||2 + ||Sw2 ||2 ≤ (βi−1(m) + βi−1(m)) · γ ≤ βi(m) · γ.

• Consider a gate which has input wires u and i ∈ [`], output wire w and which computes
multiplication. Suppose ||eu|| ≤ βi−1(m) and ||Su||2 ≤ βi−1(m) · γ, then the following holds

– cw = xicu + RT ci = xi(xuG + Bu)T s+ xieu + RT (xiG + Bi)
T s+ RTei =

(xwG + xi���
���(Bg + GR) + Bw)T s+ ew

– ||ew||2 = ||xieu + RTei||2 ≤ p||eu||2 +m||ei||2 ≤ (pβi−1(m) +m)δ ≤ βi(m) · δ
– Bw = BiR = (ASi − xiG)R = ASiR + xiBu = ASiR + xi(ASu − xuG) =

A(xiSu + SiR)− (xixu)G = ASw − xwG

– ||Sw||2 = ||xiSu + SiR||2 ≤ (pβi−1(m) +m) · γ ≤ βi(m) · γ.

as required.

Now combining Lemma 5.3 and lemmas analogous to Lemmas 4.6, 4.7 we can build an ABE
system for a set of functions F which can be computed by depth D circuits with (k, d, g)-complexity
gates. The bound function will then be

αF(n) = (βd(m))D · 20
√
m = O((pdm)D

√
m).

The time complexity of the Eval algorithms for circuit C that consists of (k, d, g)-complexity
gates will be O(g · |C|).

29

321
Approved for Public Release; Distribution Unlimited.

5.2.1 Example applications for polynomial gates

Unbounded fan-in OR gate. Assuming that boolean inputs are interpreted as integers in
{0, 1}, the OR gate of ` inputs can be computed with the following recursive formula:

OR`+1(x1, . . . , x`, x`+1) = x`+1 + (1− x`+1) · OR`(x1, . . . , x`), where OR1(x1) = x1.

It is easy to see that OR` has restricted complexity (`, 3`, 3`), since at each of the ` iterations we
do one multiplication by x`+1 and two fan-in 2 additions. Therefore, by Lemma 5.3, an OR` gate
increases the noise in the ciphertext by a factor of O(` ·m).

If we were computing the OR` function with addition and multiplication gates as in Section 4.3,
the most efficient way would be to use the De Morgan’s law:

OR`+1(x1, . . . , x`, x`+1) = 1− (1− x1)(1− x2) . . . (1− x`).

This function can be computed with one level of ` fan-in-2 addition gates (to compute (1− xi) for
i ∈ [`]), one level of a single fan-in-` multiplication gate (to compute

∏`
i=1(1 − xi)) and one more

level of a single fan-in-2 addition gate. The noise then will grow by a factor of O(` ·m3), which will
make the scheme 3 times less efficient.

The Fibonacci polynomial. Consider the following polynomial, defined for x ∈ [−p, p]` using
the following recurrence:

Π1(x) = x1, Π2(x) = x2

Πi+2(x) = Πi+1(x) + Πi(x) · xi+2 for i ∈ {1, . . . , `− 2}

If expanded, the number of monomials in Π` is equal to the `-th Fibonacci number, which is
exponential in `. The degree of the polynomial is b `2c. The recurrence shows that the restricted
arithmetic complexity of this polynomial is (`, `, 2`). Therefore, we can compute it with a single
polynomial gate and, by Lemma 5.3, the growth in ciphertext noise will be proportional to p` ·m.

We conjecture that computing this polynomial with a polynomial-size arithmetic circuit requires
linear depth in `. Therefore, the growth in ciphertext noise using the approach of Section 4.3 will
be proportional to (pm)O(`) which is much worse.

6 ABE with Short Ciphertexts from Multi-linear Maps

We assume familiarity with multi-linear maps [BS02, GGH13a], which we overview in Section 2.3.

Intuition. We assume that the circuits consist of and and or gates. To handle general circuits
(with negations), we can apply De Morgan’s rule to transform it into a monotone circuit, doubling
the number of input attributes (similar to [GGH+13c]).

The inspiration of our construction comes from the beautiful work of Applebaum, Ishai, Kushile-
vitz and Waters [AIKW13] who show a way to compress the garbled input in a (single use) garbling
scheme all the way down to size |x|+ poly(λ). This is useful to us in the context of ABE schemes
due to a simple connection between ABE and reusable garbled circuits with authenticity observed
in [GVW13]. In essence, they observe that the secret key for a function f in an ABE scheme corre-
sponds to the garbled circuit for f , and the ciphertext encrypting an attribute vector x corresponds

30

322
Approved for Public Release; Distribution Unlimited.

to the garbled input for x in the reusable garbling scheme. Thus, the problem of compressing ci-
phertexts down to size |x| + poly(λ) boils down to the question of generalizing [AIKW13] to the
setting of reusable garbling schemes. We are able to achieve this using multilinear maps.

Security of the scheme relies on a generalization of the bilinear Diffie-Hellman Exponent As-
sumption to the multi-linear setting (see Definition 2.9). 1 The bilinear Diffie-Hellman Exponent
Assumption was recently used to prove the security of the first broadcast encryption with constant
size ciphertexts [BGW05] (which in turn can be thought of as a special case of ABE with short
ciphertexts.)

Theorem 6.1 (Selective security). For all polynomials dmax = dmax(λ), there exists a selectively-
secure attribute-based encryption with ciphertext size poly(dmax) for any family of polynomial-size
circuits with depth at most dmax and input size `, assuming hardness of (d + 1, `)−Multilinear
Diffie-Hellman Exponent Assumption.

6.1 Our Construction

• Params(1λ, dmax): The parameters generation algorithm takes the security parameter and the
maximum circuit depth. It generates a multi-linear map G(1λ, k = d+1) that produces groups
(G1, . . . , Gk) along with a set of generators g1, . . . , gk and map descriptors {eij}. It outputs
the public parameters pp =

(
{Gi, gi}i∈[k], {eij}i,j∈[k]

)
, which are implicitly known to all of the

algorithms below.

• Setup(1`): For each input bit i ∈ {1, 2, . . . , `}, choose a random element qi in Zp. Let g = g1

be the generator of the first group. Define hi = gqi . Also, choose α at random from Zp and
let t = gαk . Set the master public key

mpk := (h1, . . . , h`, t)

and the master secret key as msk := α.

• Keygen(msk, C): The key-generation algorithm takes a circuit C with ` input bits and a
master secret key msk and outputs a secret key skC defined as follows.

1. Choose randomly
(
(r1, z1), . . . , (r`, z`)

)
from Z2

q for each input wire of the circuit C.
In addition, choose

(
(r`+1, a`+1, b`+1), . . . , (rn, an, bn)

)
from Z3

q randomly for all internal
wires of C.

2. Compute an ` × ` matrix M̃ , where all diagonal entries (i, i) are of the form (hi)
zigri

and all non-diagonal entries (i, j) are of the form (hi)
zj . Append g−zi as the last row of

the matrix and call the resulting matrix M .

3. Consider a gate Γ = (u, v, w) where wires u, v are at depth j − 1 and w is at depth j. If
Γ is an or gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awruj ,K4
Γ = grw−bwrvj

)
Else if Γ is an and gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
1Our construction can be converted to multi-linear graded-encodings, recently instantiated by Garg et al. [GGH13a]

and Coron et al. [CLT13].

31

323
Approved for Public Release; Distribution Unlimited.

4. Set σ = gα−rnk−1

5. Define and output the secret key as

skC :=
(
C, {KΓ}Γ∈C ,M, σ

)
• Enc(mpk,x, µ): The encryption algorithm takes the master public key mpk, an index x ∈
{0, 1}` and a message µ ∈ {0, 1}, and outputs a ciphertext cx defined as follows. Choose a
random element s in Zq. Let X be the set of indices i such that xi = 1. Let γ0 = ts if µ = 1,
otherwise let γ0 be a randomly chosen element from Gk. Output ciphertext as

cx :=

(
x, γ0, g

s, γ1 =
(∏
i∈X

hi
)s)

• Dec(skC , cx): The decryption algorithm takes the ciphertext cx, and secret key skC and
proceeds as follows. If C(x) = 0, it outputs ⊥. Otherwise,

1. Let X be the set of indices i such that xi = 1. For each input wire i ∈ X, using the
matrix M compute gri

(∏
j∈X hj

)zi and then

gris2 = e

(
gs, gri

(∏
j∈X

hj
)zi) · e(γ1, g

−zi
)

= e

(
gs, gri

(∏
j∈X

hj
)zi) · e((∏

j∈X
hj
)s
, g−zi

)

2. Now, for each gate Γ = (u, v, w) where w is a wire at level j, (recursively going from the
input to the output) compute grwsj+1 as follows:

- If Γ is an or gate, and C(x)u = 1, compute grwsj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
gs,K3

Γ

)
.

- Else if C(x)v = 1, compute grwsj+1 = e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K4

Γ

)
.

- Else if Γ is an and gate, compute grwsj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K3

Γ

)
.

3. If C(x) = 1, then the user computes grnsk for the output wire. Finally, compute

ψ = e
(
gs, σ

)
· grnsk = e

(
gs, gα−rnk−1

)
· grnsk

4. Output µ = 1 if ψ = γ0, otherwise output 0.

6.2 Correctness

Claim 6.2. For all active wires w at level j (that is, C(x)w = 1) the user holds gsrwi+1.

Proof. Clearly, the base case is satisfied as shown above. Now consider a gate Γ = (u, v, w). If g is
an or gate and assume C(x)u = 1, then

gsrwj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
gs,K3

Γ

)
= e

(
gaw , grusj

)
· e
(
gs, grw−awruj

)
= e

(
g, gj

)awrus · e(g, gj)srw · e(g, gj)−awrus
32

324
Approved for Public Release; Distribution Unlimited.

The case when C(x)v = 1 is similar. Also, if g is an and gate, then

gsrwj+1 = e
(
K1

Γ, g
rus
j

)
· e
(
K2

Γ, g
rvs
j

)
· e
(
gs,K3

Γ

)
= e

(
gaw , grusj

)
· e
(
gbw , grvsj

)
· e
(
gs, grw−awru−bwrvj

)
= e

(
g, gj

)awrus · e(g, gj)bwrvs · e(g, gj)srw · e(g, gj)−awrus−bwrvs
= e

(
g, gj

)awrus+bwrvs · e(g, gj)srw · e(g, gj)−awrus−bwrvs
Hence, if C(x) = 1, the user computes gsrnk and so

ψ = e
(
gs, σ

)
· grnsk

= e
(
gs, gα−rnk−1

)
· grnsk

= gαsk = ts = γ0

if m = 1.

6.3 Security Proof

Assume there is an adversary Adv∗ that breaks the security of the ABE scheme. We construct
an adversary Adv that breaks the (k, `)-Multi-linear Diffie-Hellman Exponent Assumption. The
adversary Adv is given a challenge(

gc1 , . . . , gc
`
1 , . . . , gc

`+2
1 , . . . , gc

2`
1 , gc2 , . . . , gck , β

)
where β is either g

c`+1
1

∏
2≤i≤k ci

k or a random element of Gk. The adversary invokes Adv∗ and gets
x∗ as the challenge index. Let X be the set of indices i such that xi = 1. The adversary will ensure
the following induction: for every inactive wire w at depth j, rw = c`+1

1

∏
2≤i≤j ci (plus known

randomness). Hence, for all input wires w, rw = c`+1
1 (plus known randomness).

We now define simulated experiments which Adv will be using to break the assumption.

• Setup∗(1`): For each input bit i /∈ X, choose a random element bi in Zq and implicitly set qi =
c`+1−i

1 + bi. For each i ∈ X, choose a random qi ∈ Zq. Let g = g1 be the generator of the first

group. For all i, compute hi = gqi . Randomly choose γ and let t = gαk = g
c`+1
1

∏
2≤i≤k−1 ci+γ

k

which can be computed from the challenge component by repeated pairing. Set the master
public key

mpk := (h1, . . . , h`, t)

and the master secret key as msk :=⊥.

• Keygen∗(C,msk): The key-generation algorithm takes a circuit C with ` input bits and a
master secret key msk and outputs a secret key skC defined as follows.

1. For all i ∈ X, choose randomly ri ∈ Zq. For all i /∈ X, randomly choose fi ∈ Zq and
implicitly set ri = c`+1

1 + fi (that is, we embed the challenge into the attributes /∈ X).

2. For all i ∈ [`], choose pi ∈ Zq at random and implicitly set zi = −ci1 + pi.

33

325
Approved for Public Release; Distribution Unlimited.

3. Compute the matrix M :

M :=

g−z1 g−z2 g−z3 . . . g−z`

(h1)z1gr1 (h1)z2 (h1)z3 . . . (h1)z`

(h2)z1 (h2)z2gr2 (h2)z3 . . . (h2)z`

(h3)z1 (h3)z2 (h3)z3gr3 . . . (h3)z`

...
. . .

...

(h`)
z1 (h`)

z2 (h`)
z3 . . . (h`)

z`gr`

4. We now argue that the adversary can compute every entry in the matrix M .

(a) Entries of the first row can be computed by g−zi = gc
i
1−pi = gc

i
1 · g−pi , where pi is

known.

(b) Note that for all i = j (i.e. the diagonal entries). If i /∈ X, then

(hi)
zi · gri = g(c`+1−i

1 +bi)(−ci1+pi) · gc
`+1
1 +fi = gc

`+1−i
1 pi−bici1+bipi+fi

If i ∈ X, then qi, zi, ri are all known.

(c) Now, consider non-diagonal entries i 6= j. If i /∈ X and j ∈ X, then

(hi)
zj =

(
gc
`+1−i
1 +bi

)−cj1+pj = g−c
`+1−i+j
1 · g−bic

j
1 · gpjc

`+1−i
1 · gbipj

which can be computed given the challenge and the knowledge of bi, pj . Also, if
i ∈ X and j /∈ X, similarly

(hi)
zj =

(
gqi
)−cj1+pj = g−c

j
1qi · gqipj

can be computed given the challenge and the knowledge of qi, pj .

5. Consider a gate Γ = (u, v, w) where wires u, v are at depth j − 1 and w is at depth j.

(a) If Γ is an or gate and C(x∗)w = 1, then values rw, aw, bw are randomly chosen
from Zq. Otherwise, we implicitly set aw = cj +dw, bw = cj +kw, where dw, kw ∈ Zq
are randomly chosen and cj is the value a part of the challenge. Also, implicitly set
rw = c`+1

1

∏
2≤i≤j ci + ew, where ewZq is randomly chosen. Compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awruj ,K4
Γ = grw−bwrvj

)
Note that in the case C(x∗)w = 0,

rw − awru = c`+1
1

∏
2≤i≤j

ci + ew −
(
cj + dw

)(
c`+1

1

∏
2≤i≤j−1

ci + nu
)

= −cjnu − dw
(
c`+1

1

∏
2≤i≤j−1

ci
)
− dwnu + ew

34

326
Approved for Public Release; Distribution Unlimited.

Hence, component K3
Γ can be computed by pairing j elements from the challenge:

gc1 , g`, gc2 , . . . , gcj−1 . Similarly, for term K4
Γ.

(b) Else if Γ is an and gate and C(x∗)w = 1, then values rw, aw, bw are randomly
chosen from Zq. And the adversary computes

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
Otherwise, if C(x∗)u = 0, then implicitly set rw = c`+1

1

∏
2≤i≤j ci + ew, aw = cj +dw

where ew, dw are randomly chosen. Also, choose bw at random. Again, the adversary
can compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrvj

)
Note that,

rw − awru − bwrv = c`+1
1

∏
2≤i≤j

ci + ew −
(
cj + dw

)(
c`+1

1

∏
2≤i≤j−1

ci + nu
)
− bwrv

= ew − cjnu − dw
(
c`+1

1

∏
2≤i≤j−1

ci
)
− dwnu − bwrv

Hence, K3
Γ can be computed by the adversary by applying j pairings to the chal-

lenge components gc1 , g`, gc2 , . . . , gcj−1 and using the other known randomness com-
ponents.

The adversary performs the symmetric operations if C(x∗)v = 0.

6. Set σ = gα−rnk−1 . Note that since C(x∗) = 0 the component rn embeds parts challenge
into it. Hence, σ can be computed by the adversary due to cancellation in the exponent:

α− rn = c`+1
1

∏
2≤i≤k−1

cj + γ − c`+1
1

∏
2≤i≤k−1

cj + en = γ + en

7. Define and output the secret key as

skC :=
(
C, {KΓ}g∈C , σ

)
• Enc∗(mpk, x∗,m): The encryption algorithm takes the master public key mpk, an index x∗

and a message m, and outputs a ciphertext ctx∗ defined as follows. Let X be the set of indices
i such that x∗i = i. Implicitly let s = ck. Let γ0 = γ = β · gγckk . Output ciphertext as

ctx :=

(
x, γ0, g

ck , γ1 =
(∏
i∈X

hi
)ck)

where b is a randomly chosen bit. Note that
(∏

i∈X hi
)s

can be computed given the challenge

component gck and known randomness qi for i ∈ X. If β = g
c`+1
1

∏
2≤i≤k ci

k , then,

β · gγckk =
(
g
c`+1
1

∏
2≤i≤k−1

k · gγk
)ck

=
(
g
c`+1
1

∏
2≤i≤k−1 +γ

k

)ck
= tck = ts

35

327
Approved for Public Release; Distribution Unlimited.

which corresponds to an encryption of 1. Otherwise, if β is a randomly chosen in Gk, this
corresponds to an encryption of 0.

The adversary Adv uses the above simulated algorithms to answer the queries to Adv∗. If Adv∗

returns m = 1, then Adv outputs that β = g
c`+1
1

∏
2≤i≤k ci

k . Otherwise, it outputs that β is randomly
chosen in the target.

7 Applications and Extensions

7.1 Single-Key Functional Encryption and Reusable Garbled Circuits

Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich showed how to obtain a Single-Key Func-
tional Encryption (SKFE) and Reusable Garbled Circuits from: (1) Attribute-based Encryption, (2)
Fully-Homomorphic Encryption and (3) “one-time” Garbled Circuits [GKP+13b]. In this section
we show what we gain in efficiency in the secret key and ciphertext sizes for these two construction
by using our ABE schemes.

Theorem 7.1 ([GKP+13b]). There is a (fully/selectively secure) single-key functional encryption
scheme FE for any class of circuits C that take ` bits of input and produce a one-bit output, assuming
the existence of (1) C-homomorphic encryption scheme, (2) a (fully/selectively) secure ABE scheme
for a related class of predicates and (3) Yao’s Garbling Scheme, where:

1. The size of the secret key is 2 · α · abe.keysize, where abe.keysize is the size of the ABE key
for circuit performing homomorphic evaluation of C and outputting a bit of the resulting
ciphertext.

2. The size of the ciphertext is 2 · α · abe.ctsize(` · α+ γ) + poly(λ, α, β)

where (α, β, γ) denote the sizes of the FHE (ciphertext, secret key, public key), respectively. abe.keysize,
abe.ctsize(k) are the size of ABE secret key, ciphertext on k-bit attribute vector and λ is the security
parameter.

Since FHE (and Yao’s Garbled Circuits) can also be instantiated assuming the sub-exponential
hardness of LWE ([BV11], [BGV12]), we obtain the following corollaries.

Corollary 7.2. Combining our short secret key ABE construction (Theorem-4.4) and Theorem-
7.1, we obtain a single-key functional encryption scheme for a circuit class C with depth at most
dmax, where the secret key size is some poly(dmax, λ) and λ is the security parameter.

To obtain a short ciphertext for functional encryption scheme, we need another observation.
There exists a fully-homomorphic encryption scheme where ciphertext encrypting k bits of input
is of size k+ poly(λ), where λ is the security parameter. We refer the reader to the full version for
further details.

Corollary 7.3. Combining the above observation, our short ciphertext ABE construction (Theorem-
6.1) and Theorem-7.1, we obtain a single-key functional encryption scheme for any circuit class C
with depth at most dmax and ` bit inputs, where the size of the ciphertext is ` + poly(dmax, λ) and
λ is the security parameter.

36

328
Approved for Public Release; Distribution Unlimited.

Next, we apply our results to get the optimal construction of reusable garbled circuits.

Theorem 7.4 ([GKP+13b]). There exists a reusable garbling scheme for any class of circuits C that
take ` bits of input, assuming the existence (1) symmetric-encryption algorithm, (2) a single-key
functional encryption for C, where:

1. The size of the secret key is |C| + fe.keysize + poly(λ), where fe.keysize is the size of the FE
key for circuit performing symmetric-key decryption and evaluation of C.

2. The size of the ciphertext is fe.ctsize(λ+ `)

where fe.ctsize(λ+ `) is the size of FE ciphertext on λ+ `-bit input.

Corollary 7.5. From Corollary-7.2 and Theorem-7.4, we obtain a reusable garbled circuits scheme
for any class of polynomial-size circuits with depth at most dmax, where the secret key size is
|C|+ poly(dmax, λ).

Corollary 7.6. From Corollary-7.3 and Theorem-7.4, we obtain a reusable garbled circuits scheme
for any class of polynomial-size circuits with depth at most dmax and ` bit inputs, where the cipher-
text size is `+ poly(dmax, λ).

8 Conclusions and open problems

We presented an ABE for arithmetic circuits with short secret keys whose security is based on the
LWE problem. At the heart of our construction is a method for transforming a noisy vector of
the form c = (A|x1G + B1| · · · |x`G + B`)

Ts + e into a vector (A|yG + Bf)Ts + ef where
y = f(x1, . . . , x`) and ef is not much longer than e. The short decryption key skf provides a way
to decrypt when y = 0. We refer to this property as a public-key homomorphism and expect it to
find other applications.

Natural open problems that remain are a way to provide adaptive security from LWE with a
polynomial-time reduction. It would also be useful to construct an efficient ABE for arithmetic
circuits where multiplication gates can handle inputs as large as the modulus q.

Acknowledgments. We thank Chris Peikert for his helpful comments and for suggesting Re-
mark 4.3.

D. Boneh is supported by NSF, the DARPA PROCEED program, an AFO SR MURI award, a
grant from ONR, an IARPA project provided via DoI/NBC, and Google faculty award. Opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA or IARPA.

S. Gorbunov is supported by Alexander Graham Bell Canada Graduate Scholarship (CGSD3).
G. Segev is supported by the European Union’s Seventh Framework Programme (FP7) via a

Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant No. 483/13), and
by the Israeli Centers of Research Excellence (I-CORE) Program (Center No. 4/11).

V. Vaikuntanathan is supported by an NSERC Discovery Grant, DARPA Grant number FA8750-
11-2-0225, a Connaught New Researcher Award, an Alfred P. Sloan Research Fellowship, and a
Steven and Renee Finn Career Development Chair from MIT.

37

329
Approved for Public Release; Distribution Unlimited.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, 2010.

[ABV+12] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. Functional
encryption for threshold functions (or fuzzy ibe) from lattices. In PKC, 2012.

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In ASIACRYPT, 2011.

[AIKW13] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In CRYPTO, 2013.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In ICALP, 1999.

[ALdP11] N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In Public Key Cryptography, volume 6571,
pages 90–108, 2011.

[AP09] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. In STACS,
2009.

[BB11] D. Boneh and X. Boyen. Efficient selective identity-based encryption without random
oracles. Journal of Cryptology, 24(4):659–693, 2011.

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003. Preliminary version in CRYPTO ’01.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe, and compact garbled circuits. In
Proc. of Eurocrypt’14, 2014.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS, 2012.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In CRYPTO, 2005.

[BHHI10] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message
security. In EUROCRYPT, 2010.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In STOC, 1990.

[BNS13] Dan Boneh, Valeria Nikolaenko, and Gil Segev. Attribute-based encryption for
arithmetic circuits. Cryptology ePrint Archive, Report 2013/669, 2013. http:

//eprint.iacr.org/.

[Boy13] X. Boyen. Attribute-based functional encryption on lattices. In TCC, 2013.

38

330
Approved for Public Release; Distribution Unlimited.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[BS02] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. Con-
temporary Mathematics, 324:71–90, 2002.

[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In TCC, 2011.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, 2011.

[BW07] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.
In TCC, 2007.

[BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications.
In ASIACRYPT, 2013.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, 2010.

[CLT13] J. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In CRYPTO, 2013.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA
Int. Conf., 2001.

[FN93] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO, 1993.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT, 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGH+13c] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption
for circuits from multilinear maps. In CRYPTO, 2013.

[GGH+13d] Craig Gentry, Sergey Gorbunov, Shai Halevi, Vinod Vaikuntanathan, and Dhinakaran
Vinayagamurthy. How to compress (reusable) garbled circuits. Cryptology ePrint
Archive, Report 2013/687, 2013. http://eprint.iacr.org/.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In CRYPTO, 2010.

[GGSW13] S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications.
In STOC, 2013.

[GHV10] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from
LWE. In EUROCRYPT, 2010.

[GKP+13a] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How
to run turing machines on encrypted data. In CRYPTO, 2013.

39

331
Approved for Public Release; Distribution Unlimited.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[GKP+13b] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In STOC, 2013.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive
proofs for muggles. In STOC, 2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, 1987.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM CCS, 2006.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits.
In STOC, 2013.

[HW13] S. Hohenberger and B. Waters. Attribute-based encryption with fast decryption. In
PKC, 2013.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and appli-
cations. In ICALP, 2008.

[KSW08] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In EUROCRYPT, 2008.

[LO13] S. Lu and R. Ostrovsky. How to garble ram programs. In EUROCRYPT, 2013.

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[LPRTJ05] A. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann. Smallest singular
value of random matrices and geometry of random polytopes. Advances in Mathemat-
ics, 195(2):491–523, 2005.

[LW12] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, 2012.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT, 2012.

[OT10] T. Okamoto and K. Takashima. Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In CRYPTO, 2010.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
STOC, 2009.

[PRV12] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, 2012.

40

332
Approved for Public Release; Distribution Unlimited.

[PTMW06] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems.
In ACM CCS, 2006.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, 1984.

[Sho08] Victor Shoup. A Computational Introduction to Number Theory and Algebra, second
edition. Cambridge University Press, 2008.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[Wat12] B. Waters. Functional encryption for regular languages. In CRYPTO, 2012.

[Yao86] A. C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, 1986.

41

333
Approved for Public Release; Distribution Unlimited.

Reusable Garbled Circuits and
Succinct Functional Encryption

Shafi Goldwasser⋆ Yael Kalai† Raluca Ada Popa⋆

Vinod Vaikuntanathan◃▹ Nickolai Zeldovich⋆

⋆ MIT CSAIL † Microsoft Research ◃▹ University of Toronto

March 24, 2013

Abstract

Garbled circuits, introduced by Yao in the mid 80s, allow computing a function f on an input x
without leaking anything about f or x besides f(x). Garbled circuits found numerous applications, but
every known construction suffers from one limitation: it offers no security if used on multiple inputs x.
In this paper, we construct for the first time reusable garbled circuits. The key building block is a new
succinct single-key functional encryption scheme.

Functional encryption is an ambitious primitive: given an encryption Enc(x) of a value x, and a secret
key skf for a function f , anyone can compute f(x) without learning any other information about x. We
construct, for the first time, a succinct functional encryption scheme for any polynomial-time function
f where succinctness means that the ciphertext size does not grow with the size of the circuit for f , but
only with its depth. The security of our construction is based on the intractability of the Learning with
Errors (LWE) problem and holds as long as an adversary has access to a single key skf (or even an a priori
bounded number of keys for different functions).

Building on our succinct single-key functional encryption scheme, we show several new applications
in addition to reusable garbled circuits, such as a paradigm for general function obfuscation which we call
token-based obfuscation, homomorphic encryption for a class of Turing machines where the evaluation
runs in input-specific time rather than worst-case time, and a scheme for delegating computation which is
publicly verifiable and maintains the privacy of the computation.

334
Approved for Public Release; Distribution Unlimited.

Contents

1 Introduction 3
1.1 Our Results . 4

1.1.1 Main Application: Reusable Garbled Circuits . 6
1.1.2 Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility

Results . 6
1.1.3 Computing on Encrypted Data in Input-Specific Time 7
1.1.4 Publicly Verifiable Delegation with Secrecy . 8

1.2 Technique Outline . 8

2 Preliminaries 11
2.1 Notation . 11
2.2 Background on Learning With Errors (LWE) . 12
2.3 Fully Homomorphic Encryption (FHE) . 12
2.4 Background on Garbled Circuits . 13
2.5 Attribute-Based Encryption (ABE) . 15

2.5.1 Two-Outcome Attribute-Based Encryption . 17
2.6 Functional Encryption (FE) . 18

2.6.1 Security of Functional Encryption . 19

3 Our Functional Encryption Scheme 20
3.1 Construction . 23
3.2 Proof . 24

4 Reusable Garbled Circuits 29
4.1 Construction . 31
4.2 Proof . 32
4.3 Impossibility of Public-Key Reusable Garbled Circuits . 35

5 Token-Based Obfuscation 36
5.1 Definition . 36
5.2 Scheme . 37

6 Computing on Encrypted Data in Input-Specific Time 38
6.1 Construction . 40
6.2 Results . 41
6.3 Input-Dependent Output Size . 43

A Detailed Background on Learning With Errors (LWE) 46

B Construction of Two-Outcome Attribute-Based Encryption 47

C Homomorphic Encryption for Turing Machines: Definitions and Proofs 49
C.1 Proof . 50

2

335
Approved for Public Release; Distribution Unlimited.

1 Introduction

Breaches of confidential data are commonplace: personal information of millions of people, such as financial,
medical, customer, and employee data, is disclosed every year [Pri12, Ver]. These disclosures often happen
because untrustworthy systems handle confidential data. As applications move to cloud computing platforms,
ensuring data confidentiality on third-party servers that may be untrustworthy becomes a top concern [Dav12].

A powerful technique for preventing data disclosures without having to ensure the server is trustworthy is
to encrypt the data provided to the server and then compute on the encrypted data. Thus, if the server does
not have access to the plaintext or to the decryption key, it will be unable to disclose confidential data. The
big leap of the last decade towards computing over encrypted data has been fully homomorphic encryption
(FHE) [Gen09, DGHV10, SS10b, BV11b, BV11a, Vai11, BGV12, GHS12a, GHS12b, LTV12, Bra12].

A fundamental question with this approach is: who can decrypt the results of computations on encrypted
data? If data is encrypted using FHE, anyone can perform a computation on it (with knowledge of the public
key), while the result of the computation can be decrypted only using the secret key. However, the secret
key allows decrypting all data encrypted under the corresponding public key. This model suffices for certain
applications, but it rules out a large class of applications in which the party computing on the encrypted data
needs to determine the computation result on its own. For example, spam filters should be able to determine
if an encrypted email is spam and discard it, without learning anything else about the email’s content. With
FHE, the spam filter can run the spam detection algorithm homomorphically on an encrypted email and
obtain an encrypted result; however, it cannot tell if the algorithm deems the email spam or not. Having the
data owner provide the decryption key to the spam filter is not a solution: the spam filter can now decrypt all
the emails as well!

A promising approach to this problem is functional encryption [SW05, GPSW06, KSW08, LOS+10,
OT10, O’N10, BSW]. In functional encryption, anyone can encrypt data with a master public key mpk
and the holder of the master secret key can provide keys for functions, for example skf for function f .
Anyone with access to a key skf and a ciphertext c for x can obtain the result of the computation in plaintext
form: f(x). The security of FE requires that the adversary does not learn anything about x, other than the
computation result f(x). It is easy to see, for example, how to solve the above spam filter problem with a
functional encryption scheme. A user Alice publishes her public key online and gives the spam filter a key for
the filtering function. Users sending email to Alice will encrypt the email with her public key. The spam filter
can now determine by itself, for each email, whether to store it in Alice’s mailbox or to discard it as spam,
without learning anything about Alice’s email (except for whether it was deemed spam or not).

The recent impossibility result of Agrawal, Gorbunov, Vaikuntanathan and Wee [AGVW12] says that
functional encryption schemes where an adversary can receive an arbitrary number of keys for general
functions are impossible for a natural simulation-based security definition;1 stated differently, any functional
encryption scheme that can securely provide q keys for general functions must have ciphertexts growing
linearly in q. Since any scheme that can securely provide a single key yields a scheme that can securely
provide q keys by repetition, the question becomes if one can construct a functional encryption scheme that
can securely provide a single key for a general function under this simulation-based security definition. Such
a single-key functional encryption scheme is a powerful tool, enabling the applications we will discuss.

In this paper, we construct the first single-key functional encryption scheme for a general function that
is succinct: the size of the ciphertext grows with the depth d of the circuit computing the function and is

1This impossibility result holds for non-adaptive simulation-based security, which is weaker than some existing simulation-based
definitions such as adaptive security. Nevertheless, this result does not carry over to indistinguishability-based definitions, for which
possibility or impossibility is currently an open question. In this paper, we are interested in achieving the simulation-based definition.

3

336
Approved for Public Release; Distribution Unlimited.

independent of the size of the circuit. Up until our work, the known constructions of functional encryption
were quite limited. First, the works of Boneh and Waters [BW07], Katz, Sahai and Waters [KSW08], Agrawal,
Freeman and Vaikuntanathan [AFV11], and Shen, Shi and Waters [SSW09] show functional encryption
schemes (based on different assumptions) for a very simple function: the inner product function fy (or a
variant of it), that on input x outputs 1 if and only if ⟨x, y⟩ = 0.2 These works do not shed light on how to
extend beyond inner products. Second, Sahai and Seyalioglu [SS10a] and Gorbunov, Vaikuntanathan and
Wee [GVW12] provide a construction for single-key functional encryption for one general function with a
non-succinct ciphertext size (at least the size of a universal circuit computing the functions allowed by the
scheme3). [SS10a] was the first to introduce the idea of single-key functional encryption and [GVW12] also
extends it to allow the adversary to see secret keys for q functions of his choice, by increasing the size of
the ciphertexts linearly with q where q is known in advance.4 We emphasize that the non-succinctness of
these schemes is particularly undesirable and it precludes many useful applications of functional encryption
(e.g., delegation, reusable garbled circuits, FHE for Turing machines), which we achieve. For example, in
the setting of delegation, a data owner wants to delegate her computation to a cloud, but the mere effort
of encrypting the data is greater than computing the circuit directly, so the owner is better off doing the
computation herself.

We remark that functional encryption (FE) arises from, and generalizes, a beautiful sequence of papers on
attribute-based encryption (including [SW05, GPSW06, BSW07, GJPS08, LOS+10, Wat11, Wat12, LW12]),
and more generally predicate encryption (including [BW07, KSW08, OT09]). We denote by attribute-based
encryption (ABE) an encryption scheme where each ciphertext c of an underlying plaintext message m
is tagged with a public attribute x. Each secret key skf is associated with a predicate f . Given a key skf
and a ciphertext c = Enc(x,m), the message m can be recovered if and only if f(x) is true. Whether the
message gets recovered or not, the attribute x is always public; in other words, the input to the computation
of f , x, leaks with attribute-based encryption, whereas with functional encryption, nothing leaks about x
other than f(x). Therefore, attribute-based encryption offers qualitatively weaker security than functional
encryption. Attribute-based encryption schemes were also called public-index predicate encryption schemes
in the literature [BSW]. Boneh and Waters [BW07] introduced the idea of not leaking the attribute as in
functional encryption (also called private-index functional encryption).

Very recently, the landscape of attribute-based encryption has significantly improved with the works of
Gorbunov, Vaikuntanathan and Wee [GVW13], and Sahai and Waters [SW12], who construct attribute-based
encryption schemes for general functions, and are a building block for our results.

1.1 Our Results

Our main result is the construction of a succinct single-key functional encryption scheme for general functions.
We demonstrate the power of this result by showing that it can be used to address the long-standing open
problem in cryptography of reusing garbled circuits, as well as making progress on other open problems.

We can state our main result as a reduction from any attribute-based encryption and any fully
homomorphic encryption scheme. In particular, we show how to construct a (single-key and succinct)
functional encryption scheme for any class of functions F by using a homomorphic encryption scheme
which can do homomorphic evaluations for any function in F and an attribute-based encryption scheme for a

2These inner-product schemes allow an arbitrary number of keys.
3A universal circuit F is a circuit that takes as input a description of a circuit f and an input string x, runs f on x and outputs f(x).
4Namely, parameter q (the maximum number of keys allowed) is fixed during setup, and the ciphertexts size grows linearly

with q.

4

337
Approved for Public Release; Distribution Unlimited.

“slightly larger” class of functions F ′; F ′ is the class of functions such that for any function f ∈ F , the class
F ′ contains the function computing the i-th bit of the FHE evaluation of f .

Theorem 1.1 (Informal). There is a single-key functional encryption scheme with succinct ciphertexts
(independent of circuit size) for the class of functions F assuming the existence of

• a fully homomorphic encryption scheme for the class of functions F , and

• a (single-key) attribute-based encryption scheme for a class of predicates F ′ (as above).

The literature has considered two types of security for ABE and FE: selective and full security (see
Sec. 2.6). We show that if the underlying ABE scheme is selectively or fully secure, our resulting FE scheme
is selectively or fully secure, respectively.

Two very recent results achieve attribute-based encryption for general functions. Gorbunov, Vaikun-
tanathan and Wee [GVW13] achieve ABE for general circuits of bounded depth based on the subexponential
Learning With Errors (LWE) intractability assumption. Sahai and Waters [SW12] achieve ABE for general
circuits under the less standard k-Multilinear Decisional Diffie-Hellman (see [SW12] for more details);
however, when instantiated with the only construction of multilinear maps currently known [GGH12], they
also achieve ABE for general circuits of bounded depth. Our scheme can be instantiated with any of these
schemes because our result is a reduction.

When coupling our theorem with the ABE result of [GVW13] and the FHE scheme of [BV11a, BGV12],
we obtain:

Corollary 1.2 (Informal). Under the subexponential LWE assumption, for any depth d, there is a single-key
functional encryption scheme for general functions computable by circuits of depth d. The scheme has
succinct ciphertexts: their size is polynomial in the depth d (and does not depend on the circuit size).

This corollary holds for both selective and full security definitions, since [GVW13] constructs both
selectively secure and fully secure ABE schemes. However, the parameters of the LWE assumption are
different in the two cases (Sec. 2.3).

Another corollary of our theorem is that, given a universal ABE scheme (the scheme is for all classes of
circuits, independent of depth) and any fully homomorphic encryption scheme, there is a universal functional
encryption scheme whose ciphertext size does not depend on the circuit’s size or even the circuit’s depth.

As mentioned, extending our scheme to be secure against an adversary who receives q keys is
straightforward. The basic idea is simply to repeat the scheme q times in parallel. This strategy results in the
ciphertext size growing linearly with q, which is unavoidable for the simulation-based security definition
we consider, because of the discussed impossibility result [AGVW12]. Stated in these terms, our scheme is
also a q-collusion-resistant functional encryption scheme like [GVW12], but our scheme’s ciphertexts are
succinct, whereas [GVW12]’s are proportional to the circuit size.

From now on, we restrict our attention to the single-key case, which is the essence of the new scheme.
In the body of the paper we often omit the single-key or succinct adjectives and whenever we refer to a
functional encryption scheme, we mean a succinct single-key functional encryption scheme.

We next show how to use our main theorem to make significant progress on some of the most intriguing
open questions in cryptography today: the reusability of garbled circuits, a new paradigm for general function
obfuscation, as well as applications to fully homomorphic encryption with evaluation running in input-specific
time rather than in worst-case time, and to publicly verifiable delegation. Succinctness plays a central role in
these applications and they would not be possible without it.

5

338
Approved for Public Release; Distribution Unlimited.

1.1.1 Main Application: Reusable Garbled Circuits

A circuit garbling scheme, which has been one of the most useful primitives in modern cryptography, is a
construction originally suggested by Yao in the 80s in the context of secure two-party computation [Yao82].
This construction relies on the existence of a one-way function to encode an arbitrary circuit C (“garbling”
the circuit) and then encode any input x to the circuit (where the size of the encoding is short, namely, it does
not grow with the size of the circuit C); a party given the garbling of C and the encoding of x can run the
garbled circuit on the encoded x and obtain C(x). The most basic properties of garbled circuits are circuit
and input privacy: an adversary learns nothing about the circuit C or the input x other than the result C(x).

Over the years, garbled circuits and variants thereof have found many applications: two party
secure protocols [Yao86], multi-party secure protocols [GMW87], one-time programs [GKR08], KDM-
security [BHHI10], verifiable computation [GGP10], homomorphic computations [GHV10] and others.
However, a basic limitation of the original construction remains: it offers only one-time usage. Specifically,
providing an encoding of more than one input compromises the secrecy of the circuit. Thus, evaluating the
circuit C on any new input requires an entirely new garbling of the circuit.

The problem of reusing garbled circuits has been open for 30 years. Using our newly constructed succinct
functional encryption scheme we are now able to build reusable garbled circuits that achieve circuit and
input privacy: a garbled circuit for any computation of depth d (where the parameters of the scheme depend
on d), which can be run on any polynomial number of inputs without compromising the privacy of the circuit
or the input. More generally, we prove the following:

Theorem 1.3 (Informal). There exists a polynomial p, such that for any depth function d, there is a reusable
circuit garbling scheme for the class of all arithmetic circuits of depth d, assuming there is a single-key
functional encryption scheme for all arithmetic circuits of depth p(d).5

Corollary 1.4 (Informal). Under the subexponential LWE assumption, for any depth function d, there exists
a reusable circuit garbling scheme with circuit and input privacy for all arithmetic circuits of depth d.

Reusability of garbled circuits (for depth-bounded computations) implies a multitude of applications
as evidenced by the research on garbled circuits over the last 30 years. We note that for many of these
applications, depth-bounded computation suffices. We also note that some applications do not require circuit
privacy. In that situation, our succinct single-key functional encryption scheme already provides reusable
garbled circuits with input-privacy and, moreover, the encoding of the input is a public-key algorithm.

We remark that [GVW13] gives a restricted form of reusable circuit garbling: it provides authenticity of
the circuit output, but does not provide input privacy or circuit privacy, as we do here. Informally, authenticity
means that an adversary cannot obtain a different yet legitimate result from a garbled circuit. We note that
most of the original garbling circuit applications (e.g., two party secure protocols [Yao86], multi-party secure
protocols [GMW87]) rely on the privacy of the input or of the circuit.

One of the more intriguing applications of reusable garbled circuits pertains to a new model for program
obfuscation, token-based obfuscation, which we discuss next.

1.1.2 Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility Results

Program obfuscation is the process of taking a program as input, and producing a functionally equivalent but
different program, so that the new program reveals no information to a computationally bounded adversary

5For this application we need to assume that the underlying functional encryption scheme is fully secure (as opposed to only
selectively secure).

6

339
Approved for Public Release; Distribution Unlimited.

about the original program, beyond what “black box access” to the program reveals. Whereas ad-hoc program
obfuscators are built routinely, and are used in practice as the main software-based technique to fight reverse
engineering of programs, in 2000 Barak et al. [BGI+01], followed by Goldwasser and Kalai [GK05], proved
that program obfuscation for general functions is impossible using software alone, with respect to several
strong but natural definitions of obfuscation.

The results of [BGI+01, GK05] mean that there exist functions which cannot be obfuscated. Still, the need
to obfuscate or “garble” programs remains. A long array of works attempts to circumvent the impossibility
results in various ways, including adding secure hardware components [GKR08, GIS+10, BCG+11], relaxing
the definition of security [GR07], or considering only specific functions [Wee05, CKVW10].

The problem of obfuscation seems intimately related to the “garbled circuit” problem where given a
garbling of a circuit C and an encoding for an input x, one can learn the result of C(x) but nothing else. One
cannot help but wonder whether the new reusable garbling scheme would immediately imply a solution for
the obfuscation problem (which we know is impossible). Consider an example illustrating this intuition: a
vendor obfuscates her program (circuit) by garbling it and then gives the garbled circuit to a customer. In
order to run the program on (multiple) inputs xi, the customer simply encodes the inputs according to the
garbling scheme and thus is able to compute C(xi). Unfortunately, although close, this scenario does not
work with reusable garbled circuits. The key observation is that encoding x requires knowledge of a secret
key! Thus, an adversary cannot produce encoded inputs on its own, and needs to obtain “tokens” in the form
of encrypted inputs from the data owner.

Instead, we propose a new token-based model for obfuscation. The idea is for a vendor to obfuscate an
arbitrary program as well as provide tokens representing rights to run this program on specific inputs. For
example, consider that some researchers want to obtain statistics out of an obfuscated database containing
sensitive information (the obfuscated program is the program running queries with the secret database
hardcoded in it). Whenever the researchers want to input a query x to this program, they need to obtain
a token for x from the program owner. To produce each token, the program owner does little work. The
researchers perform the bulk of the computation by themselves using the token and obtain the computation
result without further interaction with the owner.

Claim 1.5. Assuming a reusable garbling scheme for a class of circuits, there is a token-based obfuscation
scheme for the same class of circuits.

Corollary 1.6 (Informal). Under the subexponential LWE assumption, for any depth function d, there exists
a token-based obfuscation scheme for all arithmetic circuits of depth d.

It is worthwhile to compare the token-based obfuscation model with previous work addressing obfuscation
using trusted-hardware components such as [GIS+10, BCG+11]. In these schemes, after a user finishes
executing the obfuscated program on an input, the user needs to interact with the trusted hardware to obtain
the decryption of the result; in comparison, in our scheme, the user needs to obtain only a token before the
computation begins, and can then run the computation and obtain the decrypted result by herself.

1.1.3 Computing on Encrypted Data in Input-Specific Time

All current FHE constructions work according to the following template. For a fixed input size, a program is
transformed into an arithmetic circuit; homomorphic evaluation happens gate by gate on this circuit. The
size of the circuit reflects the worst-case running time of the program: for example, every loop is unfolded
into the maximum number of steps corresponding to the worst-case input, and each function is called the

7

340
Approved for Public Release; Distribution Unlimited.

maximum number of times possible. Such a circuit can be potentially very large, despite the fact that there
could be many inputs on which the execution is short.

A fascinating open question has been whether it is possible to perform FHE following a Turing-machine-
like template: the computation time is input-specific and can terminate earlier depending on the input at hand.
Of course, to compute in input-specific time, the running time must unavoidably leak to the evaluator, but
such leakage is acceptable in certain applications and the efficiency gains can be significant; therefore, such a
scheme provides weaker security than fully homomorphic encryption (namely, nothing other than the running
time leaks about the input), at the increase of efficiency.

Using our functional encryption scheme, we show how to achieve this goal. The idea is to use the scheme
to test when an encrypted circuit computation has terminated, so the computation can stop earlier on certain
inputs. We overview our technique in Sec. 1.2.

Because the ciphertexts in our functional encryption scheme grow with the depth of the circuits, such a
scheme is useful only for Turing machines that can be expressed as circuits of depth at most d(n) for inputs
of size n. We refer to such Turing machines as d-depth-bounded and define them in Sec. 6.

Theorem 1.7. There is a scheme for evaluating Turing machines on encrypted inputs in input-specific time
for any class of d-depth-bounded Turing machines, assuming the existence of a succinct single-key functional
encryption scheme for circuits of depth d,6 and a fully homomorphic encryption scheme for circuits of depth
d.

Corollary 1.8. Under the subexponential LWE assumption, for any depth d, there is a scheme for evaluating
Turing machines on encrypted data in input-specific time for any class of d-depth-bounded Turing machines.

1.1.4 Publicly Verifiable Delegation with Secrecy

Recently, Parno, Raykova and Vaikuntanathan [PRV12] showed how to construct a 2-message delegation
scheme that is publicly verifiable, in the preprocessing model, from any attribute-based encryption scheme.
This reduction can be combined with [GVW13]’s ABE scheme to achieve such a delegation scheme.

However, this scheme does not provide secrecy of the inputs: the prover can learn the inputs. By replacing
the ABE scheme in the construction of [PRV12] with our new functional encryption scheme, we add secrecy
to the scheme; namely, we obtain a delegation scheme which is both publicly verifiable as in [PRV12] (anyone
can verify that a transcript is accepting using only public information) and secret (the prover does not learn
anything about the input of the function being delegated).7 More specifically, we construct a 2-message
delegation scheme in the preprocessing model that is based on the subexponential LWE assumption, and is
for general depth-bounded circuits, where the verifier works in time that depends on the depth of the circuit
being delegated, but is independent of the size of the circuit, and the prover works in time dependent on the
size of the circuit.

1.2 Technique Outline

Our functional encryption scheme. We first describe the ideas behind our main technical result: a reduction
from attribute-based encryption (ABE) and fully homomorphic encryption (FHE) to functional encryption
(FE).

6As in previous applications, we need to assume that the underlying functional encryption scheme is fully secure (as opposed to
only selectively secure).

7We note that secrecy can be easily obtained by using an FHE scheme, however, this destroys public-verifiability.

8

341
Approved for Public Release; Distribution Unlimited.

Compute on encrypted data with FHE. A natural starting point is FHE because it enables computation on
encrypted data, which is needed with functional encryption. Using FHE, the FE encryption of an input x
consists of an FHE encryption of x, denoted x̂, while the secret key for a function f is simply f itself. The
semantic security of FHE provides the desired security (and more) because nothing leaks about x; however,
using FHE evaluation, the evaluator obtains an encrypted computation result, f̂(x), instead of the decrypted
value f(x). Giving the evaluator the FHE decryption key is not an option because the evaluator can use it to
decrypt x as well.

Attempt to decrypt using a Yao garbled circuit. We would like the evaluator to decrypt the FHE ciphertext
f̂(x), but not be able to decrypt anything else. An idea is for the owner to give the evaluator a Yao garbled
circuit for the FHE decryption function FHE.Dec with the FHE secret key hsk hardcoded in it, namely a
garbled circuit for FHE.Dechsk. When the owner garbles FHE.Dechsk, the owner also obtains a set of garbled
circuit labels {Li

0, L
i
1}i. The evaluator must only receive the input labels corresponding to f̂(x): namely, the

labels {Li
bi
}i where bi is the i-th bit of f̂(x). But this is not possible because the owner does not know a

priori f̂(x) which is determined only after the FHE evaluation; furthermore, after providing more than one
set of labels (which happens when encrypting another input x′), the security of the garbled circuit (and hence
of the FHE secret key) is compromised. One idea is to have the owner and the evaluator interact, but the
syntax of functional encryption does not allow interaction. Therefore, the evaluator needs to determine the set
of labels corresponding to f̂(x) by herself, and should not obtain any other labels.

Constraining decryption using ABE. It turns out that what we need here is very close to what ABE
provides. Consider the following variant of ABE (called ABE2)that can be constructed easily from a standard
ABE scheme. One encrypts a value y together with two messages m0,m1 and obtains a ciphertext c ←
ABE2.Enc(y,m0,m1). Then, one generates a key for a predicate g: skg ← ABE2.KeyGen(g). The decryption
algorithm on input c and skg outputs m0 if g(y) = 0 or outputs m1 if g(y) = 1.

Now consider using ABE2 multiple times, once for every i ∈ {1, . . . , size of f̂(x)}. For the i-th
invocation of ABE2.Enc, let m0,m1 be the garbled labels Li

0, L
i
1, and let y be x̂: ABE2.Enc(x̂, L

i
0, L

i
1).

Next, for the i-th invocation of ABE2.KeyGen, let g be FHE.Evalif (the predicate returning the i-th bit of the
evaluation of f on an input ciphertext): ABE2.KeyGen(FHE.Eval

i
f). Then, the evaluator can use ABE2.Dec

to obtain the needed label: Li
bi

where bi is the i-th bit of f̂(x). Armed with these labels and the garbled circuit,
the evaluator decrypts f(x).

The security of the ABE scheme ensures the evaluator cannot decrypt any other labels, so the evaluator
cannot learn more than f(x). Finally, note that the one-time aspect of garbled circuits does not restrict the
number of encryptions with our FE scheme because the encryption algorithm generates a new garbled circuit
every time; since the garbled circuit is for the FHE decryption algorithm (which is a fixed algorithm), the size
of the ciphertexts remains independent of the size of f .

We now explain how to use this result to obtain the aforementioned applications.
From FE to reusable garbled circuits. The goal of garbled circuits is to hide the input and the circuit C.
Our succinct single-key FE already provides a reusable garbling scheme with input privacy (the single key
corresponds to the circuit to garble). To obtain circuit privacy, the insight is to leverage the secrecy of the
inputs to hide the circuit. The first idea that comes to mind is to generate a key for the universal circuit instead
of C, and include C in the ciphertext when encrypting an input. However, this approach will yield large
ciphertexts, as large as the circuit size.

Instead, the insight is to garble C by using a semantically secure encryption scheme E.Enc together with
our FE scheme: the garbling of C will be an FE secret key for a circuit U that contains E.Encsk(C); on

9

342
Approved for Public Release; Distribution Unlimited.

input (sk, x), U uses sk to decrypt C and then runs C on the input x. The token for an input x will be an FE
encryption of (sk, x). Now, even if the FE scheme does not hide E.Encsk(C), the security of the encryption
scheme E hides C.
Computing on encrypted data in input-specific time. We now summarize our approach to evaluating a
Turing machine (TM) M homomorphically over encrypted data without running in worst-case time on all
inputs. Sec. 6 presents the scheme formally.

Our idea is to use our functional encryption scheme to enable the evaluator to determine at various
intermediary steps in the evaluation whether the computation finished or not. For each intermediary step, the
client provides a secret key for a function that returns a bit indicating whether the computation finished or not.
However, if the client provides a key for every computation step, then the amount of keys corresponds to the
worst-case running time. Thus, instead, we choose intermediary points spaced at exponentially increasing
intervals. In this way, the client generates only a logarithmic number of keys, namely for functions indicating
if the computation finishes in 1, 2, 4, . . . , 2i, . . . , 2⌈log tmax⌉ steps, where tmax is the worst-case running time
of M on all inputs of a certain size.

Because of the single-key aspect of our FE scheme, the client cannot provide keys for an arbitrary number
of TMs to the evaluator. However, this does not mean that the evaluator can run only an a priori fixed
number of TMs on the encrypted data. The reason is that the client can provide keys for the universal TMs
U0, . . . , U⌈log tmax⌉, where TM Ui is the TM that on input a TM M and a value x, runs M on x for 2i steps
and outputs whether M finished.

Therefore, in an offline preprocessing phase, the client provides 1 + ⌈log tmax⌉ keys where the i-th key is
for a circuit corresponding to Ui, each key being generated with a different master secret key. The work of
the client in this phase is at least tmax which is costly, but this work happens only once and is amortized over
all subsequent inputs in the online phase.

In an online phase, the client receives an input x and wants the evaluator to compute M(x) for her. The
client provides FE encryptions of (M,x) to the evaluator together with an FHE ciphertext (M̂, x̂) for (M,x)
to be used for a separate FHE evaluation. The evaluator tries each key skUi from the preprocessing phase and
learns the smallest i for which the computation of M on x stops in 2i steps. The evaluator then computes a
universal circuit of size Õ(2i) and evaluates it homomorphically over (M̂, x̂), obtaining the FHE encryption
of M(x). Thus, we can see that the evaluator runs in time polynomial in the runtime of M on x.
Publicly Verifiable Delegation with Secrecy. Delegation schemes aim to enable a weak verifier to delegate
computation of a function f on an input x to a prover who can then prove to the verifier that he computed the
function correctly. We now show that our single-key functional encryption scheme provides an improvement
to publicly verifiable delegation by adding secrecy. We present this improvement only informally, because we
prefer to focus on the other applications.

We now briefly recall the scheme of [PRV12] and then discuss how to modify it; we refer the reader
to Section 2.6 for formal definitions of ABE and FE. There are two phases in the delegation scheme: the
preprocessing phase when the verifier prepares the computation f , and an online phase repeating many times,
in which the verifier gives x to the prover who computes f(x) and proves the computation was correct.

In the preprocessing phase, the verifier generates two pairs of master secret and public keys (msk1,mpk1)
and (msk2,mpk2) for the underlying attribute-based encryption scheme. If f is the function to delegate,
the verifier uses msk1 to generate a key for f denoted skf , and msk2 to generate a key for the negation of
f , f̄(x) := 1− f(x), denoted skf̄ . The verifier then sends both (mpk1,mpk2) and (skf , skf̄) to the prover.
Generating skf and skf̄ takes time that is proportional to the size of the circuit computing f , and thus is a
costly operation. However, this is done only once in the preprocessing phase.

Whenever the verifier wants the prover to compute f on an input x, he chooses two random messages

10

343
Approved for Public Release; Distribution Unlimited.

m1,m2 and sends the prover the encryptions of (x,m∗) under the two keys: (Enc(mpk1, x,m1) and
Enc(mpk2, x,m2)). The properties of the attribute-based encryption scheme guarantees that, if f(x) = 1,
the prover obtains m1 using skf and ⊥ using skf̄ so no information about m0, and vice versa if f(x) = 0.
Therefore, the fact that the prover provides m1 to the verifier is a proof that f(x) was 1.

Importantly, this delegation scheme can be made to have the desired property of being publicly verifiable,
meaning that the verifier can produce a “verification key” with which anyone can check the prover’s work.
This is done by having the verifier also send two point function obfuscations, one of the point m1 and the
other of the point m2.

This reduction from ABE to publicly verifiable delegation can be combined with the recent result
of [GVW13] providing ABE schemes for any depth circuit: the result is a publicly verifiable 2-message
delegation scheme in the preprocessing model for any depth d circuit with verifier’s work being proportional
to the depth d and the prover’s work proportional to the circuit size.

Note however, that this scheme is not secret because ABE does not hide the input x from the prover. It is
well known that x can be made secret by encrypting everything using a fully homomorphic encryption scheme.
However, this comes at the cost of losing the public verifiability property. Our idea is to replace the ABE
scheme with our functional encryption scheme in the protocol above; now the ciphertexts Enc(mpk1, x,m1)
and Enc(mpk2, x,m2) hide x and the scheme provides secrecy because the prover learns nothing about x
other than f(x). The public verifiability of the scheme remains the same.

We remark that we could provide a stronger version of secrecy by also hiding the result f(x) from the
prover; such stronger secrecy is non-standard for delegation, so we do not delve on it. (The idea is for the
client to concatenate a random bit to each input x and have the function f output the opposite result when the
bit is set. In this way, the prover does not learn anything from seeing which ciphertext decrypts to non-⊥.)

2 Preliminaries

2.1 Notation

Let κ denote the security parameter throughout this paper. For a distribution D, we say x← D when x is
sampled from the distribution D. If S is a finite set, by x ← S we mean x is sampled from the uniform
distribution over the set S. We use p(·) to denote that p is a function that takes one input. Similarly, p(·, ·)
denotes a function p that takes two inputs.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there exists K such that
for all κ > K, f(κ) < k−d. For brevity, we write: for all sufficiently large κ, f(κ) = negl(κ). We say
that a function f is polynomial in an input parameter κ, if there exists a polynomial p such that for all κ,
f(κ) ≤ p(κ). We write f(κ) = poly(κ). A similar definition holds for polylog(κ).

Let [n] denote the set {1, . . . , n} for n ∈ N∗. When saying that a Turing machine A is p.p.t. we mean
that A is a non-uniform probabilistic polynomial-time machine.

In this paper, we only work with arithmetic circuits over GF(2). These circuits have two types of gates: +
mod 2 and × mod 2. Unless the context specifies otherwise, we consider circuits with one bit of output (also
called boolean).

Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are said to be computationally indistinguishable
(and denoted {Xκ}κ∈N

c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-time algorithm D,

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

In our security definitions, we will define probabilistic experiments and denote by random variables their

11

344
Approved for Public Release; Distribution Unlimited.

outputs. For example, ExprealE,A(1
κ) denotes the random variable representing the output of the real experiment

for scheme E with adversary A on security parameter κ. Moreover, {ExprealE,A(1
κ)}κ∈N denotes the ensemble

of such random variables indexed by κ ∈ N.

2.2 Background on Learning With Errors (LWE)

The security of our results will be based on the Learning with Errors (LWE) assumption, first introduced
by Regev [Reg05]. Regev showed that solving the LWE problem on average is (quantumly) as hard as
solving the approximate version of several standard lattice problems, such as gapSVP in the worst case.
Peikert [Pei09] later removed the quantum assumption from a variant of this reduction. Given this connection,
we state all our results under worst-case lattice assumptions, and in particular, under (a variant of) the gapSVP
assumption. We refer the reader to [Reg05, Pei09] for details about the worst-case/average-case connection.

The best known algorithms to solve these lattice problems with an approximation factor 2ℓ
ϵ

in ℓ-
dimensional lattices run in time 2Õ(ℓ1−ϵ) [AKS01, MV10] for any constant 0 < ϵ < 1. Specifically, given the
current state-of-the-art on lattice algorithms, it is quite plausible that achieving approximation factors 2ℓ

ϵ
for

these lattice problems is hard for polynomial time algorithms.
Appendix A provides more detailed background information on LWE.

2.3 Fully Homomorphic Encryption (FHE)

The notion of fully homomorphic encryption was first proposed by Rivest, Adleman and Dertouzos [RAD78]
in 1978. The first fully homomorphic encryption scheme was proposed in a breakthrough work by Gentry in
2009 [Gen09]. A history and recent developments on fully homomorphic encryption is surveyed in [Vai11].
We recall the definitions and semantic security of fully homomorphic encryption; the definitions below are
based on [Vai11] with some adaptations.

Definition 2.1. A homomorphic (public-key) encryption scheme FHE is a quadruple of polynomial time
algorithms (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) as follows:

• FHE.KeyGen(1κ) is a probabilistic algorithm that takes as input the security parameter 1κ and outputs
a public key pk and a secret key sk.

• FHE.Enc(pk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public key pk and an input
bit x and outputs a ciphertext ψ.

• FHE.Dec(sk, ψ) is a deterministic algorithm that takes as input the secret key sk and a ciphertext ψ
and outputs a message x∗ ∈ {0, 1}.

• FHE.Eval(pk, C, ψ1, ψ2, . . . , ψn) is a deterministic algorithm that takes as input the public key pk,
some circuit C that takes n bits as input and outputs one bit, as well as n ciphertexts ψ1, . . . , ψn. It
outputs a ciphertext ψC .

Compactness: For all security parameters κ, there exists a polynomial p(·) such that for all input sizes n, for
all x1 . . . xn, for all C, the output length of FHE.Eval is at most p(n) bits long.

Definition 2.2 (C-homomorphism). Let C = {Cn}n∈N be a class of boolean circuits, where Cn is a set of
boolean circuits taking n bits as input. A scheme FHE is C-homomorphic if for every polynomial n(·), for

12

345
Approved for Public Release; Distribution Unlimited.

every sufficiently large security parameter κ, for every circuit C ∈ Cn, and for every input bit sequence
x1, . . . , xn, where n = n(κ),

Pr[(pk, sk)← FHE.KeyGen(1κ);

ψi ← FHE.Enc(pk, xi) for i = 1 . . . n;

ψ ← FHE.Eval(pk, C, ψ1, . . . , ψn) :

FHE.Dec(sk, ψ) ̸= C(x1, . . . xn)] = negl(κ).

where the probability is over the coin tosses of FHE.KeyGen and FHE.Enc.

Definition 2.3 (Fully homomorphic encryption). A scheme FHE is fully homomorphic if it is homomorphic
for the class of all arithmetic circuits over GF(2).

Definition 2.4 (Leveled fully homomorphic encryption). A leveled fully homomorphic encryption scheme
is a homomorphic scheme where FHE.KeyGen receives an additional input 1d and the resulting scheme is
homomorphic for all depth-d arithmetic circuits over GF(2).

Definition 2.5 (IND-CPA security). A scheme FHE is IND-CPA secure if for any p.p.t. adversary A,∣∣Pr[(pk, sk)← FHE.KeyGen(1κ) : A(pk,FHE.Enc(pk, 0)) = 1]−
Pr[(pk, sk)← FHE.KeyGen(1κ) : A(pk,FHE.Enc(pk, 1)) = 1]

∣∣ = negl(κ).

We now state the result of Brakerski, Gentry and Vaikuntanathan [BGV12] that shows a leveled fully
homomorphic encryption scheme based on the LWE assumption:

Theorem 2.1 ([BV11a, BGV12]). Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently
large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within
a 2O(ℓϵ) factor in the worst case. Then, for every n and every polynomial d = d(n), there is an IND-CPA
secure d-leveled fully homomorphic encryption scheme where encrypting n bits produces ciphertexts of length
poly(n, κ, d1/ϵ), the size of the circuit for homomorphic evaluation of a function f is size(Cf)·poly(n, κ, d1/ϵ)
and its depth is depth(Cf) · poly(log n, log d).

All known fully homomorphic encryption schemes (as opposed to merely leveled schemes) require an
additional assumption related to circular security of the associated encryption schemes. However, we do
not need to make such an assumption in this work because we only use a leveled homomorphic encryption
scheme in our constructions.

2.4 Background on Garbled Circuits

We will now define garbled circuits. Initially, garbled circuits were presented by Yao [Yao82] in the context
of secure two-party computation and later, they were then proven secure by Lindell and Pinkas [LP09]. Very
recently, the notion has been formalized by Bellare et al. [BHR12]. For simplicity, we present more concise
definitions of garbled circuits than in [BHR12].

Definition 2.6 (Garbling scheme). A garbling scheme for a family of circuits C = {Cn}n∈N with Cn a set
of boolean circuits taking as input n bits, is a tuple of p.p.t. algorithms Gb = (Gb.Garble,Gb.Enc,Gb.Eval)
such that

13

346
Approved for Public Release; Distribution Unlimited.

• Gb.Garble(1κ, C) takes as input the security parameter κ and a circuit C ∈ Cn for some n, and outputs
the garbled circuit Γ and a secret key sk.

• Gb.Enc(sk, x) takes as input x ∈ {0, 1}∗ and outputs an encoding c.

• Gb.Eval(Γ, c) takes as input a garbled circuit Γ, an encoding c and outputs a value y which should be
C(x).

Correctness. For any polynomial n(·), for all sufficiently large security parameters κ, for n = n(κ), for
all circuits C ∈ Cn and all x ∈ {0, 1}n,

Pr[(Γ, sk)← Gb.Garble(1κ, C); c← Gb.Enc(sk, x); y ← Gb.Eval(Γ, c) : C(x) = y] = 1− negl(κ).

Efficiency. There exists a universal polynomial p = p(κ, n) (p is the same for all classes of circuits C)
such that for all input sizes n, security parameters κ, for all boolean circuits C of with n bits of input, for all
x ∈ {0, 1}n,

Pr[(Γ, sk)← Gb.Garble(1κ, C) : |sk| ≤ p(κ, n) and runtime(Gb.Enc(sk, x)) ≤ p(κ, n)] = 1.

Note that since Gb.Enc is a p.p.t. algorithm, it suffices to ensure that |sk| ≤ p(κ, n) and obtain that
Gb.Enc’s runtime is also at most a polynomial. We prefer to keep the runtime of Gb.Enc in the definition as
well for clarity.

Remark 2.2 (Remark on the efficiency property). Intuitively, a garbling scheme is efficient if the time to
encode is shorter than the time to run the circuit. This requirement can be formalized in a few ways. A first
definition is as provided above in Def. 2.6. Another definition is to allow |sk| and the runtime of Gb.Enc to
also depend on the depth of the circuits in C, but require that it does not depend on their size.

Yao garbled circuits. The garbled circuits presented by Yao have a specific property of the encoding scheme
that is useful in various secure function evaluation protocols and in our construction as well. The secret key is
of the form sk = {L0

i , L
1
i }ni=1 and the encoding of an input x of n bits is of the form c = (Lx1

1 , . . . , L
xn
n),

where xi is the i-th bit of x.
Two security guarantees are of interest: input privacy (the input to the garbled circuit does not leak to the

adversary), and circuit privacy (the circuit does not leak to the adversary). All these properties hold only for
one-time evaluation of the circuit: the adversary can receive at most one encoding of an input to use with a
garbled circuit; obtaining more than one encoding breaks these security guarantees.

Bellare et al. [BHR12] also present a third property which they call authenticity; informally, this requires
that an adversary should not be able to come up with a different result of the garbled circuit that could be
“de-garbled” into a valid value. We do not present this property here because it is straightforward to show
that a garbling scheme with input and circuit privacy as we define them below implies a different garbling
scheme with the authenticity property and we would need to provide a slightly more complicated syntax for
the definition of garbled circuits (with an additional “de-garbling” algorithm).

We now present the one-time security of garbling circuits. The security definition for reusable garbled
will be presented later, in Sec. 4.

Definition 2.7 (Input and circuit privacy). A garbling scheme Gb for a family of circuits {Cn}n∈N is input
and circuit private if there exists a p.p.t. simulator SimGarble, such that for every p.p.t. adversaries A and D,
for all sufficiently large security parameters κ,

14

347
Approved for Public Release; Distribution Unlimited.

| Pr[(x,C, α)← A(1κ); (Γ, sk)← Gb.Garble(1κ, C); c← Gb.Enc(sk, x) : D(α, x, C,Γ, c) = 1]−
Pr[(x,C, α)← A(1κ); (Γ̃, c̃)← SimGarble(1

κ, C(x), 1|C|, 1|x|) : D(α, x, C, Γ̃, c̃) = 1]| = negl(κ),

where we consider only A such that for some n, x ∈ {0, 1}n and C ∈ Cn.

Intuitively, this definition says that, for any circuit or input chosen adversarially, one can simulate in
polynomial time the garbled circuit and the encoding solely based on the computation result (and relevant
sizes). The variable α represents any state that A may want to convey to D.

A few variants of Yao garbling schemes exist (for example, [BHR12]) that provide both input and circuit
privacy under the basic one-way function assumption. Any such construction is suitable for our scheme.

Theorem 2.3 ([Yao82, LP09]). Assuming one-way functions exist, there exists a Yao (one-time) garbling
scheme that is input- and circuit-private for all circuits over GF(2).

2.5 Attribute-Based Encryption (ABE)

We now provide the definition of attribute-based encryption from the literature (e.g., [GPSW06, LOS+10,
GVW13]).

Definition 2.8 (Attribute-Based Encryption). An attribute-based encryption scheme (ABE) for a class of
predicates P = {Pn}n∈N represented as boolean circuits with n input bits and one output bit and an
associated message spaceM is a tuple of algorithms (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) as
follows:

• ABE.Setup(1κ): Takes as input a security parameter 1κ and outputs a public master key fmpk and a
master secret key fmsk.

• ABE.KeyGen(fmsk, P): Given a master secret key fmsk and a predicate P ∈ Pn, for some n, outputs
a key fskP corresponding to P .

• ABE.Enc(fmpk, x,M): Takes as input the public key fmpk, an attribute x ∈ {0, 1}n, for some n, and
a message M ∈M and outputs a ciphertext c.

• ABE.Dec(fskP , c): Takes as input a secret key for a predicate and a ciphertext and outputs M∗ ∈M.

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all
predicates P ∈ Pn, attributes x ∈ {0, 1}n, and messages M ∈M:

Pr

(fmpk, fmsk)← ABE.Setup(1κ);
fskP ← ABE.KeyGen(fmsk, P);
c← ABE.Enc(fmpk, x,M) :

ABE.Dec(fskP , c) =

{
M, if P (x) = 1,

⊥, otherwise.

 = 1− negl(κ).

The space {0, 1}n is referred to as the attribute space (with an attribute size of n) andM is referred to as
the message space.

Intuitively, the security of ABE is that M is revealed only if P (x) = 1. Regarding the attribute x, ABE’s
security does not require any secrecy of the attribute, so x may leak no matter what is the value of P (x).
Many ABE schemes have been proven secure under indistinguishability-based definitions. Despite being

15

348
Approved for Public Release; Distribution Unlimited.

weaker than simulation-based definitions, such definitions suffice for the security of our construction, so
we present them here. Two notions of security have been used in previous work: full and selective security.
Full security allows the adversary to provide the challenge ciphertext after seeing the public key, whereas
in selective security, the adversary must provide the challenge ciphertext before seeing the public key. We
present both in the full security and selective security cases, because the ABE primitive we use [GVW13]
achieves them with different parameters of the gapSVP assumption. We only provide the security definition
for the case when the adversary can ask for a single key because this is all we need for our results.

Definition 2.9 (Attribute-based encryption security). Let ABE be an attribute-based encryption scheme for
a class of predicates P = {Pn}n∈N, and an associated message spaceM, and let A = (A1, A2, A3) be a
triple of p.p.t. adversaries. Consider the following experiment.

ExpABE(1
κ):

1: (fmpk, fmsk)← ABE.Setup(1κ)
2: (P, state1)← A1(fmpk)
3: fskP ← ABE.KeyGen(fmsk, P)
4: (M0,M1, x, state2)← A2(state1, fskP)
5: Choose a bit b at random and let c← ABE.Enc(fmpk, x,Mb).
6: b′ ← A3(state2, c). If |M0| = |M1|, P (x) = 0, and b = b′, output 1, else output 0.

We say that the scheme is a single-key fully-secure attribute-based encryption if for all p.p.t. adversaries
A, and for all sufficiently large κ:

Pr[ExpABE,A(1
κ) = 1] ≤ 1/2 + negl(κ).

We say that the scheme is single-key selectively secure if the same statement holds for a slightly modified
game in which A provides x before receiving fmpk.

Attribute-based encryption schemes have been constructed for the class of Boolean formulas [GPSW06,
LOS+10] and most recently for the class of all polynomial-size circuits: Gorbunov, Vaikuntanathan and
Wee [GVW13] based on the subexponential Learning With Errors (LWE) intractability assumption, and Sahai
and Waters [SW12] based on the k-Multilinear Decisional Diffie-Hellman (see [SW12] for more details). Our
reduction can start from any of these schemes, but in this paper, we choose [GVW13] because it is based on
LWE, which is a more standard assumption and is also the assumption for our other building block, FHE.

Before we state the results of Gorbunov, Vaikuntanathan and Wee [GVW13], we will set up some notation.
Let d and p be two univariate polynomials. Define Cn,d(n),p(n) to be the class of all boolean circuits on n
inputs of depth at most d(n) and size at most p(n). Let Cn,d(n) :=

⋃
polynomial p Cn,d(n),p(n). An attribute-based

encryption or functional encryption scheme that supports circuits in Cn,d(n) is called a d-leveled attribute-
based encryption or functional encryption scheme, respectively. We also refer to an ABE or FE scheme as
leveled, if it is d-leveled for some d. We are now ready to state the theorem of [GVW13].

Theorem 2.4 ([GVW13]). Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ,
the approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate by a polynomial
algorithm to within a 2O(ℓϵ) factor in the worst case. Then, for every n and every polynomial d = d(n),
there is a selectively secure d-leveled attribute-based encryption scheme where encrypting n bits produces
ciphertexts of length poly(n, κ, d1/ϵ).

16

349
Approved for Public Release; Distribution Unlimited.

Furthermore, assuming that gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor in
time 2O(ℓϵ), the scheme is fully secure with ciphertexts of length poly(n, κ, d1/ϵ

2
).

In either case, the scheme is secure with polynomially many secret-key queries.

2.5.1 Two-Outcome Attribute-Based Encryption

We use an attribute-based encryption scheme with a slightly modified definition. The setup and key generation
algorithms are the same as in previous schemes. The difference is in the encryption and decryption algorithms:
instead of encrypting one message M in one ciphertext, we encrypt two messages M0 and M1 in the same
ciphertext such that M0 is revealed if the predicate evaluates to zero on the attribute, and M1 is revealed if
the predicate evaluates to one. Since there are two possible outcomes of the decryption algorithm, we call the
modified scheme a two-outcome attribute-based encryption scheme. Such a variant of ABE has been used for
other purposes by [PRV12].

Definition 2.10 (Two-Outcome Attribute-Based Encryption). A two-outcome attribute-based encryption
scheme (ABE2) for a class of predicates P = {Pn}n∈N represented as boolean circuits with n input bits,
and a message spaceM is a tuple of algorithms (ABE2.Setup, ABE2.KeyGen, ABE2.Enc, ABE2.Dec) as
follows:

• ABE2.Setup(1
κ): Takes as input a security parameter 1κ and outputs a public master key fmpk and a

master secret key fmsk.

• ABE2.KeyGen(fmsk, P): Given a master secret key fmsk and a predicate P ∈ P , outputs a key fskP
corresponding to P .

• ABE2.Enc(fmpk, x,M0,M1): Takes as input the public key fmpk, an attribute x ∈ {0, 1}n, for some
n, and two messages M0,M1 ∈M and outputs a ciphertext c.

• ABE2.Dec(fskP , c): Takes as input a secret key for a predicate and a ciphertext and outputs M∗ ∈M.

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all
predicates P ∈ Pn, attributes x ∈ {0, 1}n, messages M0,M1 ∈M:

Pr

(fmpk, fmsk)← ABE2.Setup(1

κ);
fskP ← ABE2.KeyGen(fmsk, P);
c← ABE2.Enc(fmpk, x,M0,M1);
M∗ ← ABE2.Dec(fskP , c) :
M∗ =MP (x)

 = 1− negl(κ).

We now define the security for single-key two-outcome attribute-based encryption. Intuitively, the security
definition requires that, using a token for a predicate P , an adversary can decrypt one of the two messages
encrypted in C based on the evaluation of P on the attribute, but does not learn anything about the other
message.

Definition 2.11 (Two-outcome attribute-based encryption security). Let ABE2 be a two-outcome attribute-
based encryption scheme for the class of predicates P = {Pn}n∈N and associated message spaceM and let
A = (A1, A2, A3) be a triple of p.p.t. adversaries. Consider the following experiment.

17

350
Approved for Public Release; Distribution Unlimited.

ExpABE2
(1κ):

1: (fmpk, fmsk)← ABE2.Setup(1
κ)

2: (P, state1)← A1(fmpk)
3: skP ← ABE2.KeyGen(fmsk, P)
4: (M,M0,M1, x, state2)← A2(state1, skP)
5: Choose a bit b at random. Then, let

c =

{
ABE2.Enc(fmpk, x,M,Mb), if P (x) = 0,

ABE2.Enc(fmpk, x,Mb,M), otherwise.

6: b′ ← A3(state2, c). If b = b′, ∃ n such that, for all P ∈ Pn, messages M,M0,M1 ∈M, |M0| = |M1|,
x ∈ {0, 1}n, output 1, else output 0.

We say that the scheme is a fully-secure single-key two-outcome ABE if for all p.p.t. adversaries A, and
for all sufficiently large security parameters κ:

Pr[ExpABE2,A(1
κ) = 1] ≤ 1/2 + negl(κ).

The scheme is single-key selectively secure if A needs to provide x before receiving fmpk.

As before, we need only a single-key ABE2 scheme for our construction.
A class of predicates {Pn}n is closed under negation if for all input sizes n and for all predicates p ∈ Pn,

we have p̄ ∈ Pn; p̄ is the negation of p, namely p̄(y) = 1− p(y) for all y.

Claim 2.5. Assuming there is an ABE scheme for a class of predicates closed under negation, there exists a
two-outcome ABE scheme for the same class of predicates.

The proof of this claim is immediate and we present it in Appendix B, for completeness.

2.6 Functional Encryption (FE)

We recall the functional encryption definition from the literature [KSW08, BSW, GVW12] with some
notational changes.

Definition 2.12 (Functional Encryption). A functional encryption scheme FE for a class of functions F =
{Fn}n∈N represented as boolean circuits with an n-bit input, is a tuple of four p.p.t. algorithms (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) such that:

• FE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public key fmpk and a
master secret key fmsk.

• FE.KeyGen(fmsk, f) takes as input the master secret key fmsk and a function f ∈ F and outputs a
key fskf .

• FE.Enc(fmpk, x) takes as input the master public key fmpk and an input x ∈ {0, 1}∗ and outputs a
ciphertext c.

• FE.Dec(fskf , c) takes as input a key fskf and a ciphertext c and outputs a value y.

18

351
Approved for Public Release; Distribution Unlimited.

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, for n = n(κ), for all
f ∈ Fn, and all x ∈ {0, 1}n,

Pr[(fmpk, fmsk)← FE.Setup(1κ); fskf ← FE.KeyGen(fmsk, f); c← FE.Enc(fmpk, x) :

FE.Dec(fskf , c) = f(x)] = 1− negl(κ).

2.6.1 Security of Functional Encryption

Intuitively, the security of functional encryption requires that an adversary should not learn anything about
the input x other than the computation result C(x), for some circuit C for which a key was issued (the
adversary can learn the circuit C). As mentioned, two notions of security have been used in previous work:
full and selective security, with the same meaning as for ABE. We present both definitions because we achieve
them with different parameters of the gapSVP assumption. Our definitions are simulation-based: the security
definition states that whatever information an adversary is able to learn from the ciphertext and the function
keys can be simulated given only the function keys and the output of the function on the inputs.

Definition 2.13. (FULL-SIM-Security) Let FE be a functional encryption scheme for the family of functions
F = {Fn}n∈N. For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider the following two
experiments:

ExprealFE,A(1
κ): ExpidealFE,A,S(1

κ):

1: (fmpk, fmsk)← FE.Setup(1κ)
2: (f, stateA)← A1(fmpk)
3: fskf ← FE.KeyGen(fmsk, f)
4: (x, state′A)← A2(stateA, fskf)

5: c← FE.Enc(fmpk, x)
6: Output (state′A, c)

5: c̃← S(fmpk, fskf , f, f(x), 1
|x|)

6: Output (state′A, c̃)

The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator S such that
for all pairs of p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally
indistinguishable: {

ExprealFE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealFE,A,S(1

κ)

}
κ∈N

.

We now define selective security, which is a weakening of full security, by requiring the adversary to
provide the challenge input x before seeing the public key or any other information besides the security
parameter. We simply specify the difference from full security.

Definition 2.14 (SEL-SIM-Security). The same as Def. 2.13, but modify the game so that the first step
consists of A specifying the challenge input x given only the security parameter.

It is easy to see that the full simulation definition (FULL-SIM-security) implies the selective definition
(SEL-SIM-security).

The literature [BSW, AGVW12] has considered another classification for simulation-based definitions:
adaptive versus non-adaptive security. In the adaptive case, the adversary is allowed to ask for a function
f after seeing the ciphertext c for an input x. In the non-adaptive case, the adversary must first provide f

19

352
Approved for Public Release; Distribution Unlimited.

and only then ask for encryptions of inputs x. Our definition falls in the non-adaptive category. Boneh et
al. [BSW] have shown that adaptive simulation-based security is unachievable even for single-key functional
encryption for the simple functionality of identity-based encryption. As such, the adaptive definition appears
too strong and is unachievable for general functionalities, so we use non-adaptive security.

Remark 2.6. Attribute-based encryption can be viewed as functional encryption for a specific class of
functionalities, where the additional information leaked is part of the output to the function. Namely, consider
a class of functions F whose plaintext space consists of pairs of values from {0, 1}n ×M, where {0, 1}n
is the attribute space (with an attribute size of n) andM is the message space. The class of functions for
ABE is more specific: there exists an associated predicate class P = {Pn}n∈N to F such that for every n, for
every f ∈ Fn, there is an associated predicate P ∈ Pn to f such that

f(x,M) =

{
(x,M), if P (x) = 1,

(x,⊥), otherwise.

Since the attribute x is in the output of the function no matter what P is, x leaks from the scheme no matter
what (x is public). Therefore, this functionality leads to weaker security guarantees than functional encryption
in a conceptual way: the value to be computed on, x, leaks with ABE (whereas the value M on which P does
not compute remains secret when P (x) = 0), whereas the input x to the computation is hidden with FE.

3 Our Functional Encryption Scheme

In this section, we present our main result: the construction of a functional encryption scheme FE. We refer
the reader to the introduction (Sec. 1.2) for an overview of our approach, and we proceed directly with the
construction here.

We use three building blocks in our construction: a (leveled) fully homomorphic encryption scheme FHE,
a (leveled) two-outcome attribute-based encryption scheme ABE2, and a Yao garbling scheme Gb.

We let FHE.Evalf (hpk, ψ̄) denote the circuit that performs homomorphic evaluation of the function f
on the vector of ciphertexts ψ̄ := (ψ1, . . . , ψn) using the public key hpk, and we will let FHE.Evalif (hpk, ψ)
denote the predicate that computes the i-th output bit of FHE.Evalf (hpk, ψ̄). Namely,

FHE.Evalf (hpk, ψ̄) =
(
FHE.Eval1f (hpk, ψ̄), . . . ,FHE.Eval

λ
f (hpk, ψ̄)

)
,

where λ = λ(κ) =
∣∣FHE.Evalf (hpk, ψ̄)∣∣. Our main theorem then says:

Theorem 3.1. There is a (fully/selectively secure) single-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen, FE.Enc,FE.Dec) for any class of circuits C that take n bits of input and produce a
one-bit output, assuming the existence of the following primitives:

• an IND-CPA-secure C-homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Eval,
FHE.Dec);

• a (fully/selectively secure) single-key attribute-based encryption scheme ABE = (ABE.Setup,
ABE.KeyGen,ABE.Enc,ABE.Dec) for the class of predicates P = PC,FHE where

PC,FHE = {FHE.EvaliC , 1− FHE.EvaliC : C ∈ C and i ∈ {1, . . . , λ}}; and

20

353
Approved for Public Release; Distribution Unlimited.

• a Yao garbling scheme Gb = (Gb.Garble,Gb.Enc,Gb.Eval) that is input- and circuit-private.

The succinctness property of the functional encryption scheme is summarized as follows: the size of the
ciphertexts ctsizeFE(n) in the resulting scheme for n bits of input is

2 · ctsizeFHE ·
[
ctsizeABE(n · ctsizeFHE + pksizeFHE)

]
+ poly(κ, ctsizeFHE, sksizeFHE).

where ctsizeABE(k) denotes the size of the ciphertexts in the attribute-based encryption scheme for a k-bit
attribute and a poly(κ)-bit message, ctsizeFHE denotes the size of the ciphertexts in the fully homomorphic
encryption scheme for a single-bit message and pksizeFHE (resp. sksizeFHE) denotes the size of the public key
(resp. secret key) in the fully homomorphic encryption scheme.

Since garbling schemes can be constructed from one-way functions, our theorem says that we can move
from attribute-based encryption, in which the part of the input that the function computes on leaks, to a
functional encryption scheme, in which no part of the input leaks using fully homomorphic encryption and
Yao garbled circuits.

We can see that if the ciphertext size in the ABE scheme and the fully homomorphic encryption scheme
does not depend on the circuit size (and thus, those schemes are by themselves succinct), then neither will the
resulting ciphertexts of the FE scheme depend on the circuit size; namely, the reduction does not blow up the
ciphertexts and is “succinctness-preserving”. We know of both a leveled FHE scheme and a leveled ABE
scheme ([GVW13]) with ciphertext lengths independent of the size of the circuits to evaluate; the ciphertext
size in these schemes just depends on the depth of the circuits.

We note that fully homomorphic encryption schemes with succinct ciphertexts that are also independent
of depth are known, albeit under the stronger assumption of circular security of the underlying schemes. Thus,
if the result of [GVW13] can be improved to remove the depth dependency of the ciphertexts in the ABE
scheme, one automatically obtains a corresponding result for ABE using our reduction.

Our theorem needs the ABE scheme to be secure only with a single key, even though the recent
constructions [GVW13] and [SW12] can tolerate an arbitrary number of keys.

Our main theorem is thus a reduction, which has a number of useful corollaries. The first and perhaps
the most important one shows how to combine the leveled fully homomorphic encryption scheme from
[BV11a, BGV12] with the recent construction of a leveled attribute-based encryption scheme from [GVW13]
to obtain a leveled functional encryption scheme based solely on the hardness of LWE. In other words, the
corollary says that for every depth d, there is a functional encryption scheme for the class of all Boolean
circuits of (arbitrary) polynomial size and depth at most d. The size of the ciphertexts in the scheme grows
with d, and is of course independent of the size of the circuits it supports.

Let d and p be polynomial functions. Define Cn,d(n),p(n) to be the class of all Boolean circuits on n inputs
of depth at most d(n) and size at most p(n). Let Cn,d(n) :=

⋃
polynomial p Cn,d(n),p(n).

Corollary 3.2 (The LWE Instantiation). We have the following two constructions of functional encryption
based on the worst-case hardness of lattice problems:

• Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate
shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
(in polynomial time) in the worst case. Then, for every n and every polynomial d = d(n), there is
a selectively-secure (succinct single-key) functional encryption scheme for the class Cn,d(n) where
encrypting n bits produces ciphertexts of length poly(n, κ, d1/ϵ).

21

354
Approved for Public Release; Distribution Unlimited.

• Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate
shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
in time 2O(ℓϵ) in the worst case. Then, for every n and every polynomial d = d(n), there is a fully-
secure (succinct single-key) functional encryption scheme for the class Cn,d(n) where encrypting n bits
produces ciphertexts of length poly(n1/ϵ, κ, d1/ϵ

2
).

The corollary follows directly from Theorem 3.1, by invoking the leveled fully homomorphic encryption
scheme of [BV11a] (see Theorem 2.1) and the leveled attribute-based encryption scheme of [GVW13] (see
Theorem 2.4). The concrete constructions and proofs in fact go through the learning with errors (LWE)
problem; we refer to [BV11a, GVW13] for the concrete setting of parameters.

Letting universal attribute-based encryption or functional encryption denote a single attribute-based
encryption or functional encryption scheme scheme, respectively, that supports the class of all polynomial-size
circuits, we have the following corollary:

Corollary 3.3 (Universal Functional Encryption). Assuming that fully homomorphic encryption schemes exist
and universal single-key attribute-based encryption schemes exist, there is a universal single-key functional
encryption scheme.

Of the two prerequisites mentioned above, we know that fully homomorphic encryption schemes exist
(albeit under stronger assumptions than merely LWE). Thus, the corollary provides a way to immediately
translate any universal attribute-based encryption scheme into a functional encryption scheme. We point out
that universal functional encryption schemes, by definition, have succinct ciphertexts.

A recent result of Gorbunov, Vaikuntanathan and Wee [GVW12] shows how to generically convert
single-key functional encryption schemes into q-keys functional encryption schemes for any bounded q,
where the latter provide security against an attacker that can obtain secret keys of up to q functions of her
choice. The size of the ciphertexts in the q-keys scheme grows polynomially with q.

Corollary 3.4 (Many queries, using [GVW12]). For every q = q(κ), there is a (fully/selectively-secure)
q-keys succinct functional encryption scheme for any class of circuits C that take n bits of input and produce a
one-bit output, assuming the existence of primitives as in Theorem 3.1. The size of the ciphertexts ctsizeFE(n)
in the resulting scheme is q times as large as in Theorem 3.1.

Finally, a functional encryption scheme for circuits that output multiple bits can be constructed by
thinking of the circuit as many circuits each with one-bit output, and modifying the key generation procedure
to produce keys for each of them. This gives us the following corollary although we remark that more efficient
methods of achieving this directly are possible using homomorphic encryption schemes that pack multiple
bits into a single ciphertext [SV11, BGV12, GHS12a].

Corollary 3.5 (Many queries, many output bits). For every q = q(κ) and k = k(n), there is a
(fully/selectively secure) q-keys functional encryption scheme for any class of circuits C that take n bits of
input and produce k bits of output, assuming the existence of primitives as in Theorem 3.1. The size of the
ciphertexts ctsizeFE(n) in the resulting scheme is qk times as large as in Theorem 3.1.

Remark 3.6 (On the necessity of single-key security). We note that even though the work of [GVW13]
provides an attribute-based scheme that is secure even if the adversary obtains secret keys for polynomially
many functions, our theorem gives us only a single-key secure scheme. Indeed, this is inherent by the
impossibility result of [AGVW12] if we ask for (even a very weak notion of) simulation security, as we do
here. Corollary 3.4 gives us a way to get (simulation-)security with q queries for any a priori bounded q,
albeit at the expense of the ciphertext growing as a function of q.

22

355
Approved for Public Release; Distribution Unlimited.

Remark 3.7 (On composing our functional encryption scheme). One might wonder if chaining is possible
with our FE scheme. Namely, one could try to generate keys for a function f that computes another function
f1 on an input x and then outputs f1(x) together with a new encryption of x under a different public key for
the FE scheme. The new encryption of x could be used to compute a second function f2(x) and an encryption
of x under yet another public key. This chain could potentially repeat and its benefit is that it allows us to
compute multiple functions on x (and overcome the single-key property). However, this approach allows only
a very small number of iterations because, in order to produce one bit of output from FE.Dec, the ciphertexts
output by FE.Enc are polynomial in κ. To obtain an FE ciphertext as result of FE.Dec, one needs to have
started with ciphertexts of size quadratic in the first polynomial. If we want to chain the scheme q times, the
original ciphertext must have been exponential in q.

3.1 Construction

For simplicity, we construct FE for functions outputting one bit; functions with larger outputs can be handled
by repeating our scheme below for every output bit.

From Claim 2.5, the existence of a secure single-key ABE scheme implies the existence of a two-outcome
single-key ABE scheme, which we denote ABE2. Let λ = λ(κ) be the length of the ciphertexts in the FHE
scheme (both from encryption and evaluation). The construction of FE = (FE.Setup, FE.KeyGen, FE.Enc,
FE.Dec) proceeds as follows.
Setup FE.Setup(1κ): Run the setup algorithm for the two-outcome ABE scheme λ times:

(fmpki, fmski)← ABE2.Setup(1
κ) for i ∈ [λ].

Output as master public key and secret key:

MPK = (fmpk1, . . . , fmpkλ) and MSK = (fmsk1, . . . , fmskλ).

Key Generation FE.KeyGen(MSK, f): Let n be the number of bits in the input to the circuit f . If hpk is
an FHE public key and ψ1, . . . , ψn are FHE ciphertexts, recall that FHE.Evalif (hpk, ψ1, . . . , ψn) is the i-th
bit of the homomorphic evaluation of f on ψ1, . . . , ψn (FHE.Eval(hpk, f, ψ1, . . . , ψn)), where i ∈ [λ]. Thus,
FHE.Evalif : {0, 1}|hpk| × {0, 1}nλ → {0, 1}.

1. Run the key generation algorithm of ABE2 for the functions FHE.Evalif (under the different master
secret keys) to construct secret keys:

fski ← ABE2.KeyGen(fmski,FHE.Eval
i
f) for i ∈ [λ].

2. Output the tuple fskf := (fsk1, . . . , fskλ) as the secret key for the function f .

Encryption FE.Enc(MPK, x): Let n be the number of bits of x, namely x = x1 . . . xn. Encryption proceeds
in three steps.

1. Generate a fresh key pair (hpk, hsk) ← FHE.KeyGen(1κ) for the (leveled) fully homomorphic
encryption scheme. Encrypt each bit of x homomorphically: ψi ← FHE.Enc(hpk, xi). Let ψ :=
(ψ1, . . . , ψn) be the encryption of the input x.

23

356
Approved for Public Release; Distribution Unlimited.

2. Run the Yao garbled circuit generation algorithm to produce a garbled circuit for the FHE decryption
algorithm FHE.Dec(hsk, ·) : {0, 1}λ → {0, 1} together with 2λ labels Lb

i for i ∈ [λ] and b ∈ {0, 1}.
Namely, (

Γ, {L0
i , L

1
i }λi=1

)
← Gb.Garble(1κ,FHE.Dec(hsk, ·)),

where Γ is the garbled circuit and the Lb
i are the input labels.

3. Produce encryptions c1, . . . , cλ using the ABE2 scheme:

ci ← ABE2.Enc
(
fmpki, (hpk, ψ), L

0
i , L

1
i

)
for i ∈ [λ],

where (hpk, ψ) comes from the first step, and the labels (L0
i , L

1
i) come from the second step.

4. Output the ciphertext c = (c1, . . . , cλ,Γ).

Decryption FE.Dec(fskf , c):

1. Run the ABE2 decryption algorithm on the ciphertexts c1, . . . , cλ to recover the labels for the garbled
circuit. In particular, let

Ldi
i ← ABE2.Dec(fski, ci) for i ∈ [λ],

where di is equal to FHE.Evalif (hpk, ψ).

2. Now, armed with the garbled circuit Γ and the labels Ldi
i , run the garbled circuit evaluation algorithm

to compute
Gb.Eval(Γ, Ld1

1 , . . . , L
dλ
λ) = FHE.Dec(hsk, d1d2 . . . dλ) = f(x).

3.2 Proof

We now proceed to prove Theorem 3.1 by proving that the theorem holds for our construction above.

Proof of Theorem 3.1. We first argue correctness.

Claim 3.8. The above scheme is a correct functional encryption scheme (Def. 2.12).

Proof. Let us examine the values we obtain in FE.Dec(fskf , c1, . . . , cλ,Γ). In Step (1), by the correctness of
the ABE2 scheme used, di is the i-th bit of FHE.Evalf (hpk, ψ).

Therefore, the inputs to the garbled circuit Γ in Step (2) are the labels corresponding to FHE.Evalf (hpk, ψ).
By the correctness of the FHE scheme, decrypting FHE.Evalf (hpk, ψ) results in f(x). Finally, by the
correctness of the garbling scheme, the FHE ciphertext gets decrypted correctly, yielding f(x) as the output
of FE.Dec.

We now prove the succinctness property which follows directly from our construction. The output of
FE.Enc consists of λ ABE2 ciphertexts and a garbled circuit. First, λ equals ctsizeFHE. Second, each ABE2

ciphertext consists of two ABE ciphertexts generated by ABE.Enc on input nctsizeFHE + pksizeFHE bits. The
labels of the garbled circuit are poly(κ) in size. Third, the garbled circuit is the output of Gb.Garble so its
size is polynomial in the size of the input circuit, which in turn is polynomial in sksizeFHE and ctsizeFHE.
Therefore, overall, we obtain 2ctsizeFHE·ctsizeABE(n ctsizeFHE+pksizeFHE)+poly(κ, sksizeFHE, ctsizeFHE).

24

357
Approved for Public Release; Distribution Unlimited.

We can thus see that if FHE and ABE produce ciphertexts independent of the circuit size, then so will our
functional encryption scheme.

We focus on the full security case: namely, assuming ABE2 is fully secure, we show that the resulting FE
scheme is fully secure. We then discuss the proof for the selective case.

For full security, we construct a p.p.t. simulator S that achieves Def. 2.13. S receives as input
(MPK, fskf , f, f(x), 1

n) and must output c̃ such that the real and ideal experiments in Def. 2.13 are
computationally indistinguishable. Intuitively, S runs a modified version of FE.Enc to mask the fact that it
does not know x.
Simulator S on input (MPK, fskf , f, f(x), 1

n):

1. Choose a key pair (hpk, hsk)← FHE.KeyGen(1κ) for the homomorphic encryption scheme (where S
can derive the security parameter κ from the sizes of the inputs it gets). Encrypt 0n (n zero bits) with
FHE by encrypting each bit individually and denote the ciphertext 0̂ := (0̂1 ← FHE.Enc(hpk, 0),. . .,
0̂n ← FHE.Enc(hpk, 0)).

2. Let SimGarble be the simulator for the Yao garbling scheme (described in Def. 2.7) for the class of
circuits corresponding to FHE.Dec(hsk, ·). Run SimGarble to produce a simulated garbled circuit Γ̃
for the FHE decryption algorithm FHE.Dec(hsk, ·) : {0, 1}λ → {0, 1} together with the simulated
encoding consisting of one set of λ labels L̃i for i = 1 . . . λ. Namely,(

Γ̃, {L̃i}λi=1

)
← SimGarble(1

κ, f(x), 1|FHE.Dec(hsk,·)|, 1λ).

The simulator S can invoke SimGarble because it knows f(x), and can compute the size of the
FHE.Dec(hsk, ·) circuit, and λ from the sizes of the input parameters.

3. Produce encryptions c̃1, . . . , c̃λ under the ABE2 scheme in the following way. Let

c̃i ← ABE2.Enc
(
fmpki, (hpk, 0̂), L̃i, L̃i

)
,

where S uses each simulated label L̃i twice.

4. Output c̃ = (c̃1, . . . , c̃λ, Γ̃).

To prove indistinguishability of the real and ideal experiments (Def. 2.13), we define a sequence of hybrid
experiments, and then invoke the security definitions of the underlying schemes (FHE, garbled circuit, and
ABE2 respectively) to show that the outcome of the hybrid experiments are computationally indistinguishable.
Hybrid 0 is the output of the ideal experiment from Def. 2.13 for our FE construction with simulator S. We
denote it ExpH0

FE,A (= ExpidealFE,A,S).
Hybrid 1 (ExpH1

FE,A) is the same as Hybrid 0, except that the simulated ciphertext for Hybrid 1 (which we
denote c̃(1)), changes. Let c̃(1) be the ciphertext obtained by running the algorithm of S, except that in Step (3),
encrypt x instead of 0, namely:

c̃
(1)
i ← ABE2.Enc

(
fmpki, (hpk, ψ), L̃i, L̃i

)
,

where ψ ← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)). Let

c̃(1) = (c̃
(1)
1 , . . . , c̃

(1)
λ , Γ̃).

25

358
Approved for Public Release; Distribution Unlimited.

Hybrid 2 (ExpH2
FE,A) is the same as Hybrid 1, except that in Step (2), the ciphertext contains a real garbled

circuit (
Γ, {L0

i , L
1
i }λi=1

)
← Gb.Garble(FHE.Dec(hsk, ·)).

Let di = FHE.Evalif (hpk, ψ). In Step (3), include Ldi twice in the ABE encryption; namely:

c̃
(2)
i ← ABE2.Enc

(
fmpki, (hpk, ψ), L

di
i , L

di
i

)
, and

c̃(2) = (c̃
(2)
1 , . . . , c̃

(2)
λ ,Γ).

Hybrid 3 (ExpH3
FE,A) is the output of the real experiment from Def. 2.13 for our FE construction.

We prove each pair of consecutive hybrids to be computationally indistinguishable in the following three
lemmas, Lemmas 3.9, 3.10, and 3.11.

Lemma 3.9. Assuming FHE is IND-CPA–secure, Hybrid 0 and Hybrid 1 are computationally indistinguish-
able.

Proof. We proceed by contradiction. We assume that there exist p.p.t. adversaries A = (A1, A2) and a p.p.t.
distinguisher D such that D (with A) can distinguish between Hybrid 0 and Hybrid 1 above. Namely, there
exists a polynomial p(·) such that, for infinitely many κ,

|Pr[D(ExpH0
FE,A(1

κ)) = 1]− Pr[D(ExpH1
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (1)

We construct a p.p.t. adversary R = (R1, R2) that can break the semantic security of FHE. Adversary R1

outputs an n-bit value x for some n, and adversary R2 receives as input either homomorphic encryption of
x or of 0n, and it will distinguish between these two. Distinguishing successfully implies that there is an
adversary that can distinguish successfully in Def. 2.5, by a standard hybrid argument.

To determine x, adversary R1 works as follows:

1. Run ExpidealFE,A,S(1
κ) (Def. 2.13) from Step (1) to Step (4) and let x be the output of A2 in Step (4).

2. Output x.

To distinguish between encryption of x or 0n, adversary R2 receives input hpk∗, the FHE public key, and
an encryption E∗ of x or 0n and works as follows:

1. Run a modified algorithm of S by using hpk∗ instead of generating fresh FHE keys and using E∗

instead of encrypting 0n. Namely:

(a) Generate
(
Γ̃, {L̃i}λi=1

)
as in Step (2) of S.

(b) Output c∗ = (c∗1, . . . , c
∗
λ) for c∗i = ABE2.Enc(fmpki, ((hpk

∗, E∗), L̃i, L̃i)).

2. Feed (c∗, Γ̃) to D and output the decision of D.

Notice that if E∗ is encryption of 0n, R2 simulates Hybrid 0 perfectly; when E∗ is encryption of x, R2

simulates Hybrid 1 perfectly. Therefore, D must have a probability of distinguishing between the two cases of

26

359
Approved for Public Release; Distribution Unlimited.

at least 1/p(κ) (Eq. (1)); moreover, whenever D distinguishes correctly, R also outputs the correct decision.
Therefore:

|Pr[x← R1(1
κ); (hsk∗, hpk∗)← FHE.KeyGen(1κ) : R2(hpk

∗,FHE.Enc(hpk∗, x)) = 1]−
Pr[(hsk∗, hpk∗)← FHE.KeyGen(1κ) : R2(hpk

∗,FHE.Enc(hpk∗, 0n)) = 1]| =
|Pr[D(ExpH0

FE,A(1
κ)) = 1]− Pr[D(ExpH1

FE,A(1
κ)) = 1]| ≥ 1/p(κ),

which contradicts the IND-CPA security of the FHE scheme.

Lemma 3.10. Assuming the garbled circuit is circuit- and input-private (Def. 2.7), Hybrid 1 and Hybrid 2
are computationally indistinguishable.

Proof. We proceed by contradiction. Assume there exist p.p.t. adversaries A = (A1, A2) and a p.p.t.
distinguisher D such that D (with A) can distinguish Hybrid 1 and Hybrid 2 above. Namely, there exists a
polynomial p such that, for infinitely many κ,

|Pr[D(ExpH1
FE,A(1

κ)) = 1]− Pr[D(ExpH2
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (2)

We construct a stateful p.p.t. adversary R = (R.A,R.D) that can break the security of the garbling
scheme from Def. 2.7. The adversary R.A has to provide a circuit G and an input I and then R.D needs to
distinguish between the simulated and the real garbled circuits and input encodings.

The adversary R.A computes I and G as follows.

1. Run Steps (1)–(4) from Def. 2.13, which are the same in Hybrid 1 and Hybrid 2 and obtain f from A1

and x from A2.

2. Generate (hsk, hpk)← FHE.KeyGen(1κ) and let ψ ← FHE.Enc(hpk, x).

3. Output G(·) := FHE.Dec(hsk, ·) and I := FHE.Evalf (hpk, ψ) and the following state for R.D:
α = (ψ, fmpki, hpk).

The adversary R.D receives as input a garbled circuit Γ∗ and a set of labels, one for each i: {L∗
i }λi=1.

These could be outputs of either SimGarble or of Gb.Garble/Gb.Enc and R.D decides which is an output of
as follows:

1. Compute c∗ =
(
{ABE2.Enc(fmpki, ((hpk, ψ), L

∗
i , L

∗
i))}λi=1,Γ

∗).
2. Run D on c∗ and output what D outputs.

Notice that if (Γ∗, {L∗
i }λi=1) are outputs of SimGarble,R simulates Hybrid 1 perfectly; when (Γ∗, {L∗

i }λi=1)
are outputs of the real garbling scheme, R simulates Hybrid 2 perfectly. Therefore, the probability that D
distinguishes between the two cases at least is 1/p(κ) (Eq. (2)); moreover, wheneverD distinguishes correctly,
R also outputs the correct decision. Therefore:

|Pr[(G, I)← R.A(1κ) : R.D(Γ̃, {L̃i}λi=1) = 1]− Pr[(G, I)← R.A(1κ) : R.D(Γ, {Li}λi=1) = 1]| =
|Pr[D(ExpH1

FE,A(1
κ)) = 1]− Pr[D(ExpH2

FE,A(1
κ)) = 1]| ≥ 1/p(κ),

where, (Γ̃, {L̃i}λi=1) are outputs of SimGarble and (Γ, {Li}λi=1) are outputs of Gb.Garble/Gb.Enc. This relation
contradicts the security of the garbling scheme Def. 2.7.

27

360
Approved for Public Release; Distribution Unlimited.

Lemma 3.11. Assuming the underlying ABE2 scheme is fully secure, Hybrid 2 and Hybrid 3 in the fully
secure setting above are computationally indistinguishable.

Proof. In Hybrid 2 and Hybrid 3, there are λ ABE2 encryptions, each with a pair of independent ABE2 keys.
First, we would like to prove that if Hybrid 2 and Hybrid 3 are computationally indistinguishable with only
one of these encryptions, then they are computationally indistinguishable with λ encryptions. This would
enable us to focus on only one ABE2 ciphertext for the proof.

The argument proceeds in a standard way with a set of sub-hybrids, one for each index i = 0 . . . λ. The
argument is straightforward because c̃i and c̃j (for i ̸= j) use independently generated keys and the values
encrypted with these keys are known to R. Hence, we present the hybrid argument briefly. Sub-hybrid 0
corresponds to Hybrid 2 and sub-hybrid λ corresponds to Hybrid 3. Sub-hybrid i has the first i ciphertexts as
in Hybrid 2 and the rest λ− i as in Hybrid 3.

If an adversary A can distinguish between sub-hybrids i− 1 and i, for some i, then he can distinguish
Hybrid 2 and Hybrid 3 for only one pair of ciphertexts (c2i , c

3
i); the reason is that we can build an adversary

B: B places the challenge ciphertext in slot i of the challenge to A and produces the ciphertexts for all other
slots j ̸= i with the correct distribution; B can do so because these ciphertexts are encrypted with fresh ABE2

keys and B has all the information it needs to generate them correctly.
Now we are left to prove that Hybrid 2 and Hybrid 3 are indistinguishable when there is only one

ciphertext, say the ℓ-th ciphertext. Namely, we need to prove that:{
(state′A, c̃

(2)
ℓ)← ExpH2

FE,A(1
κ)

}
c
≈

{
(state′A, c̃

(3)
ℓ)← ExpH3

FE,A(1
κ)

}
. (3)

We prove this statement by contradiction. Assume there exist p.p.t. adversaries A = (A1, A2) and
distinguisher D that can distinguish the distributions in (3); namely, there exists a polynomial p(·) such that,
for infinitely many κ,

|Pr[D(ExpH2
FE,A(1

κ)) = 1]− Pr[D(ExpH3
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (4)

We construct a p.p.t. adversary R = (R1, R2, R3) that breaks the security of ABE2 from Def. 2.11. R1,
R2 and R3 send state to each other as in Def. 2.11, but for simplicity we will not denote this explicitly. R3

aims to guess b in this definition.
Intuition. A and D can distinguish between Hybrid 2 and Hybrid 3. The only difference between these
hybrids is that c̃ℓ contains encryption of (Ldℓ

ℓ , L
dℓ
ℓ) versus (Ldℓ

ℓ , L
1−dℓ
ℓ). However, the ABE2 scheme does not

decrypt L1−dℓ
ℓ by the definition of dℓ, so its security hides the value of L1−dℓ

ℓ . Since A and D can distinguish
between these hybrids, they must be breaking the security of ABE2. Therefore, R will use Lℓ

ℓ and L1−ℓ
ℓ as

part of its answers to C and then use D to distinguish its challenge.
Specifically, the adversary R1 receives as input fmpk∗ in Step 2 of Def. 2.11 and computes P as follows:

1. Interact with adversary A1 by running Steps (1)–(2) from Defs. 2.13 as follows.

(a) Let fmpkℓ := fmpk∗. Generate the rest of ABE2 keys using the ABE2.Setup algorithm:
(fmpki, fmski)← ABE2.Setup(1

κ) for i ̸= ℓ.

(b) Receive f from A1 and output P := FHE.Evalℓf .

Adversary R2 receives sk∗P in Step 4 of Def. 2.11 and computes M,M0,M1, xc as follows:

28

361
Approved for Public Release; Distribution Unlimited.

1. Continue interaction withA2. To provide fskf toA2, compute fski ← ABE2.KeyGen(fmski,FHE.Eval
i
f)

for i ̸= ℓ, and let fskℓ := sk∗P .

2. Receive x from A2.

3. Run the real garbled circuit generation as in Hybrid 2 and 3. Let Ldℓ
ℓ be defined as in Hybrid 2. Provide

M := Ldℓ
ℓ , M0 := Ldℓ

ℓ and M1 := L1−dℓ
ℓ .

4. Let xc := (hpk, ψ) where ψ ← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)), the bitwise FHE
encryption of x.

5. Output (M,M0,M1, xc).

Adversary R3 receives as input a challenge ciphertext c∗ and decides if it corresponds to M0 or to M1 as
follows:

1. Let c̃ℓ := c∗ and provide (state′A, c̃ℓ) to D.

2. Output D’s guess.

In order for D to distinguish (as in Eq. (4)), the input distribution to A must be the one from Hybrid 2 or
3. We can see that this is the case: if b = 0, R simulates Hybrid 2 perfectly, and if b = 1, R simulates Hybrid
3 perfectly. Moreover, whenever D distinguishes correctly, R also outputs the correct decision. Therefore, by
a simple calculation, we can see that

Pr[ExpABE2,R(1
κ) = 1] ≥ 1/2 + 1/2p(κ),

which contradicts the security of the ABE2 scheme, Def. 2.11.

Returning to the proof of our theorem, by transitivity of computational indistinguishability, we showed
that Hybrid 0 (the ideal experiment) is equivalent to Hybrid 3 (the real experiment), thus concluding our
proof.
Selective security. The proof for the selective case follows similarly. The simulator S and the four hybrids
are the same. Lemmas 3.9 and 3.10 proceed similarly, except that R now interacts with A as in the selective
FE definition Def. 2.14 rather than Def. 2.13. The argument of Lemma 3.11 is the same, except that the
order of some operations changes. This lemma makes the resulting FE scheme selective if one starts from a
selective ABE2 scheme.

4 Reusable Garbled Circuits

In this section, we show how to construct garbled circuits that can be reused; namely, a garbled circuit that
can run on an arbitrary number of encoded inputs without compromising the privacy of the circuit or of the
input. For this goal, we build on top of our functional encryption scheme.

The syntax and correctness of the reusable garbling schemes remains the same as the one for one-time
garbling schemes (Def. 2.6). In Sec. 2.4, we provided the one-time security definition for circuit and input
privacy, Def. 2.7. We begin by defining security for more than one-time usage.

29

362
Approved for Public Release; Distribution Unlimited.

Definition 4.1 (Input and circuit privacy with reusability). Let RGb be a garbling scheme for a family of
circuits C =

{
Cn

}
n∈N. For a pair of p.p.t. algorithms A = (A1, A2) and a p.p.t. simulator S = (S1, S2),

consider the following two experiments:

ExprealRGb,A(1
κ): ExpidealRGb,A,S(1

κ):

1: (C, stateA)← A1(1
κ)

2: (gsk,Γ)← RGb.Garble(1κ, C)

3: α← A
RGb.Enc(gsk,·)
2 (C,Γ, stateA)

4: Output α

1: (C, stateA)← A1(1
κ)

2: (Γ̃, stateS)← S1(1
κ, 1|C|)

3: α← A
O(·,C)[[stateS]]
2 (C, Γ̃, stateA)

4: Output α

In the above, O(·, C)[[stateS]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and
the latest state of S; it returns the output of S2 (storing the new simulator state for the next invocation).

We say that the garbling scheme RGb is input- and circuit-private with reusability if there exists a p.p.t.
simulator S such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions are
computationally indistinguishable:{

ExprealRGb,A(1
κ)

}
κ∈N

c
≈

{
ExpidealRGb,A,S(1

κ)

}
κ∈N

.

We can see that this security definition enables reusability of the garbled circuit: A2 is allowed to make
as many queries for input encodings as it wants.

From now on, by reusable garbling scheme, we will implicitly refer to a garbling scheme that has input
and circuit privacy with reusability as in the definition above, Def. 4.1.

Remark 4.1. We can provide an alternate syntax for a reusable garbling scheme, and we can also construct
a scheme with this syntax (and a similar security definition) from our functional encryption scheme. This
syntax has an additional setup algorithm (separate from the garble algorithm) that produces the secret key
necessary for encoding and for circuit garbling; such a syntax would allow the garbled circuit to be generated
after the encodings.

Remark 4.2. We do not provide a definition of authenticity because it is a straightforward extension of our
scheme and is already achieved by [GVW13]. We focus on circuit and input privacy, which have not been
achieved by previous work.

Recall the class of circuits Cn,d(n) defined for Corollary 3.2.

Theorem 4.3. There exists a polynomial p, such that for every depth d = d(n) function of the input size n,
there is a reusable garbling scheme for any class of boolean circuits {Cn,d}n∈N, assuming there is a fully
secure single-key functional encryption scheme for any class of boolean circuits {Cn,p(d)}n∈N.

Corollary 4.4 (The LWE Instantiation). For every integer n ∈ N, polynomial function d = d(n), there is a
reusable garbling scheme for the class Cn,d(n), under the following assumption: there is a constant 0 < ϵ < 1
such that for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is
hard to approximate to within a 2O(ℓϵ) factor in time 2O(ℓϵ) in the worst case.

The proof of this corollary follows from Theorem 4.3 when instantiating the functional encryption scheme
with the one from Corollary 3.2.

Denote by universal reusable garbling scheme, a reusable garbling scheme for the class of all polynomial-
sized circuits. Then, the following corollary follows directly from Theorem 4.3:

30

363
Approved for Public Release; Distribution Unlimited.

Corollary 4.5 (Universal reusable garbled circuits). If there is a universal single-key fully secure functional
encryption scheme, there is a universal reusable garbling scheme.

Notice that our functional encryption tool (FE) already gives reusable garbled circuits with input privacy
but no circuit privacy: the garbling of C is FE.KeyGen(fmsk, C), whereas the encoding of the input x is
FE.Enc(fmpk, x). The fact that our scheme is single-key does not pose a limitation because the single-key
corresponds to the circuit to garble (and any input encoding need only work with one garbled circuit). Since
the single-key for one function works with an arbitrary number of encrypted inputs, the resulting garbled
circuit is reusable.

However, the problem is that FE does not hide the circuit C, which is a required property of garbling
schemes. The insight in achieving circuit privacy is to use the input-hiding property of the FE scheme to hide
the circuit as well. The first idea that comes to mind is to hide C by including it in the ciphertext together
with the input x. Specifically, instead of providing a key for circuit C, the encryptor runs FE.KeyGen on a
universal circuit U that on input (C, x) computes C(x). Notice that U can be public because it carries no
information about C other than its size. Now the encryption of x consists of an encryption of (C, x) using
FE.Enc. In this way, we can see that the resulting garbled circuit satisfies the correctness property. Moreover,
for security, FE hides the input (C, x) so it would hide the circuit C as well.

Nevertheless, this approach is not useful because the encoding is as large as the circuit C (in particular,
RGb.Enc no longer satisfies the efficiency property in Def. 2.6). Moreover, in this case, the standard one-time
garbling schemes would be enough because one could produce a fresh garbled circuit with each ciphertext.

To overcome this problem, the idea is to provide, together with the ciphertext of x, the ability to decrypt C
rather than the entire description ofC. Specifically, letE be the encryption of the circuitC with a semantically
secure symmetric encryption scheme under a secret key sk. The garbling of C consists of running the key
generation FE.KeyGen on a circuit UE that includes E and works as follows. On input (x, sk) the circuit UE

decrypts E to obtain C, and outputs the result of running C on x. Even though FE.KeyGen(fmsk, UE) does
not hide UE , the description of UE does not leak C because C is encrypted. An encoding by RGb.Enc of x
thus consists of running the encryption algorithm FE.Enc on (x, sk).

4.1 Construction

We construct a reusable garbling scheme RGb = (RGb.Garble, RGb.Enc, RGb.Eval) as follows. Let E =
(E.KeyGen, E.Enc, E.Dec) be a semantically secure symmetric-key encryption scheme.
Garbling RGb.Garble(1κ, C):

1. Generate FE keys (fmpk, fmsk)← FE.Setup(1κ) and a secret key sk← E.KeyGen(1κ).

2. Let E := E.Enc(sk, C).

3. Define UE to be the following universal circuit:

UE takes as input a secret key sk and a
value x:

(a) Compute C := E.Dec(sk, E).

(b) Run C on x.

4. Let Γ← FE.KeyGen(fmsk, UE) be the reusable garbled circuit.

31

364
Approved for Public Release; Distribution Unlimited.

5. Output gsk := (fmpk, sk) as the secret key and Γ as the garbling of C.

Encoding RGb.Enc(gsk, x): Compute cx← FE.Enc(fmpk, (sk, x)) and output cx.
Evaluation RGb.Eval(Γ, cx): Compute and output FE.Dec(Γ, cx).

The existence of a semantically secure encryption scheme does not introduce new assumptions because
the FE scheme itself is a semantically secure encryption scheme if no key (computed by FE.KeyGen) is ever
provided to an adversary.
Tightness of the scheme. The astute reader may have observed that the resulting scheme requires that the
encodings be generated in the secret key setting because the encoding of x includes sk. It turns out that
generating encodings privately is in fact necessary; if the encodings were publicly generated, the power of the
adversary would be the same as in traditional obfuscation, which was shown impossible [BGI+01, GK05]
(see discussion in Sec. 1.1.2).

One might wonder though, whether a reusable garbling scheme exists where the encoding generation
is secret key, but RGb.Garble is public key. We prove in Sec. 4.3 that this is also not possible based on the
impossibility result of [AGVW12]; hence, with regard to public versus private key, our reusable garbling
result is tight.

4.2 Proof

Proof of Theorem 4.3. We first argue the scheme satisfies the correctness and efficiency properties in Def. 2.6.

Claim 4.6. The above scheme RGb is a correct and efficient garbling scheme.

Proof. We can easily see correctness of RGb.Eval:

RGb.Eval(Γ, cx) = FE.Dec(Γ, cx) (by the definition of RGb.Eval)

= UE(sk, x) (by the correctness of FE)

= C(x) (by the definition of UE).

The efficiency of RGb depends on the efficiency of the FE.Enc algorithm and the length of gsk depends on the
FE.Setup. If the runtime of FE.Enc does not depend on the class of circuits to be computed at all, the same
holds for RGb.Enc’s efficiency. If FE.Enc and FE.Setup depend on the depth of the circuits to be computed,
as is the case in our LWE instantiation, RGb.Enc’s runtime and |gsk| also depend on the depth of the circuits,
but still remain independent of the size of the circuits, which could potentially be much larger.

We can see that to obtain a RGb scheme for circuits of depth d, we need a FE scheme for polynomially
deeper circuits: the overhead comes from the fact that U is universal and it also needs to perform decryption
of E to obtain C.

To prove security, we need to construct a simulator S = (S1, S2) satisfying Def. 4.1, assuming there is a
simulator SimFE that satisfies Def. 2.13.

To produce a simulated garbled circuit Γ̃, S1 on input (1κ, 1|C|) runs:

1. Generate fresh fmpk, fmsk, and sk as in RGb.Garble.

2. Compute Ẽ := E.Enc(sk, 0|C|). (The reason for encrypting 0|C| is that S1 does not know C).

3. Compute and output Γ̃← FE.KeyGen(fmsk, UẼ).

32

365
Approved for Public Release; Distribution Unlimited.

S2 receives queries for values x1, . . . , xt ∈ {0, 1}∗ for some t and needs to output a simulated encoding
for each of these. To produce a simulated encoding for xi, S2 receives inputs (C(xi), 1|xi|, and the latest
simulator’s state) and invokes the simulator SimFE of the FE scheme and outputs

c̃x := SimFE(fmpk, fskUẼ
, UẼ , C(x), 1

|sk|+|xi|).

A potentially alarming aspect of this simulation is that S generates a key for the circuit 0|C|. Whatever
circuit 0|C| may represent, it may happen that there is no input x to 0|C| that results in the value C(x). The
concern may then be that SimFE may not simulate correctly. However, this is not a problem because, by
semantic security, E and Ẽ are computationally indistinguishable so SimFE must work correctly, otherwise it
breaks semantic security of the encryption scheme E.

We now prove formally that the simulation satisfies Def. 4.1 for any adversary A = (A1, A2).
Let us assume that the α output of A2 is its view, namely, all the information A2 receives in the
protocol, (C, stateA,Γ, {xi, cxi}ti=1). If the outcome of the real and ideal experiments are computationally
indistinguishable in this case, then they are computationally indistinguishable for any other output strategy of
A2 because D can always run A2 on its view since A2 is p.p.t.. Therefore, we would like to show that:{

(C, stateA,Γ, {xi, cxi}ti=1)← ExprealRGb,A(1
κ)

}
κ

c
≈{

(C, stateA, Γ̃, {xi, c̃xi}ti=1)← ExpidealRGb,A,S(1
κ)

}
κ

.

Game 0: The ideal game of Def. 4.1 with simulator S; we recall that the output distribution in this case is(
C, stateA,FE.KeyGen(fmsk, UẼ), {xi,SimFE(fmpk, fskUẼ

, UẼ , C(xi), 1
|xi|+|sk|)}ti=1

)
.

Game 1: The same as Game 0, but Ẽ is replaced with E = E.Enc(sk, C). That is, the output distribution is(
C, stateA,Γ, {xi, SimFE(fmpk, fskUE

, UE , C(xi), 1
|xi|+|sk|)}ti=1

)
.

Game 2: The real game with our construction for RGb. It consists of the output distribution(
C, stateA,Γ, {xi, cxi}ti=1

)
.

First, let us argue that the distributions output by Game 0 and Game 1 are computationally
indistinguishable. Note that these two distributions differ only in E and Ẽ. Since these distributions do not
contain sk or any other function of sk other than E/Ẽ, by semantic security of the encryption scheme, we
can show these two distributions are computationally indistinguishable. Finally, Lemma 4.7 proves that the
outputs of Game 1 and Game 2 are also computationally indistinguishable, which concludes our proof.

Lemma 4.7. Assuming FE is FULL-SIM-secure, the outputs of Game 1 and Game 2 are computationally
indistinguishable.

Proof. The proof of the lemma is by contradiction. We assume there exist p.p.t. adversaries A = (A1, A2)
and p.p.t. distinguisher D such that D with A can distinguish Game 1 and Game 2. Namely, there exists a
polynomial p(·) such that, for infinitely many κ,

|Pr[D(ExpGame1
FE,A (1κ)) = 1]− Pr[D(ExpGame2

FE,A (1κ)) = 1]| ≥ 1/p(κ). (5)

33

366
Approved for Public Release; Distribution Unlimited.

We construct adversaries that break the full security of the functional encryption scheme Def. 2.13. We
call these adversaries AFE = (AFE

1 , AFE
2) and DFE using the “FE” superscript to differentiate them from

the adversaries distinguishing Game 1 and 2. In fact, we construct adversaries AFE and DFE that break a
modified version of Def. 2.13: the modification is that AFE can repeat Steps (4–5) as many times as it wishes
and adaptively; more precisely, for the i-th repetition of Steps (4–5), AFE

2 can ask for an encryption of an
input xi where xi could be determined based on the previous values and encryptions of x1, . . . , xi−1; AFE

2

receives either a real encryption or a simulated encryption as in Step (5), but either all encryptions are real or
all are simulated. We can see that if AFE and DFE break this modified definition, then they must break the
original definition (with a polynomially smaller advantage): this implication follows from a standard hybrid
argument possible because the encryption of xi is public key.

On input fmpk, adversary AFE
1 works as follows:

1. Run A1 on input 1κ and obtain C and stateA.

2. Choose sk← E.KeyGen(1κ), encrypt E ← E.Enc(sk, C), and let UE be the circuit described above.

3. Output function UE and stateFEA := (sk, UE , stateA).

On input (fskUE
, stateFEA), adversary AFE

2 works as follows:

1. Let Γ := fskUE
.

2. Run A2 on UE , Γ and stateA by answering to its oracle queries as follows.

(a) Consider the i-th oracle query (xi, stateA). Output (xi, sk).

(b) Receive as input CTi which is either the real ciphertext ci ← FE.Enc(fmpk, (xi, sk)) or
the simulated ciphertext c̃i ← SimFE(fmpk,Γ, UE , C(xi), 1

|xi|+|sk|). Respond to A2 with
(CTi, stateA).

(c) Repeat these steps until A2 finishes querying for encodings, and outputs α.

3. Output α.

Adversary DFE is the same as D.
When the encodings CTi are the ideal ciphertexts, we can see that (AFE

1 , AFE
2) simulate perfectly Game

1; hence
Pr[DFE(ExpidealFE,AFE(1

κ)) = 1] = Pr[D(ExpGame 1
FE,A (1κ)) = 1].

When the encodings CTi are the real ciphertexts, (AFE
1 , AFE

2) simulate perfectly Game 2 and thus

Pr[DFE(ExprealFE,AFE(1
κ)) = 1] = Pr[D(ExpGame 2

FE,A (1κ)) = 1].

By Eq. (5), we have

|Pr[DFE(ExpidealFE,AFE(1
κ)) = 1]− Pr[DFE(ExprealFE,AFE(1

κ)) = 1]| ≥ 1/p(κ),

which contradicts FULL-SIM-security of FE.

Having proved that Game 0 and Game 1 are computationally indistinguishable, and that Game 1 and
Game 2 are computationally indistinguishable, we conclude that Game 0 and Game 2 are computationally
indistinguishable, and therefore that garbling scheme RGb is input- and circuit-private with reusability.

34

367
Approved for Public Release; Distribution Unlimited.

4.3 Impossibility of Public-Key Reusable Garbled Circuits

In this section, we show that a public-key reusable garbling scheme is impossible. Our argument is at a high
level because it follows from existing results straightforwardly.

A public-key reusable garbling scheme would have the following syntax:

Definition 4.2 (Public-key garbling scheme). A public-key garbling scheme PubGb for the class of circuits
{Cn}n∈N, with Cn a set of boolean circuits taking n bits as input, is a tuple of p.p.t. algorithms (PubGb.Setup,
PubGb.Garble, PubGb.Enc, PubGb.Eval) such that

• PubGb.Setup(1κ): Takes as input the security parameter 1κ and outputs a secret key gsk and a public
key gpk.

• PubGb.Garble(gpk, C): Takes as input a public key gpk and a circuit C, and outputs the garbled
circuit Γ of the circuit C.

• PubGb.Enc(gsk, x): Takes as input the secret key gsk and an input x, and outputs an encoding cx.

• PubGb.Eval(Γ, cx): Takes as input a garbled circuit Γ and an encoding cx and outputs a value y.

Correctness. For all polynomials n(·), for all sufficiently large security parameters κ, for n = n(κ), for all
circuits C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[(gsk, gpk)← PubGb.Setup(1κ); Γ← PubGb.Garble(gpk, C); cx ← PubGb.Enc(gsk, x) :

PubGb.Eval(Γ, cx) = C(x)] = 1− negl(κ).

The natural security definition of circuit-private definition of this new scheme is similar in flavor to
Def. 2.13, but we do not elaborate. (In fact, this definition can be relaxed to not require input privacy for the
impossibility result to still hold.)

The first step in the impossibility argument is to note that the syntax and correctness of a public-
key garbling scheme is the same as the syntax of a functional encryption scheme (Def. 2.12) with the
following correspondence of algorithms: PubGb.Setup corresponds to FE.Setup, PubGb.Garble corresponds
to the encryption algorithm FE.Enc, PubGb.Enc corresponds to FE.KeyGen and PubGb.Eval corresponds
to FE.Dec. Note that PubGb.Enc does not correspond to FE.Enc but to FE.KeyGen because PubGb.Enc is
a secret key algorithm and FE.Enc is a public-key algorithm. Therefore, an encoding of an input x in the
reusable garbling scheme corresponds to a secret key for a function fx in the functional encryption scheme.

Moreover, considering this mapping, it is straightforward to show that a circuit-private public-key garbling
scheme implies a secure functional encryption scheme. Since the reusable garbling scheme allows an arbitrary
number of inputs being encoded, it implies that the functional encryption scheme can generate an arbitrary
number of secret function keys skfx ; furthermore, in this functional encryption scheme, the size of the
ciphertexts does not depend on the number of keys generated (because this number if nowhere provided as
input in the syntax of the scheme). This conclusion directly contradicts the recent impossibility result of
Agrawal et al. [AGVW12]: they show that any functional encryption scheme that can securely provide q
keys must have the size of the ciphertexts grow in q; therefore, a reusable circuit-private public-key garbling
scheme is unachievable.

35

368
Approved for Public Release; Distribution Unlimited.

5 Token-Based Obfuscation

Following the discussion of obfuscation in Sec. 1.1.2, the purpose of this section is to cast reusable garbled
circuits in the form of obfuscation and to show that this provides a new model for obfuscation, namely
token-based obfuscation.

Reusable garbled circuits come close to obfuscation: a reusable garbled circuit hides the circuit while
permitting circuit evaluation on an arbitrary number of inputs. While they come close, reusable garbled
circuits do not provide obfuscation, because the encoding of each input requires knowledge of the secret
key: namely, to run an obfuscated program on an input, one needs to obtain a token for the input from the
obfuscator. This requirement of our scheme is in fact necessary: as argued in the tightness discussion in
Sec. 4, a scheme in which one can publicly encode inputs is impossible because it falls directly onto known
impossibility results for obfuscation.

Therefore, we propose a new token-based model for obfuscation. The idea is for a program vendor to
obfuscate his program and provide tokens representing rights to run this program on specific inputs. For
example, consider the case when some researchers want to compute statistics on a database with sensitive
information. The program to be obfuscated consists of the database service program with the secret database
hardcoded in it, UDB. When researchers want to compute statistics x, they request a token for x from the
database owner. Using the obfuscated program and the token, the researchers can compute UDB(x), the
statistics result by themselves without having to contact the owner again. It is crucial that the time to compute
the token for x is much smaller than the time to compute UDB on x, so that the owner does not have to do a
lot of work. We also note, that in certain cases, one has to anyways request such a token from the owner for
other reasons: for example, the database owner can check that the statistics the researchers want to compute
is not too revealing and grant a token only if this is the case.

Let us compare the token-based obfuscation model with the obfuscation model resulting from using FHE.
With FHE, the obfuscation of a program is the FHE encryption of the program. When the client wants to feed
an input to the obfuscated program, the client can encrypt this input by herself using the FHE public-key and
does not need to obtain a token from the obfuscator. To run the program, the client performs FHE evaluation
of a universal circuit on the encrypted program and the encrypted input, thus obtaining an encrypted result.
The client cannot decrypt the result by herself and thus needs to contact the obfuscator for this decryption –
this process consists of two messages. In our token-based model, if the obfuscator knows a priori the inputs
for which to send tokens to the client (e.g., when distributing permissions for certain computations), the
whole protocol consists of one message only because the client can compute and decrypt the result by herself.
Another difference between these two obfuscation models is that, in the token-based model, the obfuscator
needs to be available only at the beginning of the computation (when giving out tokens), whereas in the FHE
model, the obfuscator has to be online at the end of the computation to decrypt the result.

5.1 Definition

We now provide the definition for token-based obfuscation and the desired simulation security. These
definitions are very similar to the definitions for reusable garbled circuits (Def. 2.6 and Def. 4.1): the syntax,
correctness and efficiency are the same except that garbling schemes have an additional Eval algorithm.

Definition 5.1 (Token-based Obfuscation). A token-based obfuscation scheme for the class of circuits
{Cn}n∈N with Cn : {0, 1}n → {0, 1} is a pair of p.p.t. algorithms (tOB.Obfuscate, tOB.Token) such that

• tOB.Obfuscate(1κ, C): Takes as input the security parameter 1κ, and a circuit C ∈ Cn, and outputs a
secret key osk and the obfuscation O of the circuit C.

36

369
Approved for Public Release; Distribution Unlimited.

• tOB.Token(osk, x): Takes as input the secret key osk and some input x ∈ {0, 1}n, and outputs tkx.

Efficiency. The running time of tOB.Token is independent of the size of C.

Correctness. For all polynomials n(·), for all sufficiently large security parameters κ, if n = n(κ), for all
circuits C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[(osk, O)← tOB.Obfuscate(1κ, C); tkx ← tOB.Token(osk, x) : O(tkx) = C(x)] = 1− negl(κ).

Remark 5.1. We could use an alternative definition of token-based obfuscation that separates the generation
of osk (in an additional tOB.Setup algorithm with input the security parameter) from the tOB.Obfuscate
algorithm. Such a formulation would force osk and thus the token computation tOB.Token(osk, x) to be
independent of the circuit obfuscated; moreover, C could be chosen later, even after all inputs x have been
encrypted with tOB.Token.

Our construction satisfies this definition as well because it generates the secret key osk independent of C.
However, we did not choose such a formulation because we wanted to be consistent with the definition of

obfuscation, which does not have a separate setup phase.

Intuitively, in a secure token-based obfuscation scheme, an adversary does not learn anything about the
circuit C other than C(x) and the size of C.

Definition 5.2 (Secure token-based obfuscation). Let tOB be a token-based obfuscation scheme for a family
of circuits C =

{
Cn

}
n∈N. For A = (A1, A2) and S = (S1, S2), pairs of p.p.t. algorithms, consider the

following two experiments:

ExprealtOB,A(1
κ): ExpidealtOB,A,S(1

κ):

1: (C, stateA)← A1(1
κ)

2: (osk, O)← tOB.Obfuscate(1κ, C)

3: α← A
tOB.Token(osk,·)
2 (C,O, stateA)

4: Output α

1: (C, stateA)← A1(1
κ)

2: (Õ, stateS)← S1(1
κ, 1|C|)

3: α← A
OS(·,C)[[stateS]]
2 (C, Õ, stateA)

4: Output α

In the above, OS(·, C)[[stateS]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and
the current state of S, stateS . S2 responds with tkx and a new state state′S which OS will feed to S2 on the
next call. OS returns tkx to A2.

We say that the token-based obfuscation tOB is secure if there exists a pair of p.p.t. simulators S =
(S1, S2) such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions are
computationally indistinguishable:{

ExprealtOB,A(1
κ)

}
κ∈N

c
≈

{
ExpidealtOB,A,S(1

κ)

}
κ∈N

.

Note that, in this security definition, a token tkx hides x as well because S2 never receives x. This is
usually not required of obfuscation, but we achieve this property for free.

5.2 Scheme

The construction of a token-based obfuscation scheme is very similar to the construction of reusable
garbled circuits, the technical difference being minor: we need to specify how to construct the algo-
rithm tOB.Obfuscate from RGb.Garble and RGb.Eval. We construct a token-based obfuscation tOB =

37

370
Approved for Public Release; Distribution Unlimited.

(tOB.Obfuscate, tOB.Token) as follows based on a reusable garbled scheme RGb = (RGb.Garble, RGb.Enc,
RGb.Eval). The token algorithm tOB.Token is the same as RGb.Enc.
Obfuscation tOB.Obfuscate(1κ, C ∈ Cn):

1. Let (Γ, sk)← RGb.Garble(1κ, C).

2. Construct the circuit O (the obfuscation of C) as follows. The circuit O has Γ hardcoded. It takes as
input a token tkx, computes RGb.Eval(Γ, tkx), and outputs the result.

3. Output sk as the secret key, and the description of O as the obfuscation of C.

Since the construction is essentially the same as the one of reusable garbled circuits and the security is
the same, the same claims and proofs as for reusable garbled circuits hold here, based on Theorem 4.3 and
Corollary 4.4. We state them here for completeness.

Claim 5.2. Assuming a reusable garbling scheme for the class of circuits C, there is a token-based obfuscation
scheme for C.

Recall the class of circuits Cn,d(n) defined for Corollary 3.2.

Corollary 5.3 (The LWE Instantiation). For every integer n ∈ N, polynomial function d = d(n), there is a
token-based obfuscation scheme for the class Cn,d(n), under the following assumption: there is a constant
0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ
dimensions is hard to approximate to within a 2O(ℓϵ) factor in time 2O(ℓϵ) in the worst case.

Denote by universal token-based obfuscation scheme, a token-based obfuscation scheme for the class of
all polynomial-sized circuits. Then,

Corollary 5.4 (Universal token-based obfuscation). If there is a universal fully secure single-key functional
encryption scheme, there is a universal token-based obfuscation scheme.

6 Computing on Encrypted Data in Input-Specific Time

We initiate the study of fully homomorphic encryption where the runtime of the homomorphic evaluation is
input-specific rather than worst-case time. We show how to use our functional encryption scheme to evaluate
Turing machines on encrypted data in input-specific time.

Let us recall the setting of computation on encrypted data. A client gives various encrypted inputs and a
function f to an evaluator. The evaluator should compute f on the encrypted inputs and return the encrypted
result, while learning nothing about the inputs.

Fully homomorphic encryption has been the main tool used in this setting. It was first constructed in a
breakthrough work by Gentry [Gen09] and refined in subsequent work [DGHV10, SS10b, BV11a, Vai11,
BGV12, GHS12a, GHS12b]. Since then, FHE has found many great applications to various problems.

However, one of the main drawbacks of FHE is that when evaluating a Turing machine (TM) over
encrypted data, the running time is at least the worst-case running time of the Turing machine over all inputs.
The reason is that, one needs to transform the TM into a circuit. If tmax is the maximum running time of
the TM on inputs of a certain size—namely, the running time on the worst-case input— then the size of the
resulting circuit is at least tmax. Thus, even if the TM runs in a short time on most of the inputs, but for a very
long time (tmax) on only one input, homomorphic evaluation will still run in tmax for all inputs. This property

38

371
Approved for Public Release; Distribution Unlimited.

often results in inefficiency in practice; for example, consider a TM having a loop that depends on the input.
For specific inputs, it can loop for a very long time, but for most inputs it does not loop at all.

As a result, researchers have tried to find input-specific schemes. A first observation is that this goal is
impossible: input-specific evaluation implies that the evaluator learns the runtime of the TM on each input,
which violates CPA-security of the homomorphic scheme (Def. 2.5). Hence, we must relax the security
definition and allow the evaluator to learn the runtime for each input, but require that the evaluator learns
nothing else besides the running time. This goal is not possible with FHE because the evaluator cannot
decrypt any bit of information, so it cannot tell whether the computation finished or not; thus, we must look
for new solutions.

A second observation is that the evaluator must no longer be able to evaluate TMs of his choice on the
client’s data: if he could, the evaluator would run TMs whose running times convey the value of the input x
(for example, the evaluator could run |x| TMs, where the i-th TM stops early if the i-th bit of x is zero, and
otherwise, it stops later; in this way, the evaluator learns the exact value of x).

Based on these observations, we can see that functional encryption is the natural solution: it hides the
inputs to the computation, enables the evaluator to decrypt the running time, and requires the evaluator to
obtain a secret key from the client to evaluate each TM.

Due to the impossibility result for functional encryption [AGVW12] discussed in Sec. 1, the client cannot
give keys for an arbitrary number of Turing machines to the evaluator. The best we can hope to achieve is
for the client to provide a single key for a function to the evaluator (or equivalently, for a constant number q
of keys if the client runs the scheme q times). Fortunately, the single-key restriction does not mean that the
client can evaluate only one Turing machine. In fact, the client can give a key to the evaluator for a universal
Turing machine U that takes as input a TM M and a value x, and outputs M(x). Then, the client must specify
together with each input x the TM M he wants to run on x. Such a strategy is even desirable in certain cases:
the client may not want the evaluator to compute a TM on every input the client has provided and learn the
running time on that input; the client may prefer to specify what inputs to run each Turing machine on.

Using our functional encryption scheme, we achieve a construction that enables computation in input-
specific time. We call such a scheme Turing machine homomorphic encryption, or shortly TMFHE.

As discussed (Corollary 3.2), our functional encryption scheme is succinct in that the ciphertexts grow
with the depth of the circuit rather than the size of the circuit. Therefore, our input-specific computation
is useful only for Turing machines that can be represented in circuits whose depths are smaller than the
running time – because otherwise the client would have to do a lot of work and could instead just run the
Turing machine on its own. Moreover, for these machines, we cannot use the Pippenger-Fischer [PF79]
transformation because the resulting circuits have depth roughly equal to the running time of the transformed
machines. Specifically, our input-specific scheme makes sense for the following class of circuits, with a
bound on their depth.

Definition 6.1 (d-depth-bounded class of Turing machines). A finite class of Turing machinesM is d-depth-
bounded for a function d, if there exists a class of efficiently computable transformations {Tn}n∈N with
Tn : N→ {all circuits} such that Tn(t) = Cn,t where Cn,t is a circuit as follows.

• On input a Turing machine M ∈ M and a value x ∈ {0, 1}n, Cn,t outputs M(x) if M on input x
stops in t steps, or ⊥ otherwise.

• The depth of Cn,t is at most d(n) and the size of Cn,t is Õ(t).

Remark 6.1. Notice that, if we remove the depth constraint (but still keep the circuit size constraint), any
finite class of Turing machines satisfies the definition because of the Pippenger-Fischer transformation

39

372
Approved for Public Release; Distribution Unlimited.

applied to the universal circuit of this class of Turing machines. Specifically, let Ut be a universal Turing
machine that runs any given machine M ∈ M for t steps. This machine has O(t) running time and when
applying the Pippenger-Fischer transformation [PF79] to it, we get a circuit of size O(t log t).

We next present our construction. For completeness, we provide formal definitions and proofs of our
theorems and claims in Appendix C. Our security notion (Def. C.2 in the appendix) is called runtime-
CPA security, which straightforwardly captures the fact that the evaluator should learn nothing about the
computation besides the running time.

6.1 Construction

A TMFHE scheme consists of four algorithms: TMFHE = (TMFHE.KeyGen, TMFHE.Enc, TMFHE.Eval,
TMFHE.Dec). The client runs TMFHE.KeyGen once in an offline preprocessing stage. Later, in the online
phase, the client sends a potentially large number of encrypted inputs to the evaluator. For every input (x,M)
consisting of a value x and a Turing machine M , the client runs TMFHE.Enc to encrypt the input and then
TMFHE.Dec to decrypt the result from the evaluator. The evaluator runs TMFHE.Eval to evaluate M on x
homomorphically in input-specific running time. The work of the client in the offline phase is proportional to
tmax, the worst-case input running time. However, for each input in the online phase, the client does little
work (independent of the running time of M) and thus the cost is amortized.

We first provide intuition for our construction. As mentioned, we use our functional encryption scheme
FE to enable the evaluator to determine at various intermediary points whether the computation finished or
not. For each intermediary step, the client has to provide the evaluator with a function secret key fsk (using
the FE scheme) for a function that returns a bit indicating whether the computation has finished. However, if
the client provides a key for every computation step, the offline work of the client becomes quadratic in tmax,
which can be very large in certain cases. The idea is to choose intermediary points spaced at exponentially
increasing intervals. In this way, the client generates only a logarithmic number of keys, while the evaluator
runs in roughly twice the time of M on an input.

As part of TMFHE.Enc, besides providing the FE encryptions for a pair (M,x), the client also provides
a homomorphic encryption for x and the machine M , so that once the evaluator learns the running time of M
on x, it can then perform the homomorphic computation on x in that running time.

We present our construction for a class of d-depth-bounded Turing machines. By Def. 6.1, such a class has
a transformation Tn that enables transforming a universal TM into a circuit. Let FHE be any homomorphic
encryption scheme (as defined in Sec. 2.3) for circuits of depth d and let FE be any functional encryption
scheme for circuits of depth d. For simplicity, we present our scheme for Turing machines that output only
one bit; we discuss in Sec. 6.3 multiple output bits and how to avoid having the output size be worst case.
Key generation TMFHE.KeyGen(1κ, 1n, 1tmax) takes as input the security parameter κ, an input size n, and
a maximum time bound tmax.

1. Let τ = ⌈log tmax⌉. For each i ∈ [τ], let Di = Tn(2i) be the circuit that outputs M(x) if M finishes in
2i steps on input x or ⊥ otherwise. Construct circuit Ci based on Di: the circuit Ci, on input a TM M
and a value x, outputs 1 if M finished in 2i steps when running on input x or 0 otherwise; Ci is the
same as circuit Di but it just outputs whether the first output bit of Ci is non-⊥ or ⊥, respectively.

2. Generate functional encryption secret keys for C1, . . . , Cτ by running:

(fmpki, fmski)← FE.Setup(1κ) and fski ← FE.KeyGen(fmski, Ci) for i ∈ [τ].

40

373
Approved for Public Release; Distribution Unlimited.

3. Generate FHE keys (hsk, hpk)← FHE.KeyGen(1κ).

4. Output the tuple PK := (fmpk1, . . . , fmpkτ , hpk) as the public key, EVK := (fsk1, . . . , fskτ , hpk) as
the evaluation key, and SK := hsk as the secret key.

Encryption TMFHE.Enc(PK,M, x): takes as input the public key PK of the form ({fmpki}i, hpk), a TM
M and a value x of n bits long.

1. Let x̂← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)), where xi is the i-th bit of x. Similarly, let M̂
← (FHE.Enc(hpk,M1), . . . , FHE.Enc(hpk,Mn)), which is the homomorphic encryption of M (the
string description of TM M) bit by bit.

2. Compute ci ← FE.Enc(fmpki, (M,x)) for i ∈ [τ].

3. Output the ciphertext c = (“enc”, x̂, M̂ , c1, . . . , cτ).

Evaluation TMFHE.Eval(EVK, c): takes as input an evaluation key EVK of the form ({fski}i, hpk) and a
ciphertext c of the form (“enc”, x̂, M̂ , c1, . . . , cτ).

1. Start with i = 1. Repeat the following:

(a) b← FE.Dec(fski, ci).

(b) If b = 1, (computation finished and we can now evaluate homomorphically on x̂)

i. Compute Di, the circuit that evaluates a Turing machine inM for 2i steps, using Tn(2i).
ii. Evaluate and output (“eval”,FHE.Eval(hpk, Di, (M̂, x̂))).

(c) Else (b = 0), proceed to the next i.

Decryption TMFHE.Dec(SK, c): takes as input a secret key SK = hsk and a ciphertext c of the form
(“enc”, x̂, M̂ , c1, . . . , cτ) or (“eval”, c).

1. If the ciphertext is of type “enc”, compute and output FHE.Dec(hsk, x̂).

2. Else (the ciphertext is of type “eval”), compute and output FHE.Dec(hsk, c).

6.2 Results

We now state our results.

Theorem 6.2. For any class of d-depth-bounded Turing machines that take n bits of input and produce one
bit of output, there is a Turing machine homomorphic encryption scheme, assuming the existence of a fully
secure functional encryption scheme FE for any class of circuits of depth d, and an d-leveled homomorphic
encryption scheme FHE, where:

• The online work of the client is

(n+ log tmax) · poly(κ, d(n))

41

374
Approved for Public Release; Distribution Unlimited.

• The online work of the server in evaluating M on an encryption of x is

poly(n, d(n), time(M,x)),

where time(M,x) is the runtime of M on x.

This theorem shows that our TMFHE scheme comes as a reduction from any functional encryption
scheme. The proof of this theorem is in Appendix C. We can see that the work of the client is indeed smaller
than computing the circuit especially if the polynomial d is smaller than the running time. Moreover, we can
also see that the server runs in input-specific time: the evaluation time depends on the actual running time
and the depth of the circuit.

When instantiating our TMFHE construction with our functional encryption FE construction from Sec. 3
and using Corollary 3.2, we obtain a scheme under an LWE assumption.

Corollary 6.3 (LWE Instantiation). For every integer n ∈ N and polynomial function d = d(n), there
is a Turing machine homomorphic encryption scheme for any class of d-depth-bounded Turing machines,
under the following assumption: there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the
approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
in time 2O(ℓϵ) in the worst case.

Remark 6.4. If the underlying FE scheme is selectively secure (Def. 2.14), one can still obtain an input-
specific homomorphic encryption scheme, but with selective security; namely, the scheme would achieve a
modified version of Def. C.2 in Appendix C (the adversary A must choose x before seeing EVK and PK).
The scheme would then be secure under the following assumption: there is a constant 0 < ϵ < 1 such that
for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to
approximate to within a 2O(ℓϵ) factor in the worst case by polynomial-time adversaries.

Let us discuss what kind of Turing machines classes are d-depth-bounded.

Fact 6.5. The class of Turing machines running in log-space is log2-depth-bounded.

This fact follows directly from the known relation that the LOGSPACE complexity class is in NC2.
In general, the following pattern of computation would fit in d-depth-boundedness and would benefit

from input-specific evaluation. Consider a computation that on different types of inputs, it performs different
kinds of computation; all these computations are of the same (shallow) depth, but the computation can be
much larger in one case.

A few remarks are in order:

Remark 6.6. Denote by universal TMFHE scheme to be a scheme for any finite class of Turing machines.
Based on Remark 6.1, we can see that if there is a universal succinct functional encryption scheme and a fully
homomorphic scheme, there is a universal TMFHE scheme with online client and server work independent of
depth:

• The online work of the client becomes

(n+ log tmax) · poly(κ)

• The online work of the server in evaluating M on an encryption of x becomes

poly(n, time(M,x)),

where time(M,x) is the runtime of M on x.

42

375
Approved for Public Release; Distribution Unlimited.

6.3 Input-Dependent Output Size

The construction above considered Turing machines that output only one bit. To allow TMs that output more
than one bit, one can simply use the standard procedure of running one instance of the protocol for each bit
of the output. However, as with running time, this would result in repeating the protocol as many times as the
worst-case output size for every input. Certain inputs can result in small outputs while others can result in
large outputs, so it is desirable to evaluate in input-specific output size.

We can use the same approach as above to obtain input-specific output size: The client provides keys to
the evaluator to decrypt the size of the output. Then, the evaluator can simply use homomorphic evaluation
on a circuit whose output size is the determined one.

Acknowledgments

This work was supported by an NSERC Discovery Grant, by DARPA awards FA8750-11-2-0225 and
N66001-10-2-4089, by NSF awards CNS-1053143 and IIS-1065219, and by Google.

References
[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for inner

product predicates from learning with errors. In ASIACRYPT, pages 21–40, 2011.

[AGVW12] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption:
New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468, 2012.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
STOC, pages 601–610, 2001.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages 298–307,
2003.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N. Rothblum.
Program obfuscation with leaky hardware. In ASIACRYPT, pages 722–739, 2011.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives based
on hard learning problems. In CRYPTO, pages 278–291, 1993.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, pages 309–325, 2012.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent message security.
In EUROCRYPT, pages 423–444, 2010.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Garbling schemes. Cryptology ePrint Archive,
Report 2012/265, 2012.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506–519, 2003.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
CRYPTO, pages 868–886, 2012.

[BSW] Dan Boneh, Amit Sahai, and Brent Waters.

43

376
Approved for Public Release; Distribution Unlimited.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
Proceedings of the 28th IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 505–524, 2011.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In TCC, pages
535–554, 2007.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric encryption and point
obfuscation. In TCC, pages 52–71, 2010.

[Dav12] Michael A. Davis. Cloud security: Verify, don’t trust. Information Week, August 2012. http://
reports.informationweek.com/abstract/5/8978/.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, pages 24–43, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GGH12] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices and
applications. Cryptology ePrint Archive, Report 2012/610, 2012.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In
EUROCRYPT, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. Cryptology
ePrint Archive, Report 2012/099, 2012.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In
EUROCRYPT, pages 506–522, 2010.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding
cryptography on tamper-proof hardware tokens. In TCC, pages 308–326, 2010.

[GJPS08] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy attribute based
encryption. In ICALP, pages 579–591, 2008.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary input. In
FOCS, pages 553–562, 2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In CRYPTO, pages
39–56, 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In STOC, pages
218–229, 1987.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCS, pages 89–98, 2006.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages 194–213, 2007.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In CRYPTO, pages 162–179, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
STOC, 2013.

44

377
Approved for Public Release; Distribution Unlimited.

http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/
http://reports.informationweek.com/abstract/5/8978/

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. J.
Cryptol., 22:161–188, April 2009.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In CRYPTO, 2012.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm for most
lattice problems based on Voronoi cell computations. In STOC, pages 351–358, 2010.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products. In
ASIACRYPT, pages 214–231, 2009.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC, pages
333–342, 2009.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM, 26(2):361–
381, 1979.

[Pri12] Privacy Rights Clearinghouse. Chronology of data breaches, 2012. http://www.privacyrights.
org/data-breach.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In Foundations of
Secure Computation, pages 169–177. Academic Press, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84–93, 2005.

[SS10a] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
ACM CCS, pages 463–472, 2010.

[SS10b] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, pages 377–394,
2010.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In TCC, pages
457–473, 2009.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[SW12] Amit Sahai and Brent Waters. Attribute-based encryption for circuits from multilinear maps. Cryptology
ePrint Archive, Report 2012/592, 2012.

45

378
Approved for Public Release; Distribution Unlimited.

http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach

[Vai11] Vinod Vaikuntanathan. Computing blindfolded: New developments in fully homomorphic encryption. In
FOCS, pages 5–16, 2011.

[Ver] Verizon RISK Team. 2012 data breach investigations report. http://www.verizonbusiness.
com/resources/reports/rp_data-breach-investigations-report-2012_en_
xg.pdf.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure
realization. In PKC, pages 53–70, 2011.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO, pages 218–235, 2012.

[Wee05] Hoeteck Wee. On obfuscating point functions. In STOC, pages 523–532, 2005.

[Yao82] Andrew C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

[Yao86] Andrew C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages 162–167,
1986.

A Detailed Background on Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise” [BFKL93, BKW03, Ale03]. Regev showed that solving the LWE problem on the average is as
hard as (quantumly) solving several standard lattice problems in the worst case. This result bolstered our
confidence in the LWE assumption and generated a large body of work building cryptographic schemes under
the assumption, culminating in the construction of a fully homomorphic encryption scheme [BV11a].

For positive integers ℓ and q ≥ 2, a vector s ∈ Zℓ
q, and a probability distribution χ on Zq, let As,χ be

the distribution obtained by choosing a vector a $← Zℓ
q uniformly at random and a noise term e

$← χ, and
outputting (a, ⟨a, s⟩+ e) ∈ Zℓ

q × Zq. A formal definition follows.

Definition A.1 (LWE). For an integer q = q(ℓ) and an error distribution χ = χ(ℓ) over Zq, the learning
with errors problem LWEℓ,m,q,χ is defined as follows: Given m independent samples from As,χ (for some
s ∈ Zℓ

q), output s with noticeable probability.
The (average-case) decision variant of the LWE problem, denoted dLWEℓ,m,q,χ, is to distinguish (with

non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Zℓ

q), from m

samples chosen according to the uniform distribution over Zℓ
q × Zq.

We denote by LWEℓ,q,χ (resp. dLWEℓ,q,χ) the variant where the adversary gets oracle access to As,χ, and
is not a priori bounded in the number of samples.

For cryptographic applications we are primarily interested in the average case decision problem dLWE,
where s

$← Zℓ
q. We will also be interested in assumptions of the form: no t-time adversary can solve dLWE

with non-negligible advantage, which we will call the t-hardness of dLWE.
There are known quantum [Reg05] and classical [Pei09] reductions between dLWEℓ,m,q,χ and

approximating short vector problems in lattices. Specifically, these reductions take χ to be (discretized
versions of) the Gaussian distribution, which is B-bounded for an appropriate B. Since the exact distribution
χ does not matter for our results, we state a corollary of the results of [Reg05, Pei09] in terms of the bound
on the distribution.

Let B = B(ℓ) ∈ N. A family of distributions χ = {χℓ}ℓ∈N is called B-bounded if the support of χℓ is (a
subset of) [−B(ℓ), . . . , B(ℓ)]. Then:

46

379
Approved for Public Release; Distribution Unlimited.

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf

Lemma A.1 ([Reg05, Pei09]). Let q = q(ℓ) ∈ N be a product of co-prime numbers q =
∏
qi such that for

all i, qi = poly(ℓ), and let B ≥ ℓ. Then there exists an efficiently sampleable B-bounded distribution χ such
that if there is an efficient algorithm that solves the (average-case) dLWEℓ,q,χ problem. Then:

• There is a quantum algorithm that solves SIVP with approximation factor Õ(ℓ
√
ℓ · q/B) and gapSVP

with approximation factor Õ(ℓ
√
ℓ · q/B) on any ℓ-dimensional lattice, and runs in time poly(ℓ).

• There is a classical algorithm that solves the ζ-to-γ decisional shortest vector problem gapSVPζ,γ ,
where γ = Õ(ℓ

√
ℓ · q/B), and ζ = Õ(q

√
ℓ), on any ℓ-dimensional lattice, and runs in time poly(ℓ).

We remark that this connection is time-preserving, in the sense that given an LWE algorithm that runs in
time t, these reductions produce algorithms to solve lattice problems that run in time poly(t).

We refer the reader to [Reg05, Pei09] for the formal definition of these lattice problems, as they have
no direct connection to this work. We only note here that the best known algorithms for these problems run
in time nearly exponential in the dimension ℓ [AKS01, MV10]. More generally, the best algorithms that
approximate these problems to within a factor of 2k run in time 2Õ(ℓ/k). Specifically, given the current state
of the art on lattice algorithms, the LWEℓ,q,χ assumption is quite plausible for a poly(ℓ)-bounded distribution
χ and q as large as 2ℓ

ϵ
(for any constant 0 < ϵ < 1).

Given this state of affairs, we will abuse notation slightly and conflate the LWE dimension ℓ with the
security parameter κ.

B Construction of Two-Outcome Attribute-Based Encryption

Let us construct a two-outcome attribute-based encryption scheme, denoted ABE2, from an ABE scheme,
ABE.

The idea is to use two ABE instantiations, one encrypting M0 and the other M1. To make sure that exactly
one of these messages gets revealed when a predicate is evaluated, we provide secret keys for the predicate
and the negation of the predicate for the two instantiations.
Setup ABE2.Setup(1

κ):

1. Run (fmsk0, fmpk0)← ABE.Setup(1κ) and (fmsk1, fmpk1)← ABE.Setup(1κ).

2. Let fmsk := (fmsk0, fmsk1) and fmpk := (fmpk0, fmpk1). Output fmsk and fmpk.

Key generation ABE2.KeyGen(fmsk, P): Let fsk0 ← ABE.KeyGen(fmsk0, P̄) and
fsk1 ← ABE.KeyGen(fmsk1, P), where P̄ is the negation of P , namely P̄ (x) = 1− P (x). Output fskP =
(fsk0, fsk1).
Encryption ABE2.Enc(fmpk, x,M0,M1): Let C0 ← ABE.Enc(fmpk0, x,M0) and
C1 ← ABE.Enc(fmpk1, x,M1). Output C = (C0, C1).
Decryption ABE2.Dec(fskP , C):

1. Parse fskP = (fsk0, fsk1) and C = (C0, C1).

2. Run M0 ← ABE.Dec(fsk0, C0) and if M0 ̸= ⊥, output M0.

3. Run M1 ← ABE.Dec(fsk1, C1) and if M1 ̸= ⊥, output M1.

47

380
Approved for Public Release; Distribution Unlimited.

We next prove that this construction yields a secure two-outcome ABE scheme. Note that our construction
requires an ABE scheme where the predicate class Pn is closed under negation: for every predicate P ∈ Pn,
the predicate P̄ is also included in Pn.

Proof of Claim 2.5. Correctness of ABE2 is straightforward: If P (x) = 0, C0 will decrypt to M0 by the
correctness of ABE, and mutatis mutandis for P (x) = 1.

We prove security by contradiction. Assume there exists p.p.t. A = (A1, A2, A3) that breaks the security
of our ABE2 construction: Def. 2.11; namely, there exists a polynomial p such that, for infinitely many κ,

Pr[ExpABE2,A(1
κ) = 1] ≥ 1/2 + 1/p(κ). (6)

We construct a p.p.t. adversary R = (R1, R2, R3) that breaks the security of ABE, Def. 2.9.
The adversary R1 receives as input fmpk∗ and outputs a predicate P ∗ as follows. The adversary A1

expects two public keys. R1 uses fmpk∗ as one of these public keys and generates the other public key freshly
(fmsk, fmpk)← ABE.KeyGen(1κ). The order in which R1 provides these keys to A1 depends on the value
of P (x) not known at this step. If P (x) will be 0, R will have to give A the ability to decrypt a ciphertext
encrypted with the first key. If that key is fmpk∗, R cannot accomplish this task because it does not have the
corresponding secret key. Therefore, R will try to guess P (x) by flipping a random coin. Concretely, R1

runs:

1. Guess P (x) at random, namely draw a random bit denoted guess. If guess is 0:

(a) Provide (fmpk, fmpk∗) to A1.

(b) Receive P from A1 and output P ∗ := P .

2. Else [guess is 1]:

(a) Provide (fmpk∗, fmpk) to A1.

(b) Receive P from A1 and output P ∗ := P̄ .

Adversary R2 receives as input fskP ∗ and generates M∗
0 ,M

∗
1 , and x∗ as follows.

1. Generate fskP̄ ∗ ← ABE.KeyGen(fmsk, P̄ ∗).

2. If guess is 0, provide (fskP̄ ∗ , fskP ∗) to A2, else (guess was 1) provide (fskP ∗ , fskP̄ ∗) to A2.

3. Receive (M,M0,M1, x) from A2. Output M∗
0 :=M0, M∗

1 :=M1 and x∗ := x.

Adversary R3 receives as input c∗ and outputs a guess bit as follows:

1. Check that P (x) equals guess. If this is not the case, namely, R1 had guessed incorrectly the value of
P (x), output a random bit and exit. Otherwise, continue.

2. Feed the following input to A3: if guess = 0, feed inputs (ABE.Enc(fmpk, (x,M)), c∗), else (guess =
1), feed inputs (c∗,ABE.Enc(fmpk, (x,M))). Output whatever A3 outputs.

48

381
Approved for Public Release; Distribution Unlimited.

R1 guesses P (x) correctly with a chance of half. When R1 does not guess P (x) correctly, R3 outputs a
correct bit with chance 1/2 (because it outputs a random guess). When R1 guesses P (x) correctly, we can
see that R simulates the ABE2 game with A correctly. Therefore, in this case, whenever A guesses correctly,
R also guesses correctly. Using Eq. (6), we have

Pr[ExpABE,R(1
κ) = 1] ≥ 1/2 · 1/2 + 1/2(1/2 + 1/2p(κ)) = 1/2 + 1/2p(κ), (7)

which provides the desired contradiction.

C Homomorphic Encryption for Turing Machines: Definitions and Proofs

Let us first define the syntax of a Turing machine homomorphic encryption scheme.

Definition C.1. A Turing machine homomorphic encryption scheme TMFHE for a class of Turing machines
M is a quadruple of p.p.t. algorithms (TMFHE.KeyGen,TMFHE.Enc,TMFHE.Dec,TMFHE.Eval) as
follows:

• TMFHE.KeyGen(1κ, 1n, 1tmax) takes as input a security parameter κ, an input size n, and a time
bound tmax, and outputs a public key PK, an evaluation key EVK, and a secret key SK.

• TMFHE.Enc(PK,M, x) takes as input the public key PK, a Turing machine M with one bit of output,
and an input x ∈ {0, 1}n, for some n, and outputs a ciphertext c.

• TMFHE.Dec(SK, c) takes as input the secret key SK and a ciphertext c, and outputs a message x.

• TMFHE.Eval(EVK, c) takes as input the evaluation key EVK, and a ciphertext c, and outputs a
ciphertext c′.

Correctness: For every polynomial n(·), for every polynomial tmax(·), for every sufficiently large security
parameter κ, for n = n(κ), for every Turing machine M ∈M with upper bound on running time for inputs
of size n of tmax(n), and for every input x ∈ {0, 1}n,

Pr[(PK,EVK, SK)← TMFHE.KeyGen(1κ, 1n, 1tmax(n));

c← TMFHE.Enc(PK,M, x);

c∗ ← TMFHE.Eval(EVK,M, c) :

TMFHE.Dec(SK, c∗) ̸=M(x)] = negl(κ).

Note that the correctness property constraints tmax to be a polynomial. However, tmax can still be a very
large polynomial and we would like the server to not have to run in that time for all inputs. (In fact, this
constraint can be eliminated if we use a FHE scheme and an ABE scheme that have no correctness error).

Definition C.2 (Runtime-CPA Security). Let TMFHE be an input-specific homomorphic encryption scheme
for the class of Turing machinesM. For every p.p.t. adversaryA = (A1, A2) and p.p.t. simulator S, consider
the following two experiments:

49

382
Approved for Public Release; Distribution Unlimited.

ExprealTMFHE,A(1
κ) : ExpidealTMFHE,A,S(1

κ) :

1: (1tmax , 1n, stateA)← A1(1
κ).

2: (PK,EVK, SK)← TMFHE.KeyGen(1κ, 1n, 1tmax)
3: (M,x, state′A)← A2(stateA,PK,EVK)

4: c← TMFHE.Enc(PK,M, x)
5: Output (state′A, c)

4: c̃← S(M, 1n, 1t,EVK,PK) with t = time(M,x)
5: Output (state′A, c̃)

The scheme is said to be runtime-CPA-secure if there exists a p.p.t. simulator S such that for all pairs of
p.p.t. adversaries A = (A1, A2) for which A2 outputs M ∈M and x ∈ {0, 1}n, we have{

ExprealTMFHE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealTMFHE,A,S(1

κ)

}
κ∈N

.

This definition essentially captures our security goal: one can simulate any information learned from
the scheme by using only the Turing machine M and the running time of M on x, but without any other
information about x.

In fact, we can achieve a scheme that hides M as well in a straightforward way: since our construction
passes M and x as inputs to universal circuits, M could also be hidden in the same way as x is.

C.1 Proof

Proof of Theorem 6.2. We first prove the correctness and efficiency claims of the theorem and then we prove
security.

If the underlying FE scheme is correct, then TMFHE is correct; whenever 2i for some i is an upper bound
on the running time of M on x, then Ci(M,x)’s output is 1. Based on the correctness of the FHE scheme
FHE, the evaluation of Di on M̂, x̂ will be correct, so FHE.Dec will return M(x).

Lemma C.1. The online work of the client in the TMFHE scheme is (log tmax + n) · poly(κ, d(n)).

Proof. The work of the client in the online phase consists of running TMFHE.Enc(PK, x) and TMFHE.Dec(SK, c).
The work of the client for TMFHE.Enc(PK, x) is npoly(d(κ)) to compute the FHE ciphertexts and
(1 + ⌈log tmax⌉) · poly(d(n), κ) to compute the FE ciphertexts. Since n depends polynomially in κ, we
obtain that total cost is at most (log tmax + n)poly(κ, d(n)) (where be incorporated the constant values in
the poly notation).

The runtime of TMFHE.Dec(SK, c) is poly(d(κ)) because FHE.Enc runs polynomial in κ and d(κ).
Therefore, the total online work of the client is (log tmax + n)poly(d(κ), d(n), κ).

Lemma C.2. The work of the evaluator in the TMFHE scheme is poly(n, d(n), time(M,x)).

Proof. The work of the evaluator consists of running TMFHE.Eval(EVK,M, c). This depends on the number
of times the loop in TMFHE.Eval is repeated and the cost within each loop. Let us evaluate the cost at the
i-th repetition of the loop. Let ti = 2i.

By the properties of the transformation Tn, the size of Ci is at most tipolylog ti. The cost of evaluating
FE.Dec(fski, ci) is therefore poly(n, d(n), tipolylog ti).

50

383
Approved for Public Release; Distribution Unlimited.

If t is the runtime of M on x, the index i at which the loop will halt (because the evaluator obtained a
value the bit b being one) is at most 1 + ⌈log t⌉. Therefore, the loop will repeat at most 1 + ⌈log t⌉ times.

Runtime of TMFHE.Eval(EVK, c) =

1+⌈log t⌉∑
i=1

poly(n, d(n), ti polylog ti)

≤ (1 + ⌈log t⌉)poly(n, d(n), t polylog t)
≤ poly(n, d(n), t polylog t) = poly(n, d(n), t),

where the last equality comes from adjusting the implicit polynomial in poly. Note that even though EVK
consists of log tmax such fski keys, TMFHE.Eval does not have to read all of EVK.

Finally, we prove security of the scheme.

Lemma C.3. The TMFHE protocol is runtime-CPA-secure.

Proof. To prove that our TMFHE construction is secure, we provide a simulator S, as in Def. C.2. The
simulator S invokes the simulator of the functional encryption scheme, as in Def. 2.13, which we denote
SimFE. The simulator S receives inputs M , 1n, 1t, EVK, and PK, and proceeds as follows:

1. Compute 0̂n ← (FHE.Enc(hpk, 0), . . . ,FHE.Enc(hpk, 0)) (n times).

2. For each i ∈ [τ], compute the circuits Di = Tn(2
i) and then Ci as before; we remind the reader that

Ci, on input a TM M and a value x, outputs 1 if M finished in 2i steps when running on input x or 0
otherwise.

3. For each i such that 2i < t:

(a) Call the simulator SimFE to simulate a computation result of 0 because M could not have finished
its computation at step i. Specifically, compute c̃i ← SimFE(fmpki, fski, Ci, 0, 1

n+|M |).

4. For each i such that 2i ≥ t:

(a) Call the simulator SimFE to simulate an answer of 1 because M finished computation on the
input (unknown to S). Thus, compute c̃i ← SimFE(fmpki, fski, Ci, 1, 1

n+|M |).

5. Output c̃ = (0̂, c̃1, . . . , c̃τ).

To prove that S satisfies Def. C.2, we use three hybrids:
Hybrid 0: The ideal experiment with simulator S.
Hybrid 1: The same as Hybrid 0 but 0̂n gets replaced with x̂ = (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)).
Hybrid 2: The real experiment.
It is easy to see that the outcome of Hybrid 0 and the outcome of Hybrid 1 are computationally

indistinguishable because FHE is semantically secure: the encryptions of 0n in Hybrid 0 and the encryption
of x in Hybrid 1 are both generated with fresh randomness, and the secret key hsk (or any function of hsk
other than a fresh encryption) is never released to any adversary.

Now let us look at Hybrid 1 and Hybrid 2. These are computationally indistinguishable based on a
standard hybrid argument invoking the security of SimFE as follows.

51

384
Approved for Public Release; Distribution Unlimited.

Multi-Input Functional Encryption

Shafi Goldwasser∗ Vipul Goyal† Abhishek Jain‡ Amit Sahai§

Abstract

We introduce the problem of Multi-Input Functional Encryption, where a secret key SKf
can correspond to an n-ary function f that takes multiple ciphertexts as input. Multi-input
functional encryption is a general tool for computing on encrypting data which allows for mining
aggregate information from several different data sources (rather than just a single source as in
single input functional encryption). We show wide applications of this primitive to running SQL
queries over encrypted database, non-interactive differentially private data release, delegation
of computation, etc.

We formulate both indistinguishability-based and simulation-based definitions of security
for this notion, and show close connections with indistinguishability and virtual black-box def-
initions of obfuscation. Assuming indistinguishability obfuscation for circuits, we present con-
structions achieving indistinguishability security for a large class of settings. We show how to
modify this construction to achieve simulation-based security as well, in those settings where
simulation security is possible. Assuming differing-inputs obfuscation [Barak et al., FOCS’01],
we also provide a construction with similar security guarantees as above, but where the keys
and ciphertexts are compact.

∗MIT and Weizmann. shafi@csail.mit.edu
†Microsoft Research, India. vipul@microsoft.com
‡Boston University and MIT. abhishek@csail.mit.edu
§UCLA. sahai@cs.ucla.edu

0

385
Approved for Public Release; Distribution Unlimited.

The simulator SimFE is called τ times. Let c̃(1)i be the ciphertext output by the simulator for the i-th
invocation in Hybrid 1, and let ci be the ciphertext output in Hybrid 2 on the i-th invocation. It is enough
to prove that the outcome of these two experiments consisting of state′A and only one of the ciphertexts
(e.g., c̃(1)i or ci) are computationally indistinguishable. The reason is that one can employ a standard hybrid
argument consisting of τ + 1 sub-hybrids, the 0-th sub-hybrid being Hybrid 1 and the τ -th sub-hybrid being
Hybrid 2 and any intermediary sub-hybrid i has the first i ciphertexts as in Hybrid 2 and the rest as in Hybrid
1. Such an argument is possible because τ is polynomial in the security parameter and each ciphertext is
encrypted with independently generated public keys.

Therefore, all we need to argue is that the outcome of Hybrid 1 and Hybrid 2 consisting of state′A and
only c̃(1)i (ci respectively) are computationally indistinguishable. This follows directly because SimFE satisfies
the FULL-SIM-secure functional encryption definition, Def. 2.13.

The three lemmas above complete the proof of the theorem.

52

386
Approved for Public Release; Distribution Unlimited.

1 Introduction

Traditionally, encryption has been used to secure a communication channel between a unique
sender-receiver pair. In recent years, however, our networked world has opened up a large
number of new usage scenarios for encryption. For example, a single piece of encrypted data,
perhaps stored in an untrusted cloud, may need to be used in different ways by different users.
To address this issue, the notion of functional encryption (FE) was developed in a sequence of
works [SW05, GPSW06, BW07, KSW08, LOS+10, BSW11, O’N10]. In functional encryption,
the owner of the master secret key MSK can create a secret key SKf for any function f from a
family F . Given any ciphertext CT with underlying plaintext x, using SKf a user can efficiently
compute f(x). The security of FE requires that the adversary “does not learn anything” about x,
other than the computation result f(x).

How to define “does not learn anything about” x is a fascinating question which has been
addressed by a number of papers, with general formal definitions first appearing in [BSW11,
O’N10]. The definitions range from requiring a strict simulation of the view of the adversary,
which enlarges the range of applications, but has been shown to either necessitate a secret key
whose size grows with the number of ciphertexts that will ever be released [BSW11, BO13]
(or a ciphertext whose size grows with the number of functions for which secret keys will ever
be released [AGVW13, CIJ+13]), to an indistinguishability of ciphertexts requirement which
supports the release of an unbounded number of function keys and ciphertexts.

Functional encryption seems to offer the perfect non-interactive solution to many problems
which arise in the context of delegating services to outside servers. A typical example is the
delegation of spam filtering to an outside server as follows: Alice publishes her public key
online and gives the spam filter a key for the filtering function; users sending email to Alice
will encrypt the email with her public key. The spam filter can now determine by itself, for
each email, whether to pass it along to Alice’s mailbox or to deem it as spam, but without
ever learning anything else about Alice’s email. This example inherently requires computing a
function f on a single ciphertext.

Multi-Input Functional Encryption. It is less clear, however, how to define or achieve
functional encryption in the context of computing a function defined over multiple plaintexts
given their corresponding ciphertexts, or further, given their ciphertexts each encrypted under
a different key. Yet, these settings, which we formalize as Multi-Input Functional Encryption
(MI-FE), encompass a vast landscape of applications, going way beyond delegating computation
to an untrusted server or cloud. Multi-input functional is a very general tool for computing
on encrypting data, which allows for mining aggregate information from several different data
sources (rather than just a single source as in single input functional encryption).

Let us begin by clarifying the setting of Multi-Input Functional Encryption: Let f be an
n-ary function where n > 1 can be a polynomial in the security parameter. In MI-FE, the
owner of a master secret key MSK can derive special keys SKf whose knowledge enables the
computation of f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn of underlying messages x1, . . . , xn
with respect to the same master secret key MSK. We allow the different ciphertexts ci to be each
encrypted under a different encryption key EKi to capture the setting in which each ciphertext
was generated by an entirely different party.

Let us illustrate a few settings that illustrate the applicability of MI-FE.

Example 1: Running SQL Queries on Encrypted Database. Suppose we have an
encrypted database. A natural goal in this scenario would be to allow a party Alice to perform
a certain class of general SQL queries over this database (e.g., Alice may only be authorized
to access records created on a certain date). If we use ordinary functional encryption, Alice
would need to obtain a separate secret key for every possible valid SQL query, a potentially
exponentially large set. Multi-input functional encryption allows us to address this problem in

1

387
Approved for Public Release; Distribution Unlimited.

a flexible way. We highlight two aspects of how MI-FE can apply to this example:

• Let f be the function where f(Q, x) first checks if Q is a valid SQL query from the allowed
class, and if so f(Q, x) is the output of the query Q on the database x. Now, if we give the
secret key SKf and the encryption key EK1 to Alice, then Alice can choose a valid query
Q and encrypt it under her encryption key EK1 to obtain ciphertext CT1. Then she could
use her secret key SKf on ciphertexts CT1 and CT2, where CT2 is the encrypted database,
to obtain the results of the SQL query.

• Furthermore, if the database is dynamic (rather than static) with individual entries being
added, modified, or, deleted, the most natural way to build such a database would be to
have different ciphertexts for each entry in the database. In this case, for a database of
size n, we could let f be an (n + 1)-ary function where f(Q, x1, . . . , xn) is the result of a
(valid) SQL query Q on the database (x1, . . . , xn).

Example 2: Computing over Encrypted Data Stream. Suppose ciphertexts correspond to
a stream of encrypted phone calls (or video frames produced by surveillance cameras), produced
separately by several different devices. Law enforcement agencies may require the ability to run
algorithms which check the calls or videos for suspicious activities (these algorithms need to
analyze sequences of calls or frames rather than individual calls/frames) in which case (and only
in this case) court orders can be obtained to decrypt the phone calls (or videos) in their entirety.
Here, the need is to compute a function f(p1, . . . , pn) where pi is the i’th phone call, encrypted
to form the ciphertext ci .

More generally, suppose ciphertexts c1, . . . , cn correspond to a list of encrypted inputs to
some algorithm, e.g. a list of edges x1, . . . , xn in a graph for a routing algorithm f . Then, we
need to run the algorithm f(x1, . . . , xn) across multiple ciphertexts. It is likely that this type
of algorithm would be the rule rather than the exception in the context of algorithms run over
large inputs.

Example 3: Non-Interactive Differentially Private Data Release. Suppose there are
several hospitals each of which holds a collection of individual blood samples. They would like
to participate in clinical trials performed by various researchers. The hospitals cannot simply
release the blood samples records because of various patient privacy laws. However, the hospitals
are willing to allow a clinical study researcher to compute an aggregate function f over multiple
samples xi to learn y = f(x1, . . . , xn) as long as f achieves a sufficient level of privacy.

While such a scenario is addressed by differential privacy [DMNS06], existing solutions
require each hospital to interact with the researcher in every trial (potentially via a multi-
party computation protocol when several hospitals are involved). Indeed, it is known that
non-cryptographic methods for allowing the hospitals to non-interactively prepare their records
in a way that would later allow for meaningful and diverse research studies must incur high
accuracy loss [DNR+09].

Multi-input functional encryption can address this problem by having the hospitals encrypt
the samples xi to obtain ciphertexts CTi, and publish all the ciphertexts. This step can be
performed by the hospitals non-interactively before any research trial f is decided (in contrast
to the standard differential-privacy setting where f is decided upon first and then the “differ-
entially private” information collection algorithm takes place). Later, a researcher who wishes
to compute an algorithm f ′ (that is guaranteed to provide sufficient privacy) would be given a
secret key SKf ′ (potentially by a trusted agency such as the government) that she can use to
obtain the output of her algorithm on the blood samples. In this manner, we can obtain high
accuracy while still guaranteeing good (computational) privacy.

We remark that this example requires MI-FE to support randomized functionalities. Our
positive results, discussed later, handle this case.

Example 4: Multi-client Delegation of Computation. In a multi-client delegation scheme

2

388
Approved for Public Release; Distribution Unlimited.

[CKKC13], multiple weak clients C1, . . . , Cn wish to jointly delegate the computation of an n-
ary function f on their inputs x1, . . . , xn to a computationally powerful server. The efficiency
requirement of a delegation scheme is that the computation of the clients should be independent
of the size of f . From a security viewpoint, we require that a dishonest server should not be
able to convince the (honest) clients on an incorrect output.

Multi-input functional encryption provides a natural solution to this problem similar to how
single-input functional encryption provides a solution for single-client delegation of computation
[PRV12, GVW13, GGH+13b, GKP+13b, GGH+13a]. Details of this are provided in Section
1.1.3.

Our Goal. As these examples illustrate, extending the scope of functional encryption to
address functions defined over multiple ciphertexts can be highly beneficial. In short, it could
provide a non-interactive method to compute n-ary functions on encrypted inputs (possibly
by different parties), analogously to interactive multi-party secure computations defined over
multiple inputs held by n different parties.

Extending functional encryption to address the multi-input setting is the focus of this work.

1.1 This paper

This paper is dedicated to the study of multi-input functional encryption, starting with for-
malizations of security. We provide both feasibility results and negative results with respect to
different definitions of security. Following the single-input setting, we consider two notions of
security, namely, indistinguishability-based security (or IND security for short) and simulation-
based security (or SIM security for short).

1.1.1 Indistinguishability-based Security

We start by considering the notion of indistinguishability-based security for functional encryp-
tion for n-ary functions: Informally speaking, in IND security for MI-FE, we consider a game
between a judge and an adversary. First, the judge generates the master secret key MSK, n en-
cryption keys {EK1, . . . ,EKn} and gives to the adversary a subset of the encryption keys (chosen
by the adversary). Then the adversary can request any number of secret keys SKf for functions

f of her choice. Next, the adversary declares two “challenge vectors” ~X0 and ~X1, where every
Xb
i ∈ ~Xb is a set of plaintexts {xbi,1, . . . , xbi,n}. The judge chooses a bit b at random, and for

each j ∈ [n], the judge encrypts every element xbi,j of Xb
i (for every i) using encryption key EKj

to obtain a tuple of “challenge ciphertexts” ~CT, which is given to the adversary. After this,
the adversary can again request any number of secret keys SKf for functions f of her choice.
Finally, the adversary has to guess the bit b that the judge chose.

If the adversary has requested a secret key for any function f such that there exist splitting
input vectors ~y0 and ~y1 that satisfy the following two properties:

1. For every j ∈ [n], either ∃i such that ybj ∈ Xb
i or the adversary has EKj , and

2. f(~y0) 6= f(~y1),

then the adversary loses the game – because the legitimate functionalities that he has access to
already allow him to distinguish between the scenario where b = 0 and b = 1. If the adversary
never queries a secret key for such a function but nevertheless guesses b correctly, we say that
she wins. The IND security definition requires that the adversary’s probability of winning be at
most negligibly greater than 1

2 .
This definition generalizes the indistinguishability-based definition of (single-input) func-

tional encryption, which was historically the first security notion considered for functional en-
cryption [SW05]. Informally speaking, this definition captures an information-theoretic flavor of

3

389
Approved for Public Release; Distribution Unlimited.

security, where the adversary should not learn anything beyond what is information-theoretically
revealed by the function outputs it can obtain.

With regards to IND-secure MI-FE, we obtain the following results:

IND-secure MI-FE from Indistinguishability Obfuscation. Assume the existence
of an indistinguishability obfuscator [BGI+01] for general circuits (the first candidate construc-
tion for the same was recently put forward by [GGH+13a]) and one-way functions, we provide a
construction for IND-secure MI-FE for general circuits for any polynomial-size challenge vectors,
with any subset of encryption keys given to the adversary. Furthermore, our construction has
security when the adversary can obtain any unbounded polynomial number of secret keys SKf .
We prove the security in the selective model, where where the adversary must begin by declaring
the challenge vectors. By using complexity leveraging (and thereby assuming sub-exponentially
secure indistinguishability obfuscation and sub-exponentially secure one-way functions, we can
achieve full security in a standard manner.

Compact IND-secure MI-FE from Differing-Inputs Obfuscation. Our first con-
struction only supports challenge vectors with an a priori fixed (polynomial) size q. In particular,
the size of the encryption keys and ciphertexts in the scheme grows with q. Towards this end,
assuming the existence of the stronger notion of differing-inputs obfuscation [BGI+01] and one-
way functions, we provide a second construction for IND secure MI-FE with “compact” keys
and ciphertexts, i.e., the size of the keys and ciphertexts in the scheme is independent of q.
Further, we directly prove full security of our scheme against adversaries that know any subset
of encryption keys and an unbounded polynomial number of secret keys SKf .

IND-secure MI-FE implies Indistinguishability Obfuscation. Finally, we show
that the existence of IND-secure MI-FE for general circuits implies the existence of an indistin-
guishability obfuscator for general circuits, even when:

1. The MI-FE scheme is only secure against adversaries that can obtain a single secret key.

2. The adversary does not know any encryption keys, i.e., the MI-FE scheme is a secret-key
scheme.

This stands in stark contrast to the single-input setting, where [SS10] showed how to obtain
single-key secure (single input) functional encryption for all circuits, under only the assumption
that public-key encryption exists. Indeed, further research in single-key security for functional
encryption has largely focused on efficiency issues [GKP+13b, GKP+13a] such as succinctness
of ciphertexts, that enable new applications. In the setting of multi-input security, in contrast,
even single key security must rely on the existence of indistinguishability obfuscation.

1.1.2 Simulation-based security

In simulation-based security, informally speaking, we require that every adversary can be sim-
ulated using only oracle access to the functions f for which the adversary obtains secret keys,
even when it can obtain a set of “challenge” ciphertexts corresponding to unknown plaintexts
– about which the simulator can only learn information by querying the function f at these
unknown plaintexts. We highlight two natural settings for the study of SIM-secure MI-FE: (1)
the setting where an adversary has access to an encryption key (analogous to the public-key
setting), and (2) the setting where the adversary does not have access to any encryption keys
(analogous to the secret key setting). The security guarantees which are achievable in these
settings will be vastly different as illustrated below.

Several works [BSW11, AGVW13, BO13, CIJ+13] have shown limitations on parameters
with respect to which SIM security can be achieved for single-input functional encryption. For

4

390
Approved for Public Release; Distribution Unlimited.

multi-input functional encryption, due to the connection to obfuscation discussed above, the
situation for SIM security is more problematic. We provide the following results for SIM-secure
MI-FE:

SIM-secure MI-FE implies Virtual Black-Box Obfuscation. We first show that
SIM-secure MI-FE implies virtual black-box (VBB) obfuscation in various settings. Specifically,
we show:

1. If there exists a secret-key MI-FE scheme for general circuits that achieves SIM security
against adversaries that request: (a) a single key for a general function f and (b) a set of
challenge ciphertexts that can (informally speaking) form a super-polynomial number of
potential inputs to f , then VBB obfuscation must be possible for general circuits.

2. If there exists an MI-FE scheme for 2-ary functions that achieves SIM security against
adversaries that request: (a) a single key for a 2-ary function, and (b) one of the two
encryption keys and one challenge ciphertext, then VBB obfuscation must be possible for
general circuits.

Since VBB obfuscation is known to be impossible for general circuits [BGI+01], this yields us
impossibility results for SIM-secure MI-FE beyond those known in the single-input setting. See
Section 6 for details.

SIM-secure Secret-Key MI-FE against Unbounded Collusions. In light of these
negative results, the only hope for obtaining a positive result lies in a situation where: (a) no
encryption keys are given to the adversary, and (b) the challenge ciphertexts given to the
adversary can only form a polynomial number of potential inputs to valid functions.

Towards this end, assuming one-way functions and indistinguishability obfuscation, for any
fixed polynomial bound q on the size of challenge plaintexts, we give a construction for SIM-
secure secret-key MI-FE for general circuits against adversaries that can obtain an unbounded
polynomial number of secret keys SKf after obtaining the challenge ciphertexts. The size of the
encryption keys and ciphertexts in this scheme grows with q.

We also provide another construction based on one-way functions and differing-inputs obfus-
cation that achieves the same security guarantees as above. The encryption keys and ciphertexts
in this scheme are “compact”, i.e., their sizes are independent of q.

1.1.3 Extensions and Applications

MI-FE for Randomized Functions. Very recently, Goyal et al. [GJKS13] first studied
the question of constructing single-input functional encryption schemes for randomized function-
alities. By building on their techniques, we show how to extend our positive results to handle
general n-ary randomized functionalities. In particular, this allows us to obtain a non-interactive
computationally differentially private mechanism, as discussed earlier.

MI-FE for Turing Machines. The problem of single-input functional encryption for
turing machines was first studied by Goldwasser et al. [GKP+13a]. Very recently, Boyle et al.
[BCP13] and Ananth et al. [ABG+13] provide constructions of single-input functional encryption
for turing machines against an unbounded polynomial number of key queries. We observe that
their techniques can be leveraged to extend our results to MI-FE for turing machines, thereby
achieving input-specific running times. The resulting construction would inherit from these
works the underlying assumptions of differing-inputs obfuscation, succinct non-interactive argu-
ment of knowledge (SNARK) [BCCT12], fully-homomorphic encryption [Gen09] and collision-
resistant hash functions. We omit the details from this manuscript and refer the reader to
[ABG+13, BCP13].

5

391
Approved for Public Release; Distribution Unlimited.

Hierarchical MI-FE. The notion of hierarchical identity-based and attribute-based en-
cryption is well studied in the literature (see e.g., [GS02, BW06, LOS+10]). In the context
of (single-input) functional encryption, this problem is stated as follows: We require that the
owner of a secret key SKf can derive new keys corresponding to any function g that can defined
as a composition of f ′ on f (i.e., f ′ ◦ f) for some function f ′.

Recently, [ABG+13] observe that the construction [GGH+13a] is already flexible enough to
yield a hierarchical (single-input) functional encryption scheme. We note that the same ideas
carry over to our constructions of MI-FE. We refer the reader to [ABG+13] for details.

Multi-Client Delegation of Computation. Here we briefly discuss how an MI-FE
scheme provides a solution for multi-client delegation of computation. We follow the approach
of Parno et al. [PRV12], adapted to the multi-client setting. Given an MI-FE scheme, the
clients first participate in a pre-processing phase where they jointly compute two pairs of master
secret and encryption keys (MSK1,EK1), (MSK2,EK2) and random values (r1, r2). Let f be the
function that the clients wish to delegate. The clients use MSK1 to compute a secret key SKg for
a function g that takes as input n tuples (x1, r), . . . , (xn, r) and outputs r if f(x1, . . . , xn) = 1.
Similarly, the clients use MSK2 to compute a secret key S̄Kg for the function ḡ that is the same
as g except that it outputs r if f(x1, . . . , xn) = 0. While these are computationally expensive
operations, note that this phase is executed only once. The keys SKg and S̄Kg are sent over to
the worker.

Later, in an “online” phase, when the clients wish to compute f on a set of inputs x1, . . . , xn,
each client Ci sends over encryption of (x1, r1) under key MPK1 and (x1, r2) under MPK2 to the
worker. Now, from the properties of the MI-FE scheme, it follows that if f(x1, . . . , xn), then the
server would obtain r1 using SKg and ⊥ using S̄Kg and no information about r2 (and vice-versa,
if f(x1, . . . , xn) = 0). Thus, r1 provides a proof of the fact that the function output is 1.1

The main advantage of this approach is that the online phase is non-intractive: each client
can execute the online phase independently of the other clients, without any interaction.

1.1.4 Our Techniques

We have several results in this work, but to provide a flavor of the kind of difficulties that arise
in the MI-FE setting, we now discuss some of the issues that we deal with in the context of our
positive result for IND-secure MI-FE. (We note that similar issues arise in our positive results
for SIM-secure MI-FE.)

The starting point for our construction and analysis is the recent single-input functional en-
cryption scheme for general circuits based on indistinguishability obfuscation due to [GGH+13a].
However, the central issue that we must deal with is one that does not arise in their context:
Recall that in the indistinguishability security game, the adversary is allowed to get secret keys
for any function f , as long as this function does not “split” the challenge vectors ~X0 and ~X1.
That is, as long as it is not the case that there exist vectors of plaintexts ~x0 and ~x1 where
for every i ∈ [n], either there exists j such that xbi ∈ Xb

j or the adversary has EKi, such that

f(x0) 6= f(x1). A crucial point here is what happens for an index i where the adversary does
not have EKi. Let us consider an example with a 3-ary function, where the adversary has EK1,
but neither EK2 nor EK3.

Suppose the challenge ciphertexts (CT1,CT2,CT3) are encryptions of either (y01 , y
0
2 , y

0
3) or

(y11 , y
1
2 , y

1
3). Now, any function f that the adversary queries is required to be such that f(·, y02 , y03) ≡

f(·, y12 , y13) and f(y01 , y
0
2 , y

0
3) = f(y11 , y

1
2 , y

1
3). However, there may exist an input plaintext (say) z

such that f(y01 , y
0
2 , z) 6= f(y11 , y

1
2 , z). This is not “supposed” to be a problem because the adver-

sary does not have EK3, and therefore it cannot actually query f with z as its third argument.

1We note that this solution easily extends to functions with multi-bit outputs. See [PRV12] for details.

6

392
Approved for Public Release; Distribution Unlimited.

However, in the obfuscation-based approach to functional encryption of [GGH+13a] that we
build on, the secret key for f is essentially built on top of an obfuscation of f . Let CT∗ denote
an encryption of z w.r.t. EK3. Then, informally speaking, in one of our hybrid experiments, we
will need to move from an obfuscation that on input (CT1,CT2,CT

∗) would yield the output
f(y01 , y

0
2 , z) to another obfuscation that on the same input would yield the output f(y11 , y

1
2 , z).

Again, while an adversary may not be able explicitly perform such a decryption query, since we
are building upon indistinguishability obfuscation – which only guarantees that obfuscations of
circuits that implement identical functions are indistinguishable – such a hybrid change would
not be indistinguishable since we know that f(y01 , y

0
2 , z) 6= f(y11 , y

1
2 , z) are not identical. (We

remark that we must address this issue even when using differing-inputs obfuscation in order to
obtain a formal contradiction.)

Solving this problem is the core technical aspect of our constructions and their analysis. At
a very high level, we address this problem by introducing a new “flag” value that can change
the nature of the function f that we are obfuscating to “disable” all plaintexts except for the
ones that are in the challenge vectors. We describe the details and our analysis in Section 4.

1.2 Related Works

Single-input Functional Encryption. The notion of (single-input) functional encryp-
tion was developed in a sequence of works [SW05, GPSW06, BW07, KSW08, LOS+10, BSW11,
O’N10]. For general functions, [SS10] first showed how to obtain single-key SIM-secure FE
based on standard public-key encryption. Gorbunov et al [GVW12] showed how to obtain
SIM-secure FE for general circuits for a polynomially bounded number of (non-adaptive) key
queries, based on public-key encryption and pseudorandom generators in NC1. Goldwasser et
al. [GKP+13b] improved this result to obtain constructions with “compact” ciphertexts based
on sub-exponential learning with errors assumption. Garg et al. [GGH+13a] construct an IND-
secure FE scheme based on indistinguishability obfuscation and one-way functions, that supports
an unbounded polynomial number of ciphertexts and key queries. Combining their result with
[CIJ+13], one can obtain SIM-secure FE for general circuits supporting an unbounded number
of (adaptive) key queries.

Goldwasser et al. [GKP+13a] give a construction of an FE scheme for turing machines based
on extractable witness encryption [GGSW13] and SNARK [BCCT12]. Recently, the works of
Boyle et al. [BCP13] and Ananth et al. [ABG+13] provide constructions of functional encryption
for turing machines, supporting an unbounded number of key queries. Both of these results rely
on the notion of differing-inputs obfuscation, introduced by Barak et al. [BGI+01] (and some
other assumptions; see Section 1.1.3). We note that our usage of differing-inputs obfuscation is
very similar to [BCP13, ABG+13].

Order-Preserving Encryption. The notion of order-preserving encryption was intro-
duced by Boldyreva et al. [BCLO09]. Very roughly, in an order-preserving encryption scheme,
for any two plaintexts x1 and x2 such that x1 > x2, the encryptions of x1 and x2 must also satisfy
the same order relationship. Thus, given two ciphertexts CT1 and CT2, one can simply compare
them to (publicly) determine the order relationship between their underlying plaintexts.

Positive results for order-preserving encryption were given by [BCLO09, BCO11]. These
results, however, achieve very weak security guarantees (in particular, they show that an order-
preserving encryption scheme cannot achieve IND security). We note that one can cast the
problem of computing order relationships between (encrypted) plaintexts as multi-input function
encryption for comparison functionality. Specifically, instead of requiring that ciphertexts obey
the same order relationship as their underlying plaintexts, we can now release secret keys to
enable the computation of order relationship between encrypted plaintexts. This allows us to
achieve IND security as well as SIM security, both of which provide much stronger guarantees

7

393
Approved for Public Release; Distribution Unlimited.

than [BCLO09, BCO11]. Indeed, achieving stronger security guarantees in this context was left
as an open problem by [BCLO09, BCO11].

Property-Preserving Encryption. Recently, Pandey and Rouselakis [PR12] studied the
problem of property-preserving encryption as a generalization of order-preserving encryption.
As above, we note that this problem can be viewed as a multi-input functional encryption, where
the function family is determined by the class of properties that one wishes to support. Again,
we note that the security definitions considered in [PR12] are weaker than what we consider
in this work. In particular, this is because we do not require the ciphertexts to satisfy the
same property as their underlying plaintexts; instead in our setting, given a secret key SKf
for a property f , one can test f on the plaintexts via a joint decryption of the corresponding
ciphertexts.

1.3 Organization

The rest of this paper is organized as follows. We start by presenting our definitions for multi-
input functional encryption in Section 2. Next, in Section 3, we recall the definitions for various
cryptographic primitives used in our constructions. We then present our constructions for multi-
input functional encryption in Section 4 and Section 5. In Section 6, we show how to construct
general obfuscation from multi-input functional encryption and also provide impossibility re-
sults for SIM-secure MI-FE. Finally, we discuss how to extend our positive results to handle
randomized functionalities in Section 7.

2 Multi-Input Functional Encryption

In this work, we study functional encryption for n-ary functions, where n > 1 (and in gen-
eral, a polynomial in the security parameter). In other words, we are interested in encryption
schemes where the owner of a “master” secret key can generate special keys SKf that allow
the computation of f(x1, . . . , xn) from n ciphertexts CT1, . . . ,CTn corresponding to messages
x1, . . . , xn, respectively. We refer to such an encryption scheme as multi-input functional en-
cryption. Analogously, we will refer to the existing notion of functional encryption (that only
considers single-ary functions) as single-input functional encryption.

Intuitively, while single-input functional encryption can be viewed as a specific (non-interactive)
way of performing two-party computation, our setting of multi-input functional encryption cap-
tures multiparty computation. Going forward with this analogy, we are interested in modeling
the general scenario where the n input ciphertexts are computed by n different parties. This
raises the following two important questions:

1. Do the parties (i.e., the encryptors) share the same encryption key or do they use different
encryption keys EKi to compute input ciphertexts CTi.

2. Are the encryption keys secret or public?

As we shall see, these questions have important bearing on the security guarantees that can be
achieved for multi-input functional encryption.

Towards that end, we present a general, unified syntax and security definitions for multi-
input functional encryption. We consider encryption systems with n encryption keys, some of
which may be public, while the rest are secret. When all of the encryption keys are public, then
this represents the “public-key” setting, while when all the encryption keys are secret, then
this represents the “secret-key” setting. Looking ahead, we remark that our modeling allows
us to capture the intermediary cases between these two extremes that are interesting from the
viewpoint of the security guarantees possible.

8

394
Approved for Public Release; Distribution Unlimited.

The rest of this section is organized as follows. We first present the syntax and correctness
requirements for multi-input FE in Section 2.1). Then, in Section 2.2, we present our security
definitions for multi-input FE.

2.1 Syntax

Throughout the paper, we denote the security parameter by k. Let X = {Xk}k∈N and Y =
{Yk}k∈N be ensembles where each Xk and Yk is a finite set. Let F = {Fk}k∈N be an ensemble
where each Fk is a finite collection of n-ary functions. Each function f ∈ Fk takes as input n
strings x1, . . . , xn, where each xi ∈ Xk and outputs f(x1, . . . , xn) ∈ Yk.

A multi-input functional encryption scheme FE for F consists of four algorithms (FE.Setup,
FE.Enc, FE.Keygen, FE.Dec) described below.

• Setup FE.Setup(1k, n) is a PPT algorithm that takes as input the security parameter k
and the function arity n. It outputs n encryption keys EK1, . . . ,EKn and a master secret
key MSK.

• Encryption FE.Enc(EK, x) is a PPT algorithm that takes as input an encryption key
EKi ∈ (EK1, . . . ,EKn) and an input message x ∈ Xk and outputs a ciphertext CT.

In the case where all of the encryption keys EKi are the same, we assume that each
ciphertext CT has an associated label i to denote that the encrypted plaintext constitutes
an i’th input to a function f ∈ Fk. For convenience of notation, we omit the labels from the
explicit description of the ciphertexts. In particular, note that when EKi’s are distinct, the
index of the encryption key EKi used to compute CT implicitly denotes that the plaintext
encrypted in CT constitutes an i’th input to f , and thus no explicit label is necessary.

• Key Generation FE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and an n-ary function f ∈ Fk and outputs a corresponding secret key SKf .

• Decryption FE.Dec(SKf ,CT1, . . . ,CTn) is a deterministic algorithm that takes as input
a secret key SKf and n ciphertexts CTi, . . . ,CTn and outputs a string y ∈ Yk.

Definition 1 (Correctness). A multi-input functional encryption scheme FE for F is correct
if for all f ∈ Fk and all (x1, . . . , xn) ∈ Xnk :

Pr

[
(~EK,MSK)← FE.Setup(1k) ; SKf ← FE.Keygen(MSK, f) ;

FE.Dec (SKf ,FE.Enc (EK1, x1) , . . . ,FE.Enc (EKn, xn)) 6= f(x1, . . . , xn)

]
= negl(k)

where the probability is taken over the coins of FE.Setup, FE.Keygen and FE.Enc.

2.2 Security for Multi-Input Functional Encryption

We now present our security definitions for multi-input functional encryption. Following the
literature on single-input FE, we consider two notions of security, namely, indistinguishability-
based security (or IND-security, in short) and simulation-based security (or SIM-security, in
short).

Notation. We start by introducing some notation that is used in our security definitions. Let
N denote the set of positive integers {1, . . . , n} where n denotes the arity of functions. For any
two sets S = {s0, . . . , s|S|} and I = {i1, . . . , i|I|} such that |I| ≤ |S|, we let SI denote the subset
{si}i∈I of the set S. Throughout the text, we use the vector and set notation interchangeably,
as per convenience. For simplicity of notation, we omit explicit reference to auxiliary input to
the adversary from our definitions.

9

395
Approved for Public Release; Distribution Unlimited.

2.2.1 Indistinguishability-based Security

Here we present an indistinguishability-based security definition for multi-input FE.

Intuition. We start by giving an overview of the main ideas behind our indistinguishability-
based security definition. To convey the core ideas, it suffices to consider the case of 2-ary
functions. We will assume familiarity with the security definitions for single-input FE.

Let us start by considering the natural extension of public-key single-input FE to the two-
input setting. That is, suppose there are two public encryption keys EK1, EK2 that are used
to create ciphertexts of first inputs and second inputs, respectively, for 2-ary functions. Let
us investigate what security can be achieved for one pair of challenge message tuples (x01, x

0
2),

(x11, x
1
2) for the simplified case where the adversary makes secret key queries after receiving the

challenge ciphertexts.
Suppose that the adversary queries secret keys for functions {f}. Now, recall that the IND-

security definition in the single-input case guarantees that an adversary cannot differentiate
between encryptions of x0 and x1 as long as f(x0) = f(x1) for every f ∈ {f}. We note,
however, that an analogous security guarantee cannot be achieved in the multi-input setting.
That is, restricting the functions {f} to be such that f(x01, x

0
2) = f(x11, x

1
2) is not enough since

an adversary who knows both the encryption keys can create its own ciphertexts w.r.t. each
encryption key. Then, by using the secret key corresponding to function f , it can learn additional
values {f(xb1, ·)} and {f(·, xb2)}, where b is the challenge bit. In particular, if, for example, there
exists an input x∗ such that f(x01, x

∗) 6= f(x11, x
∗), then the adversary can learn the challenge

bit b! Therefore, we must enforce additional restrictions on the query functions f . Specifically,
we must require that f(x01, x

′) = f(x11, x
′) for every input x′ in the domain (and similarly

f(x′, x02) = f(x′, x12)). Note that this restriction “grows” with the arity n of the functions.
Let us now consider the secret-key case, where all the encryption keys are secret. In this

case, for the above example, it suffices to require that f(x01, x
0
2) = f(x11, x

1
2) since the adversary

cannot create its own ciphertexts. Observe, however, that when there are multiple challenge
messages, then an adversary can learn function evaluations over different “combinations” of
challenge messages. In particular, if there are q challenge messages per encryption key, then
the adversary can learn q2 output values for every f . Then, we must enforce that for every
i ∈ [q2], the i’th output value y0i when challenge bit b = 0 is equal to the output value y1i when
the challenge bit b = 1.

The security guarantees in the public-key and the secret-key settings as discussed above are
vastly different. In general, we observe that the more the number of encryption keys that are
public, the smaller the class of functions that can be supported by the definition. Bellow, we
present a unified definition that simultaneously captures the extreme cases of public-key and
secret-key settings as well as all the “in between” cases.

Compatible Functions and Input Plaintexts. To facilitate the presentation of our
IND security definition, we first introduce the following notion:

Definition 2 (I-Compatibility). Let {f} be any set of functions f ∈ Fk. Let N = {1, . . . , n}
and I ⊆ N. Let ~X0 and ~X1 be a pair of input vectors, where ~Xb =

{
xb1,j , . . . , x

b
n,j

}q
j=1

. We say

that F and (~X0, ~X1) are I-compatible if they satisfy the following property:

• For every f ∈ {f}, every I′ = {i1, . . . , it} ⊆ I ∪ ∅, every j1, . . . , jn−t ∈ [q], and every
x′i1 , . . . , x

′
it
∈ Xk,

f
(〈
x0i1,j1 , . . . , x

0
in−t′ ,jn−t

, x′i1 , . . . , x
′
it

〉)
= f

(〈
x1i1,j1 , . . . , x

1
in−t,jn−t

, x′i1 , . . . , x
′
it

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the value yij
is mapped to the `’th location if yij is the `’th input (out of n inputs) to f .

10

396
Approved for Public Release; Distribution Unlimited.

IND-secure MI-FE. Our security definition is parameterized by two variables t and q, where
t denotes the number of encryption keys known to the adversary, and q denotes the number of
challenge messages per encryption key. Thus, in total, the adversary is allowed to make Q = q ·n
number of challenge message queries. We are now ready to present our formal definition for
(t, q)-IND-secure multi-input functional encryption.

Definition 3 (Indistinguishability-based security). We say that a multi-input functional en-
cryption scheme FE for for n-ary functions F is (t, q)-IND-secure if for every PPT adversary
A = (A0,A1,A2), the advantage of A defined as

AdvFE,INDA (1k) =

∣∣∣∣Pr[INDFEA (1k) = 1]− 1

2

∣∣∣∣
is negl(k), where:

Experiment INDFEA (1k):
(I, st0)← A0(1k) where |I| = t

(~EK,MSK)← FE.Setup(1k)

(~X0, ~X1, st1)← AFE.Keygen(MSK,·)
1 (st0, ~EKI) where ~X` =

{
x`1,j , . . . , x

`
n,j

}q
j=1

b← {0, 1} ; CTi,j ← FE.Enc(EKi, x
b
i,j) ∀i ∈ [n], j ∈ [q]

b′ ← AFE.Keygen(MSK,·)
2 (st1, ~CT)

Output: (b = b′)

In the above experiment, we require:

• Let {f} denote the entire set of key queries made by A1. Then, the challenge message

vectors ~X0 and ~X1 chosen by A1 must be I-compatible with {f}.

• The key queries {g} made by A2 must be I-compatible with ~X0 and ~X1.

Selective Security. We also consider selective indistinguishability-based security for multi-
input functional encryption. Formally, (t, q)-sel-IND-security is defined in the same manner as

Definition 3, except that the adversaryA1 is required to choose the challenge message vectors ~X0,
~X1 before the evaluation keys ~EK and the master secret key MSK are chosen by the challenger.
We omit the formal definition to avoid repetition.

2.2.2 Simulation-based Security

Here we present a simulation-based security definition for multi-input FE. We consider the case
where the adversary makes key queries after choosing the challenge messages. That is, we only
consider adaptive key queries. The “opposite” case where the adversary makes key queries before
choosing the challenge messages (i..e, non-adaptive key queries) is discussed in Section D.

Our definition extends the simulation-based security definition for single-input FE that sup-
ports adaptive key queries[BSW11, O’N10, BO13, CIJ+13]. In particular, we present a general
definition that models both black-box and non-black-box simulation.

Intuition. We start by giving an overview of the main ideas behind our simulation-based
security definition. To convey the core ideas, it suffices to consider the case of 2-ary functions.
Let us start by considering the natural extension of public-key single-input FE to the two-input
setting. That is, suppose there are two public encryption keys EK1, EK2 that are used to create
ciphertexts of first inputs and second inputs, respectively, for 2-ary functions. Let us investigate
what security can be achieved for one challenge message tuple (x1, x2).

11

397
Approved for Public Release; Distribution Unlimited.

Suppose that the adversary queries secret keys for functions {f}. Now, recall that the SIM-
security definition in the single-input case guarantees that for every f ∈ {f}, an adversary cannot
learn more than f(x) when x is the challenge message. We note, however, that an analogous
security guarantee cannot be achieved in the multi-input setting. Indeed, an adversary who
knows both the encryption keys can create its own ciphertexts w.r.t. each encryption key. Then,
by using the secret key corresponding to function f , it can learn additional values {f(x1, ·)} and
{f(·, x2)}. Thus, we must allow for the ideal world adversary, aka simulator, to learn the same
information.

In the secret-key case, however, since all of the encryption keys are secret, the SIM-security
definition for single-input FE indeed extends in a natural manner to the multi-input setting. We
stress, however, that when there are multiple challenge messages, we must take into account the
fact that adversary can learn function evaluations over all possible “combinations” of challenge
messages. Our definition presented below formalizes this intuition.

SIM-secure MI-FE. Similar to the IND-security case, our definition is parameterized by
variables t and q as defined earlier. We now formally define (t, q)-SIM-secure multi-input func-
tional encryption.

Definition 4 (Simulation-based Security). We say that a functional encryption scheme FE for
n-ary functions F is (t, q)-SIM-secure if for every PPT adversary A = (A0,A1,A2), there exists
a PPT simulator S = (S0,S1,S2) such that the outputs of the following two experiments are
computationally indistinguishable:

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

(~EK,MSK)← FE.Setup(1k)

(M, st1)← A1(st0, ~EKI)
~X ←M where ~X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← AFE.Keygen(MSK,·)
2 (~CT, st1)

Output: (I,M, ~X, {f}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)

α← STP(M,·,·)
2 (st1)

Output: (I,M, ~X, {g}, α)

where the oracle TP(M, ·, ·) denotes the ideal world trusted party, {f} denotes the set of queries
of A2 to FE.Keygen and {g} denotes the set of functions appearing in the queries of S2 to

TP. Given the message distribution M, TP first samples a message vector ~X ←M , where
~X = {x1,j , . . . , xn,j}qj=1. It then accepts queries of the form

(
g, (j1, . . . , jn−p) ,

(
x′i′1
, . . . , x′i′p

))
where p ≤ t, {i′1, . . . , i′p} ⊆ I ∪ ∅ and x′i′1

, . . . , x′i′p ∈ Xk. On receiving such a query, TP outputs:

g
(〈
xi1,j1 , . . . , xin−p,jn−p , x

′
i′1
, . . . , x′i′p

〉)
,

where 〈yi1 , . . . , yin〉 denotes a permutation of the values yi1 , . . . , yin such that the value yij is
mapped to the `’th location if yij is the `’th input (out of n inputs) to g.

Remark 5 (On Queries to the Trusted Party). Note that when t = 0, then given the challenge ci-

phertexts ~CT, intuitively, the real adversary can only compute values FE.Dec (SKf ,CT1,j1 , . . . ,CTn,jn)
for every ji ∈ [q], i ∈ [n]. To formalize the intuition that this adversary does not learn anything
more than function values {f (x1,j1 , . . . , xn,jn)}, we restrict the ideal adversary aka simulator to
learn exactly this information.

12

398
Approved for Public Release; Distribution Unlimited.

However, when t > 0, then the real adversary can compute values:

FE.Dec
(
SKf ,

〈
CTi1,j1 , . . . ,CTin−t,jn−t

,CT′i′1 , . . . ,CT
′
i′t

〉)
for ciphertexts CT′i′` of its choice since it knows the encryption keys ~EKI. In other words, such

an adversary can learn function values of the form f
(〈
xi1,j1 , . . . , xin−t,jn−t

, ·, . . . , ·
〉)

. Thus, we
must provide the same ability to the simulator as well. Our definition presented above precisely
captures this.

Selective Security. We also consider selective simulation-based security for multi-input
functional encryption. Formally, (t, q)-sel-SIM-security is defined in the same manner as Defini-
tion 4, except that in the real world experiment, adversary A1 chooses the message distribution
M before the evaluation keys ~EK and the master secret key MSK are chosen by the challenger.
We omit the formal definition to avoid repetition.

Remark 6 (SIM-security: Secret-key setting). When t = 0, none of the encryption keys are
known to the adversary. In this “secret-key” setting, there is no difference between (0, q)-sel-SIM-
security and (0, q)-SIM-security.

3 Preliminaries

Here we present definitions of various cryptographic primitives that are used in our construction
of multi-input functional encryption. We assume familiarity with standard semantically-secure
public-key encryption and omit its formal definition from this text. Below, we recall the notions
of indistinguishability obfuscation, non-interactive witness indistinguishable proof systems and
perfectly binding commitment schemes.

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by Barak et al.
[BGI+01]. Intuitively speaking, we require that for any two circuits C1 and C2 that are “func-
tionally equivalent” (i.e., for all inputs x in the domain, C1(x) = C2(x)), the obfuscation of C1

must be computationally indistinguishable from the obfuscation of C2. Below we present the
formal definition following the syntax of [GGH+13a].

Definition 7 (Indistinguishability Obfuscation). A uniform PPT machine iO is called an in-
distinguishability obfuscator for a circuit class {Ck} if the following holds:

• Correctness: For every k ∈ N, for every C ∈ Ck, for every input x in the domain of C,
we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

• Indistinguishability: For every k ∈ N, for all pairs of circuits C0, C1 ∈ Ck, if C0(x) =
C1(x) for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(k).

Very recently, Garg et al. [GGH+13a] gave the first candidate construction for an indistin-
guishability obfuscator iO for the circuit class P/poly. ADD.

13

399
Approved for Public Release; Distribution Unlimited.

Differing-Inputs Obfuscation. We also consider a stronger notion of indistinguishability
obfuscation, namely, differing-inputs obfuscation that was proposed by Barak et al [BGI+01].
Intuitively speaking, we require that for any two circuits C1 and C2 that “appear” to be func-
tionally equivalent to every PPT algorithm (i.e., no PPT algorithm can find an input x s.t.
C1(x) 6= C2(x)), the obfuscation of C1 must be computationally indistinguishable from the
obfuscation of C2. Alternatively, if a PPT algorithm can distinguish obfuscation of C1 from
obfuscation of C2, then we can efficiently find an input x s.t. C1(x) 6= C2(x).

Below, we present the formal definition. We follow the formalism of [ABG+13].
We start by defining the notion of differing-inputs circuit family. Intuitively. a circuit family

is said to be a differing-inputs circuits family if there does not exist any PPT adversary that
given two circuits, that are sampled from a distribution defined on this circuit family, can find
an input x such that both the circuits yield different outputs on x.

Definition 8 (Differing-Inputs Circuit Family). A circuit family C associated with a sampler
Sampler is said to be a differing-inputs circuit family if for every PPT adversary A, there exists
a negligible function negl(·) such that:

Pr
[
C0(x) 6= C1(x) | (C0, C1, z)← Sampler(1k); x← A

(
1k, C0, C1, z

)]
≤ negl(k)

Definition 9 (Differing-Inputs Obfuscator). A PPT machine diO is called a differing-inputs
obfuscator for a differing-inputs circuits family C = {Ck} if the following conditions are satisfied:

• Correctness: For all security parameters k ∈ N, for all C ∈ C, for all inputs x, we have
that:

Pr[C ′(x) = C(x) | C ′ ← diO(1k, C)] = 1

• Differing-inputs: For any PPT adversary A, there exists a negligible function negl(·)
such that the following holds: For all security parameters k ∈ N, for (C0, C1, z) ←
Sampler(1k), we have that:

|Pr [A (diO (C1)) = 1]− Pr [A (diO (C2)) = 1]| ≤ negl(k).

3.2 Non-Interactive Proof Systems

In this section, we recall various security notions for non-interactive proof systems. We start
by giving the syntax and formal definition of a non-interactive proof system. Next, we give
the definition of non-interactive witness-indistinguishable proofs (NIWI). Finally, we give the
definition of non-interactive zero-knowledge (NIZK), with simulation-soundness property.

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w), where x is
called the statement and w is the witness. Let L denote the language consisting of statements
in R. A non-interactive proof system for a language L consists of a setup algorithm CRSGen, a
prover algorithm Prove and a verifier algorithm Verify, defined as follows:

• Setup CRSGen(1k) is a PPT algorithm that takes as input the security parameter k and
outputs a common reference string crs.

• Prover Prove(crs, x, w) is a PPT algorithm that takes as input the common reference
string CRS, a statement x along with a witness w. (x,w) ∈ R; if so, it produces a proof
string π, else it outputs fail.

• Verifier Verify(crs, x, π) is a PPT algorithm that takes as input the common reference
string crs and a statement x with a corresponding proof π. It outputs 1 if the proof is
valid, and 0 otherwise.

14

400
Approved for Public Release; Distribution Unlimited.

Definition 10 (Non-interactive Proof System). A non-interactive proof system for a language
L with a PPT relation R is a tuple of algorithms (CRSGen,Prove,Verify) such that the following
properties hold:

• Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[Verify(crs, x,Prove(crs, x, w)) = 1] = 1

where crs← CRSGen(1k), and the probability is taken over the coins of CRSGen, Prove and
Verify.

• Statistical Soundness: For every adversary A, it holds that

Pr[Verify(crs, x, π) = 1 ∧ x /∈ L | crs← CRSGen(1k); (x, π)← A(crs)] = negl(k)

If the soundness property only holds against PPT adversaries, then we call it an argument
system.

Definition 11 (NIWI). We say that a non-interactive proof system (CRSGen,Prove,Verify) for
a language L with a PPT relation R is witness-indistinguishable if for any triplet (x,w0, w1) such
that (x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,Prove(crs, x, w0)} and {crs,Prove(crs, x, w1)}
are computationally indistinguishable, where crs← CRSGen(1k).

Definition 12 (NIZK). A non-interactive proof system (CRSGen,Prove,Verify) for a language
L with a PPT relation R is said to be zero knowledge if there exists a simulator Sim =
(Sim.CRSGen,Sim.Prove) such that for all PPT adversaries A,∣∣∣∣ Pr

[
AProve(crs,·,·) (crs) = 1 | crs← CRSGen

(
1k
)]

−Pr
[
AS(crs,τ,·,·) (crs) = 1 | (crs, τ)← Sim.CRSGen

(
1k
)] ∣∣∣∣ = negl(k)

where S(crs, τ, x, w) = Sim.Prove(crs, τ, x) if (x,w) ∈ R and outputs fail otherwise.

Definition 13 (Simulation soundness). A NIZK proof system (CRSGen,Prove,Verify) for a lan-
guage L with a PPT relation R is said to be simulation sound if for all PPT adversaries,

Pr

[
(x∗, π∗)← ASim.Prove(crs,τ,·) (crs) ∧ x∗ /∈ L

∧ 1← Verify (crs, x∗, π∗) | (crs, τ)← Sim.CRSGen
(
1k
)] = negl(k)

where x∗ is not in the list of queries made by A to Sim.Prove.

3.3 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and randomness r
and outputs c← Com(x; r). A perfectly binding commitment scheme must satisfy the following
properties:

• Perfectly Binding: This property states that two different strings cannot have the same
commitment. More formally, ∀x1 6= x2 and r1, r2, Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of the same length), for all PPT
adversaries A, we have that:

|Pr[A1(Com(x0)) = 1]− Pr[A1(Com(x1)) = 1)]| ≤ negl(k).

We note that it is in fact sufficient to use a standard 2-round statistically binding scheme
in our construction in Section 4. Note that such a commitment scheme can be based on one
way functions. For simplicitly of exposition, however, we will present our construction using a
non-interactive perfectly binding scheme.

15

401
Approved for Public Release; Distribution Unlimited.

4 A Construction from Indistinguishability Obfuscation

Let F denote the family of all efficiently computable (deterministic) n-ary functions. We now
present a functional encryption scheme FE I for F . Assuming the existence of one-way functions
and indistinguishability obfuscation for all efficiently computable circuits, we prove the following
security guarantees for FE I:

1. For t = 0, and any q = q(k) such that
(
qn
n

)
= poly(k), FE I is (0, q)-SIM-secure.2 In this

case, the size of the secret keys in FE I grows linearly with
(
qn
n

)
.

2. For any t ≤ n and q = poly(k), FE I is (t, q)-sel-IND-secure. In this case, the size of the
secret keys is independent of q.

Further, the size of each encryption key and ciphertext in FE I grows linearly with q. In
Section 5, we give an efficient construction with “compact” encryption keys and ciphertexts,
whose security is proven in the standard model.

Notation. Let (CRSGen,Prove,Verify) be a NIWI proof system. Let Com denote a perfectly
binding commitment scheme. Let iO denote an indistinguishability obfuscator. Finally, let
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public-key encryption scheme.
(See Section 3 for definitions of these notions.) We denote the length of ciphertexts in PKE by
c-len = c-len(k). Let len = 2 · c-len.

We now proceed to describe our scheme FE I = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs ← CRSGen(1k) for
the NIWI proof system. Next, it computes two key pairs – (pk1, sk1) ← PKE.Setup(1k) and
(pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption scheme PKE. Finally, it computes
the following commitments: (a) Zi,j1 ← Com(0len) for every i ∈ [n], j ∈ [q]. (b) Zi2 ← Com(0)
for every i ∈ [n].

For every i ∈ [n], the i’th encryption key EKi =
(
crs, pk1, pk2,

{
Zi,j1

}
, Zi2, r

i
2

)
where ri2

is the randomness used to compute the commitment Zi2. The master secret key is set to be

MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j1

}
,
{
Zi2
})

. The setup algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption key EKi, the
encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and c2 ← PKE.Enc(pk2, x). Next, it

computes a NIWI proof π ← Prove(crs, y, w) for the statement y =
(
c1, c2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
:

• Either c1 and c2 are encryptions of the same message and Zi2 is a commitment to 0, or

• ∃ j ∈ [q] s.t. Zi,j1 is a commitment to c1‖c2.

A witness wreal = (m, s1, s2, r
i
2) for the first part of the statement, referred to as the real

witness, includes the message m and the randomness s1 and s2 used to compute the ciphertexts
c1 and c2, respectively, and the randomness ri2 used to compute Zi2. A witness wtrap = (j, ri,j1)
for the second part of the statement, referred to as the trapdoor witness, includes an index j
and the randomness ri,j1 used to compute Zi,j1 .

The honest encryption algorithm uses the real witness wreal to compute π. The output of
the algorithm is the ciphertext CT = (c1, c2, π).

2Recall that when t = 0, there is no difference between selective security and standard security as defined in
Section 2.2.2. See Remark 6.

16

402
Approved for Public Release; Distribution Unlimited.

Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f computes
SKf ← iO(Gf) where the function Gf is defined in Figure 1. Note that Gf has the master secret
key MSK hardwired in its description.

Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

(a) Parse CTi = (ci,1, ci,2, πi).

(b) Let yi =
(
ci,1, ci,2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
be the statement corresponding to the proof string

πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).

2. Output f(x1, . . . , xn).

Figure 1: Functionality Gf

The algorithm outputs SKf as the secret key for f .

Size of Function Gf . In order to prove that FE I is (0, q)-SIM-secure (see Section 4.2), we require
the function Gf to be padded with zeros such that |Gf | = |Sim.Gf |, where the “simulated”
functionality Sim.Gf is described later in Figure 2. In this case, the size of SKf grows linearly
with

(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-security for FE I
(see Section 4.1). Indeed, in this case, the secret keys SKf are independent of the number of
message queries q made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input (CT1, . . . ,CTn)
computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of the proposed functional encryption scheme FE I. The
correctness property of the scheme follows from inspection. We prove sel-IND security for FE I
in Section 4.1, and then prove SIM security in Section 4.2.

4.1 Proving sel-IND Security

We now prove that the proposed scheme FE I is (t, q)-sel-IND-secure for any t ≤ n.

Theorem 14. Let q = q(k) be a fixed poly(k). Then, assuming indistinguishability obfuscation
for all polynomial-time computable circuits and one-way functions, the proposed scheme FE I is
(t, q)-sel-IND-secure for any t ≤ n.

We prove the above theorem via a hybrid argument. We start by describing a sequence of
hybrid experiments H0, . . . ,H10, where experiment H0 (resp., H10) corresponds to the real world
experiment with challenge bit b = 0 (resp., b = 1). We will prove that for every i, the outputs
of experiments Hi and Hi+1 are computationally indistinguishable.

Hybrid H0: This is the real experiment with challenge bit b = 0.

Hybrid H1: This experiment is the same as H0 except that the setup algorithm computes the
commitments {Zi,j1 } in the following manner: let the challenge ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

Then, Zi,j1 ← Com(ĉi,j1 ‖ĉ
i,j
2).

17

403
Approved for Public Release; Distribution Unlimited.

Hybrid H2: This experiment is the same as H1 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the trapdoor witness.

Hybrid H3: This experiment is the same as H2 except that for every i ∈ N \ I (where I
denotes the set of indices i s.t. EKi is known to the adversary) the setup algorithm computes
Zi2 as a commitment to 1 (instead of 0). That is, for every i ∈ [n], Zi2 ← Com(1).

Hybrid H4: This experiment is the same as H3 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is computed as an encryption of the challenge

message x1i,j (as opposed to x0i,j), i.e., ĉi,j2 ← FE.Enc(EKi, x
1
i,j).

Hybrid H5: This experiment is the same as H4 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(G′f) where G′f is the same as the
function Gf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H6: This experiment is the same as H5 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of challenge message x1i,j (as

opposed to x0i,j), i.e., ĉi,j1 ← FE.Enc(EKi, x
1
i,j).

Hybrid H7: This experiment is the same as H6 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Gf).

Hybrid H8: This experiment is the same as H7 except that the setup algorithm computes
every Zi2 as a commitment to 0, i.e., Zi2 ← Com(0).

Hybrid H9: This experiment is the same as H8 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the real witness.

Hybrid H10: This experiment is the same as H9 except that the setup algorithm computes
every Zi,j1 as a commitment to the all zeros string, i.e., Zi,j1 ← Com(0len). Note that this is the
real experiment with challenge bit b = 1.

This completes the description of the hybrids. We argue their indistinguishability in Ap-
pendix A.

4.2 Proving SIM Security

Here we prove that the proposed scheme FE I is (0, q)-SIM-secure.

Theorem 15. Let q = q(k) be such that
(
qn
n

)
= poly(k). Then, assuming indistinguishability

obfuscation for all polynomial-time computable circuits and one-way functions, the proposed
scheme FE I is (0, q)-SIM-secure.

In order to prove the above theorem, we first construct an ideal world adversary aka simulator
S. Then, in Appendix B, we prove indistinguishability of the outputs of the real and ideal world
experiments via a hybrid argument.

18

404
Approved for Public Release; Distribution Unlimited.

Simulator S. We describe a simulator S = (S0,S1,S2) that only makes black-box use of a
real-world adversary A = (A0,A1,A2).

Algorithm S0. Let z be the auxiliary input given to S. Algorithm S0 simply runs A0 with
auxiliary input z and outputs (I, st0)← A0(1k, z). Since we are only considering the case where
t = 0, we have that I = ∅.

Algorithm S1. Algorithm S1 simply runs A1 on input st0 and outputs (M, st1)← A0(st0).

Algorithm S2. This algorithm runs the adversary algorithm A2 on simulated ciphertexts and
provides simulated answers to the key queries made by A2. More concretely, S2 runs in the
following sequence of steps:

1. Simulate Setup. S2 first performs a simulated setup procedure. Namely, it first computes
a CRS crs ← CRSGen(1k) for the NIWI proof system. Next, it computes two key pairs –
(pk1, sk1)← PKE.Setup(1k) and (pk2, sk2)← PKE.Setup(1k) – of the public-key encryption
scheme PKE. Finally, it computes the commitments {Zi,j1 } and {Zi2} in the following
manner:

• For every i ∈ [n], j ∈ [q]: (a) Compute ĉi,j1 and ĉi,j2 as encryptions of zeros, i.e., ĉi,j1 ←
PKE.Enc(pk1, 0) and ĉi,j2 ← PKE.Enc(pk2, 0). (b) Compute Zi,j1 ← Com(ĉi,j1 ‖ĉ

i,j
2). Let

ri,j1 be the randomness used to compute Zi,j1 ..

• For every i ∈ [n], compute Zi2 as a commitment to 1, i.e., Zi2 ← Com(1).

Let MSK =
(
crs, pk1, pk2, sk1,

{
Zi,j1

}
,
{
Zi2
})

.

2. Simulate Challenge Ciphertexts. S2 now computes simulated challenge ciphertexts ~CT =
{ĈT1,j , . . . , ĈTn,j}qj=1 in the following manner. For every i ∈ [n], j ∈ [q]:

• Let yi,j = (ĉi,j1 , ĉi,j2 , pk1, pk2, {Z
i,j
1 }, Zi2). Compute the proof π̂i ← Prove(crs, yi,j , wi,j)

where the witness wi,j corresponds to the trapdoor witness (j, ri,j1). That is, wi,j
establishes that Zi,j1 is a commitment to ĉi,j1 ‖ĉ

i,j
2 .

• The simulated ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

3. Simulate Key Queries. Finally, S2 runs the adversary algorithm A2 on input (~CT, st1).
Recall from Definition 4 that A2 also makes queries to the key generation oracle. S2
simulates responses to A2’s key queries in the following manner. Let TP denote the ideal
world trusted party that given the message distribution M (output by S2) first samples
~X ←M , where ~X = {x1,j , . . . , xn,j}qj=1. When A2 makes a key query f , S2 performs the
following sequence of steps:

• Query the trusted party TP on function (f, j1, . . . , jn) for every choice of j1, . . . , jn ∈
[q]. The trusted party computes and returns the function outputs out[j1, . . . , jn] =
f(x1,j1 , . . . , xn,jn} to S2. Let ~out denote the vector of all the

(
q
n

)
number of outputs.

• Compute the secret key SKf for function f as SKf ← iO(Sim.Gf). The functionality

Sim.Gf has the master secret key MSK, the challenge ciphertext pairs {ĉi,j1 , ĉi,j2 } and
the outputs ~out hardwired in it. It is described in Figure 2.

• Return SKf to A2.

Finally, at some point A2 outputs its view α. S2 outputs α and stops.
In Appendix B, we prove indistinguishability of the outputs of the real and ideal experiments.

5 A Construction from Differing-Inputs Obfuscation

Let F denote the family of all efficiently computable (deterministic) n-ary functions. We now
present a new functional encryption scheme FE II for F based on differing-inputs obfuscation.

19

405
Approved for Public Release; Distribution Unlimited.

Sim.Gf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

• Parse CTi = (ci,1, ci,2, πi).

• Let yi =
(
ci,1, ci,2, pk1, pk2,

{
Zi,j1

}
, Zi2

)
be the statement corresponding to the proof string

πi. If Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

2. If ∃ (j1, . . . , jn) s.t. for every i ∈ [n],

• ĉi,ji1 = ci,1, and

• ĉi,ji2 = ci,2,

then stop and output out[j1, . . . , jn].

3. Otherwise, for every i ∈ [n],

• Compute xi ← PKE.Dec(sk1, ci,1).

4. Output f(x1, . . . , xn).

Figure 2: Functionality Sim.Gf

The main advantage of this scheme over the one presented in Section 4 is that the encryption
keys and the ciphertexts are “compact”, i.e., independent of the number of message queries q
made by the adversary.

The proposed scheme provides the following security guarantees:

• For any choice of t ≤ n, FE II is (t, poly(k))-IND-secure. In this case, the number of message
queries q can be an arbitrary unbounded polynomial q = poly(k).

• For t = 0 and q = q(k) such that
(
qn
n

)
= poly(k), our construction naturally extends to

(0, q)-SIM-security. In this case, the size of the secret keys grows linearly with
(
qn
n

)
.

Notation. Let (CRSGen,Prove,Verify) be a simulation-sound NIZK argument system. Let
Com denote a perfectly binding commitment scheme. Let diO denote a differing-inputs obfus-
cator. Finally, let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public-key
encryption scheme.

We now proceed to describe the scheme FE II = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec).

Setup FE.Setup(1k): The setup algorithm first computes a CRS crs ← CRSGen(1k) for
the simulation-sound NIZK proof system. Next, it computes two key pairs – (pk1, sk1) ←
PKE.Setup(1k) and (pk2, sk2) ← PKE.Setup(1k) – of the public-key encryption scheme PKE.
Finally, for every i ∈ [n], it computes a commitment Zi ← Com(0).

For every i ∈ [n], the i’th encryption key EKi = (crs, pk1, pk2, Zi, ri) where ri is the random-
ness used to compute Zi. The master secret key MSK = (crs, pk1, pk2, sk1, {Zi}). The setup
algorithm outputs (EK1, . . . ,EKn,MSK).

Encryption FE.Enc(EKi, x): To encrypt a message x with the i’th encryption key EKi,
the encryption algorithm first computes c1 ← PKE.Enc(pk1, x) and c2 ← PKE.Enc(pk2, x).
Next, it computes a simulation-sound NIZK proof π ← Prove(crs, y, w) for the statement y =
(c1, c2, pk1, pk2, Z):

20

406
Approved for Public Release; Distribution Unlimited.

• c1 and c2 are encryptions of the same message and Zi is a commitment to 0.

Here, a witness w = (s1, s2, ri) for y consists of the randomness s1 and s2 used to compute c1
and c2, respectively, and the randomness ri used to compute Zi.

The output of the algorithm is the ciphertext CT = (c1, c2, π).

Key Generation FE.Keygen(MSK, f): The key generation algorithm on input f computes
SKf ← diO(Hf) where the function Hf is defined in Figure 3. Note that Hf has the master
secret key MSK hardwired in its description.

Hf (CT1, . . . ,CTn)

1. For every i ∈ [n]:

(a) Parse CTi = (ci,1, ci,2, πi).

(b) Let yi = (ci,1, ci,2, pk1, pk2, {Zi}) be the statement corresponding to the proof string πi. If
Verify(crs, yi, πi) = 0, then stop and output ⊥. Otherwise, continue to the next step.

(c) Compute xi ← PKE.Dec(sk1, ci,1).

2. Output f(x1, . . . , xn).

Figure 3: Functionality Hf

The algorithm outputs SKf as the secret key for f .

Size of Function Hf . Similar to the construction in Section 4, in order to prove that FE II is
(0, q)-SIM-secure, we require the function Hf to be padded with zeros such that the size of Hf
is equal to the size of its “simulated version” which has (among other things)

(
qn
n

)
output values

hardwired in it. Thus, in this case, the size of SKf grows linearly with
(
qn
n

)
.

Note, however, that such a padding is not necessary to prove (t, q)-sel-IND-security for FE II.
Indeed, in this case, the secret keys SKf are independent of the number of message queries q
made by the adversary.

Decryption FE.Dec(SKf ,CT1, . . . ,CTn): The decryption algorithm on input (CT1, . . . ,CTn)
computes and outputs SKf (CT1, . . . ,CTn).

This completes the description of FE II. The correctness property of the scheme follows from
inspection.

Theorem 16. Assuming differing-inputs obfuscation for all polynomial-time computable circuits
and one-way functions, the proposed scheme FE II is (t, poly(k))-IND-secure for any t ≤ n.

We prove the above theorem in Appendix C. Further, we note that for t = 0 and q = q(k)
such that

(
qn
n

)
= poly(k), our IND-security proof can be naturally extended to argue (0, q)-SIM-

security for FE II by using a similar simulation strategy as for our first construction (see Section
4). We formally state the claim below, but omit the proof details from this manuscript.

Theorem 17. Let q = q(k) be such that
(
qn
n

)
= poly(k). Then, assuming differing-inputs

obfuscation for all polynomial-time computable circuits and one-way functions, the proposed
scheme FE II is (0, q)-SIM-secure.

21

407
Approved for Public Release; Distribution Unlimited.

6 Multi-Input Functional Encryption Implies Obfuscation

In this section, we prove that various flavors of multi-input FE imply well established notions
of program obfuscation.

Indistinguishability Obfuscation from MI-FE. Our first result shows that the indis-
tinguishability notion of multi-input FE unconditionally implies indistinguishability obfuscation
(note that such an implication is not known to hold for single input FE). This, in particular,
means that the use of indistinguishability obfuscation is unavoidable for multi-input FE, and,
any future improvements in the complexity assumptions on which multi-input FE is based will
only come with a corresponding improvement in the indistinguishability obfuscation construc-
tions. We state the theorem below for the “weakest” case of secret-key multi-input functional
encryption (this only strengthens our result).

Theorem 18. (0, 2)-IND-secure MI-FE for general (k+1)-ary functions unconditionally implies
indistinguishability obfuscation for all circuits with k-bit inputs.

Proof. We describe how to construct indistinguishability obfuscation for a circuit class C where
for every C ∈ C, C : {0, 1}k → {0, 1}k′ and |C| = `. Let FE be a (0, 2)-IND-secure MI-FE
scheme for general (k + 1)-ary functions. The PPT obfuscator iO works as follows.

• Consider a function g s.t. g(x1, . . . , xk, C) = C(x1|| . . . ||xk) where for all i, xi ∈ {0, 1},
and, C ∈ {0, 1}`. Observe that the function g acts as a universal circuit and treats its
(k + 1)-th input as a circuit.

• The obfuscator iO first runs the setup algorithm for FE to compute a master secret key
MSK and encryption keys as EK1, . . . ,EKk+1. It then runs the key generation algorithm of
FE to generate a secret key for the function g using MSK. Denote the resulting decryption
key as SKg.

• For all i ∈ [k], b ∈ {0, 1}, let CTbi ← FE.Enc(EKi, b). All the encryptions are performed
using independent random coins. Furthermore, let CTk+1 ← FE.Enc(EKk+1, C).

• The obfuscated circuit iO(C) = ({CTbi}b,i,CTk+1,SKg).

To evaluate the obfuscated circuit on an input x = (x1, . . . , xk), simply evaluate the de-
cryption algorithm FE.Dec(SKg, {CTxi

i }i,CTk+1). This results in g(x1, . . . , xk, C) = C(x). This
completes the description of the obfuscation scheme.

We now show that the above construction is indeed a secure indistinguishability obfuscation.
This follows from the (0, 2)-IND-security of the underlying multi-input FE scheme. Consider any
two functionally equivalent circuit C0 and C1 from C. That is, for all x ∈ {0, 1}k, C0(x) = C1(x).
Now, suppose for contradiction that there exists a PPT adversary A that distinguishes between
iO(C0) and iO(C1) with non-negligible advantage. We will construct an adversary B that breaks
(0, 2)-IND-security of FE . The adversary B runs A and receives circuits C0 and C1. It works as
follows:

1. It defines challenge message vectors ~X0 and ~X1 , where ~Xb = {xb1,j , . . . , xbk+1,j}j∈[2]. For

every i ∈ [k], set xbi,1 = 0 and xbi,2 = 1. (Note here that x0i,j = x1i,j .) Further, set

xbk+1,1 = xbk+1,2 = Cb. B sends over ~X0, ~X1 to the challenger in the IND security game.
Let {CT1,j , . . . ,CTk+1,j}j∈[2] denote the challenge ciphertexts received by B

2. Next, B requests a secret key for the function g. Let SKg be the secret key received by B.

3. Now, B sends over
(
{CT1,j , . . . ,CTk,j}j∈[2] ,CTk+1,1

)
as the challenge obfuscation to A.

B simply outputs the guess b′ returned by A.

22

408
Approved for Public Release; Distribution Unlimited.

This completes the description of B. We first argue that the challenge message vectors and the
secret key query g are I-compatible as per IND security definition 3. (Here I = ∅.) To see this,
note that for any x = (x1, . . . , xk), we have that:

g(x1, . . . , xk, C0) = g(x1, . . . , xk, C1).

since C0 and C1 are functionally equivalent. Now, note that if the challenge bit b chosen by
IND-security game challenge is equal to 0, then the resulting obfuscation is sent by B to A is of
circuit C0; otherwise it is an obfuscation of C1. Thus, if A can distinguish between these two
cases with non-negligible advantage, then B also wins the IND game with the same advantage.
This completes the proof.

Remark 19. We remark that in the above proof, the “order” of the key query g is irrelevant.
That is, g could be queried before or after the ciphertext queries.

Virtual Black-Box Obfuscation from MI-FE. We now give two results for construct-
ing virtual black-box obfuscation from various flavors of MI-FE. We first note that the same
construction as above (Theorem 18), in fact, implies virtual black-box obfuscation, when FE is
(0, 2)-SIM-secure.

Theorem 20. (0, 2)-SIM-secure FE for general (k + 1)-ary functions unconditionally implies
virtual black-box obfuscation for all circuits with k-bit inputs.

Next, we show that SIM-secure multi-input FE, where at least one of the encryption keys
may be made public, implies virtual black-box obfuscation.

Theorem 21. (1, 1)-SIM-secure MI-FE for general 2-ary functions unconditionally implies vir-
tual black-box obfuscation for all circuits.

Sketch. The proof of this theorem is quite similar to that of the previous one and we only
provide a sketch here. The basic idea, as before, is to give out keys for a universal circuit g. The
first input to g will be the function f which we wish to obfuscate. The encryption key EK1 will
be kept a secret, and, the ciphertext FE.Enc(EK1, f) will be included as part of the obfuscated
circuit. The second input x will be the input on which the user wishes to evaluate f . Hence,
the user is given access to the second encryption key EK2 (as part of the obfuscated circuit) to
enable it to encrypt any x. More details follow:

• Consider a function g s.t. g(C, x) = C(x). Let FE be a (1, 1)-SIM-secure MI-FE for
general 2-ary functions. The obfuscator VBB runs the setup algorithm for FE to compute
MSK and encryption keys (EK1,EK2). It then runs the key generation algorithm of FE to
generate a secret key SKg for the above function g using MSK.

• Let CT← FE.Enc(EK1, C). The obfuscated circuit VBB(C) = (CT,EK2,SKg).

To evaluate the obfuscated circuit on an input x, compute CT′ ← FE.Enc(EK2, x), and, run
FE.Dec(SKg,CT,CT

′). This results in g(C, x) = C(x).
The virtual black-box obfuscation property follows from the fact that the view of the user

can be simulated given access to a trusted party holding the first input f , and, evaluating g(f, ·)
on any second input x of user’s choice.

6.1 Impossibility Results for SIM secure MI-FE

Here, we discuss some impossibility results for simulation secure MI-FE that complement our
positive results given in Sections 4 and 5.

Recall that [BSW11, BO13] already establish the impossibility of (0, poly(k))-SIM-secure
functional encryption for 1-ary functions. We show that for n-ary functions, where n ≥ 2, the

23

409
Approved for Public Release; Distribution Unlimited.

situation is much worse. In particular, recall that Barak et al. [BGI+01] proved an (uncon-
ditional) impossibility result for VBB obfuscation for general circuits. Then, combining their
result with Theorem 21, we get the following result:

Theorem 22. (1, 1)-SIM-secure multi-input functional encryption for general 2-ary functions
is impossible.

We remark that our positive results for SIM-secure MI-FE in Sections 4 and 5 are consistent
with the above negative result and that of [BSW11, BO13].

Simulation secure MI-FE against Non-Adaptive Key Queries. So far in this
paper, we have only considered simulation security for MI-FE in the setting where an adversary
makes key queries after choosing the challenge messages. Following the terminology from the
literature on single-input functional encryption, such queries are referred to as adaptive key
queries. One can consider the “opposite” scenario, where the adversary is allowed to make key
queries before choosing the challenge messages. This setting has been well studied in the case
of single-input functional encryption, where such queries are referred to as non-adaptive key
queries.

We now discuss the feasibility of simulation-based security for non-adaptive key queries
(referred to as NA-SIM security) in our setting of multi-input FE. NA-SIM security for multi-
input FE is defined similarly to definition 4, except that now the adversary is required to make
key queries before (as opposed to after) choosing the challenge messages. More concretely, we
can define (t, p, q)-NA-SIM-secure functional encryption where (as earlier) t denotes the number
of encryption keys known to the adversary and q denotes the number of challenge messages per
encryption key. The new parameter p denotes the total number of non-adaptive key queries by
the adversary. For completeness, we provide a formal definition in Appendix D.

Now, observe that the proofs of Theorem 21 and Theorem 20 are insensitive to the “order”
of the key query; i.e., they go through even if the key query is non-adaptive. Then, combining
these results with the impossibility result of Barak et al [BGI+01], we obtain the following two
(incomparable) results:

Theorem 23. (1, 1, 1)-NA-SIM-secure multi-input functional encryption for general 2-ary func-
tions is impossible.

Theorem 24. (0, 1, 2)-NA-SIM-secure multi-input functional encryption for general (k+ 1)-ary
functions is impossible.

We remark that we have stated Theorem 24 for the secret-key setting (as opposed to for
general t) since it is the “weakest” case, and therefore only strengthens our result.

While the above impossibility results rule out achieving NA-SIM-security for general functions
– in particular, they rule out NA-SIM-security for the arguably unnatural function that cannot be
VBB obfuscated [BGI+01]) – we also provide another impossibility result for the weak pseudo-
random function.

Let {F} be a weak pseudo-random function family with key space K and message space X.
The 2-ary wPRF(·, ·) functionality on input key k ∈ K and message x ∈ X outputs FK(x). We
shall call k as the first input and x to be the second input to wPRF. We claim the following:

Theorem 25. (0, 1, poly(k))-NA-SIM-secure functional encryption for the weak PRF function-
ality wPRF(·, ·) is impossible.

Proof. (Sketch). Here, we sketch a proof for black-box simulation. The proof follows along
the same lines as in [AGVW13]. Suppose for contradiction that there exists a (0, 1, poly(k))-
NA-SIM-secure functional encryption FE for the weak PRF functionality. Let ` − 1 denote an
upper bound on the ciphertext size in FE . We construct an adversary A that makes a single

24

410
Approved for Public Release; Distribution Unlimited.

key query and `2 number of message queries (per encryption key) such that every (black-box)
simulator “fails” to simulate the view of A.

The adversary A first makes a single (non-adaptive) key query for the 2-ary function wPRF.
Let L = `2. Then, A asks ciphertexts for L first inputs k1, . . . , kL and L second inputs x1, . . . , xL,
where each ki is chosen uniformly at random from the key space K and each xi is chosen
uniformly at random from the message space X. Now the simulator first needs to produce a
key SKwPRF and then it is given the functionality’s outputs {wPRF (ki, xj)}L,Li=1,j=1. Now, the

simulator has to produce 2L ciphertexts
{
CT1

i

}L
i=1

,
{
CT2

j

}L
j=1

such that for every i ∈ [L], j ∈ [L],

wPRF(ki, xj) = FE.Dec(SKf ,CT
1
i ,CT

2
j).

Thus, on the one hand, the simulator needs to “encode” all of the functionality’s outputs
into 2L ciphertexts. On the other hand, the functionality’s outputs are L2 = `4 pseudo-random
bits, while the total length of the 2L ciphertexts is 2L(`−1) < 2`3 bits. Since a pseudo-random
string cannot be efficiently compressed, we get a contradiction.

Discussion. Recall that the lower bounds of [AGVW13, CIJ+13] already establish that it
is impossible to achieve (0, poly(k), 1)-NA-SIM-secure functional encryption for 1-ary functions
(specifically, the weak PRF functionality). That is, it is impossible to achieve NA-SIM security
against an unbounded number of non-adaptive key queries even in the secret-key setting. Our
impossibility results in Theorem 24 and Theorem 25 establish that it is also impossible to achieve
NA-SIM security against an unbounded number of ciphertext queries. Thus, NA-SIM secure MI-
FE is only possible for a bounded number of key queries and a bounded number of ciphertext
queries. This is strictly worse that what can be achieved in the case of SIM security (where
unbounded number of key queries can be achieved, in the secret-key setting, as exemplified by
our positive results).

7 Extension to Randomized Functionalities

Our positive results for multi-input functional encryption presented in Sections 4 and 5 only
concern with deterministic n-ary functions. Here, we discuss how to extend our results to handle
randomized functionalities.

Modeling Security. In the single-input setting, the case of randomized functionalities was
recently considered by Goyal et al. [GJKS13]. Very briefly, Goyal et al. observed that in the
setting of randomized functionalities, the central challenge is to ensure that the random coins
used for computing a function output are unbiased and remain hidden from the participants (i.e.,
the encryptor/sender and the decryptor/receiver). As such, in addition to requiring security
against dishonest receivers, one must explicitly require security against dishonest senders to
ensure that it is not possible to force “bad” outputs on an honest receiver.

We follow the same approach in our multi-input setting. Specifically, following [GJKS13],
below we formalize a definition for security against dishonest senders. Overall, we will say that a
multi-input functional encryption scheme for a randomized function family is secure if it achieves
security against both dishonest senders and dishonest receivers.

Definition 26 (Security against Dishonest Senders). We say that a functional encryption
scheme FE for n-ary (randomized) functions F is t-secure against dishonest senders if for
every PPT adversary A = (A0,A1,A2), there exists a PPT simulator S = (S0,S1,S2) such that
the outputs of the following two experiments are computationally indistinguishable:

25

411
Approved for Public Release; Distribution Unlimited.

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

(~EK,MSK)← FE.Setup(1k)

({f},M, st1)← A1(st0, ~EKI)
SKf ← FE.Keygen(MSK, f) ∀ f ∈ {f}
CTi ← FE.Enc(EKi, xi) where xi ←M ∀ i ∈ N \ I

α← AO({SKf}, ~CT,·)
2 (~CT, st1)

Output: (I, {f},M, ~x, {out}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
({f},M, st1)← S1(st0)
xi ←M ∀ i ∈ N \ I

α← STP({f},~x,·)2 (st1)
Output: (I, {f},M, ~x, {out′}, α)

where,

• In the real world, oracle O
(
{SKf} , ~CT, ·

)
accepts queries of the form (CT∗1, . . . ,CT

∗
t) such

that for every i ∈ [t], j ∈ N\I, CT∗i 6= CTj. It outputs FE.Dec (SKf , 〈CT1, . . . ,CTn−t,CT
∗
1, . . . ,CT

∗
t 〉)

for every SKf ∈ {SKf}. Here, 〈zi1 , . . . , zin〉 denotes a permutation of the ciphertexts
zi1 , . . . , zin such that zij is mapped to the `’th location if zij is the encrypted via the
encryption key EK`. Further, {out} denotes the set of outputs of O to A2’s decryption
queries.

• In the ideal world, the trusted party TP ({f} , ~x, ·) accepts queries of the form (x∗1, . . . , x
∗
t)

and outputs fj
(〈
xi1 , . . . , xin−t

, x∗1, . . . , x
∗
t

〉
; rj
)

for every fj ∈ {f}. Here rj is chosen
uniformly at random and 〈zi1 , . . . , zin〉 denotes a permutation of the values zi1 , . . . , zin
such that the value zij is mapped to the `’th location if zij is the `’th input (out of n
inputs) to f . Further, {out′} denotes the set of outputs of TP to the queries of S2.

We now define SIM security for multi-input functional encryption for randomized functions.
We note that IND security can be defined analogously; we skip the details.

Definition 27. We say that a functional encryption scheme FE for n-ary (randomized) func-
tions F is (t1, t2, q)-SIM-secure if:

1. FE is t1-secure against dishonest senders.

2. FE is (t2, q)-SIM-secure against dishonest receivers.

Positive Results for Randomized Functionalities. Building on the techniques of
[GJKS13], both of our constructions for multi-input functional encryption presented in Sections
4 and 5 can be extended to handle randomized functionalities. Below, we outline the necessary
modifications to our second scheme FE II to define a new scheme FE . (We note that FE I can be
modified in a similar manner to handle randomized functionalities.)
FE is defined similarly to FE II, with the following necessary changes:

1. To encrypt a message x, we follow the same steps as in FE II to compute (c1, c2, π). Next,
we sample a key pair (sk, vk) for a strongly unforgeable one-time signature scheme. The
final ciphertext CT consists of (c1, c2, π, vk, σ), where σ is a signature over c1‖c2‖π using
sk.

2. To compute a secret key SKf for a (randomized) function f , we first sample a key K for a
puncturable pseudo-random function (PRF) [SW13, BW13, BGI13, KPTZ13]. Then, key
SKf is computed as diO(H′f) where H′f is defined similarly to the functionality Hf except
that:

• We additionally check whether the signature σi in each input ciphertext CTi is valid.

• Further, after decrypting each input ciphertext CTi to compute xi, we first compute
randomness r as the output of the PRF on input CT1‖ . . . ‖CTn using key K. The
final output is then computed as f(x1, . . . , xn; r).

26

412
Approved for Public Release; Distribution Unlimited.

Very briefly, security against dishonest senders follows from the same ideas as in [NY90,
DDN91, Sah99]. Specifically, incorporating the one-time signatures in the ciphertexts ensures
that each ciphertext is unique (and therefore, an adversary cannot modify an honest sender’s
ciphertext to create a decryption query). Further, it is possible to extract the input from an
adversarially created ciphertext using one of the secret keys (while using the semantic security
for the other key). Security against dishonest receivers follows largely in the same manner as for
FE II. The main difference now is that (as in [GJKS13]), we use the punctured PRF to remove

all the secret information in the PRF key for the point ĈT1‖ . . . ‖ĈTn, where ĈT1, . . . , ĈTn
denotes a challenge ciphertext tuple. From the security of the obfuscation, it follows that this
randomness remains hidden from a honest receiver. We refer the reader to [GJKS13] for more
details on the proof.

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive,
2013:689, 2013.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In CRYPTO (2),
2013.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In ITCS, pages 326–349, 2012.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In EUROCRYPT, 2009.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions. In
CRYPTO, 2011.

[BCP13] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation.
IACR Cryptology ePrint Archive, 2013:650, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
CRYPTO, 2001.

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: Possi-
bility results, impossibility results and the quest for a general definition. In CANS,
2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC, 2011.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, pages 290–307, 2006.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In ASIACRYPT, 2013.

27

413
Approved for Public Release; Distribution Unlimited.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO (2), 2013.

[CKKC13] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-client
non-interactive verifiable computation. In TCC, 2013.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
STOC, pages 542–552, 1991.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vad-
han. On the complexity of differentially private data release: efficient algorithms
and hardness results. In STOC, pages 381–390, 2009.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH+13a] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In CRYPTO, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In STOC, pages 467–476, 2013.

[GJKS13] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. How to compute
randomized functions on encrypted data. IACR Cryptology ePrint Archive, 2013,
2013.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run turing machines on encrypted data. In
CRYPTO (2), pages 536–553, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In STOC, 2013.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, 2006.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASI-
ACRYPT, pages 548–566, 2002.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In STOC, 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. IACR Cryp-
tology ePrint Archive, 2013:379, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, 2010.

28

414
Approved for Public Release; Distribution Unlimited.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In STOC, pages 427–437, 1990.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010, 2010.

[PR12] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption.
In EUROCRYPT, 2012.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In TCC,
2012.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 1999.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In ACM Conference on Computer and Communications Security,
pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deni-
able encryption, and more. IACR Cryptology ePrint Archive, 2013:454, 2013.

A Completing sel-IND Security Proof for FE I
Lemma 28 (H0

c≡ H1). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H0 and H1 are computationally indistinguishable.

Proof. Recall that the only difference between H0 and H1 is the manner in which the commit-
ments {Zi,j1 } are computed: in H0, every Zi,j1 is a commitment to the all zeros string 0len, while

in H1, Zi,j1 is a commitment to ĉi,j1 ‖ĉ
i,j
2 . Further, note that the randomness used to compute

Zi,j1 is not used elsewhere in the experiment. Then, by a standard hybrid argument, the indis-
tinguishability of H0 and H1 follows from the computational hiding property of Com. We omit
the details.

Lemma 29 (H1
c≡ H2). Assuming that (CRSGen,Prove,Verify) is witness indistinguishable, the

outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. Recall that the only difference between H1 and H2 is the manner in which the proof strings
π̂i,j in challenge ciphertexts ĈTi,j are computed: in H1, every π̂i,j is computed using the real
witness, while in H2, π̂i,j is computed using the trapdoor witness. Then, by a standard hybrid
argument, the indistinguishability of H1 and H2 follows from the witness indistinguishability
property of the NIWI proof system.

Lemma 30 (H2
c≡ H3). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H2 and H3 are computationally indistinguishable.

Proof. Recall that the only difference between H2 and H3 is the manner in which the commit-
ments {Zi2} are computed: in H2, every Zi2, where i ∈ I, is a commitment to 0, while in H3,
Zi2 is a commitment to 1. Further, note that the randomness used to compute Zi2 is not used
anywhere else in the experiment. Then, by a standard hybrid argument, the indistinguishability
of H2 and H3 follows from the computational hiding property of Com.

29

415
Approved for Public Release; Distribution Unlimited.

Lemma 31 (H3
c≡ H4). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H3 and H4 are computationally
indistinguishable.

Proof. Recall that the only difference between H3 and H4 is the manner in which the second
ciphertexts ĉi,j2 in the challenge ciphertexts ĈTi,j are computed: in H3, ĉi,j2 is an encryption of

the challenge message xi,j , while in H4, ĉi,j2 is an encryption of 0. Further, note that neither

the randomness si,j2 used to compute ĉi,j2 , nor the secret key sk2 is used anywhere else in the
experiment. Then, by a standard hybrid argument, the indistinguishability of H3 and H4 follows
from the semantic security of PKE.

Lemma 32 (H4
c≡ H5). Assuming that iO is an indistinguishability obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is a proof system, the outputs of the experiments H4 and H5

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . We remark that by a standard hybrid argument, the proof can be easily extended to the
more general case where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H4 and H5 is the manner in which the secret key
SKf for the key query f is computed: in experiment H4, SKf is an indistinguishability obfusca-
tion of Gf , while in H5, SKf is an indistinguishability obfuscation of Sim.G′f . Now, if Gf and G′f
have the same output behavior on all input points, then the computational indistinguishability
of H4 and H5 follows immediately from the indistinguishability of iO(Gf) and iO(G′f). Thus,
all that remains to prove is that for all inputs z, Gf (z) = G′f (z).

Towards that end, we first assume without loss of generality that the encryption scheme
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) does not have any decryption error. We make the
following claim:

Claim 33. For any input z, Gf (z) = ⊥ iff G′f (z) = ⊥.

Proof. Let z = (CT1, . . . ,CTn) be any input to Gf and G′f . For every i ∈ [n], let CTi =

(ci,1, ci,2, πi). Note that both Sim.Gf and Sim.G′f output ⊥ on input z iff there exists i ∈
[n] such that Verify(crs, yi, πi) = 0, where yi = (ci,1, ci,2, pk1, pk2, {Z

i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. The claim follows.

Following the above claim, we shall call an input z to Gf and G′f to be a valid input if
Gf (z) 6= ⊥ (and G′f (z) 6= ⊥). We now demonstrate that the outputs of Gf and G′f differ on
a valid input z only if z satisfies some specific properties. Later, we will rely on the binding
property of Com and the statistical soundness of the NIWI proof system to show that such an
input z does not exist, thus completing the proof.

Claim 34. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts given to the adversary,

where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Then, for every valid input z = (CT1, . . . ,CTn) to Gf and
G′f such that Gf (z) 6= G′f (z), there exists i ∈ [n], CTi = (ci,1, ci,2, πi) in z such that one of the
following two cases holds:

Case 1: If i ∈ I, then ci,1 and ci,2 are encryptions of different messages, and for every j ∈ [q],

either ĉi,1 6= ĉi,j1 or ci,2 6= ĉi,j2 .

Case 2: If i ∈ N \ I, then for every j ∈ [q], either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 .

Proof. Suppose that the claim is false. That is, there exists a valid input z∗ = (CT∗1, . . . ,CT
∗
n)

such that Gf (z∗) 6= G′f (z∗), yet z satisfies the following conditions:

Condition A: For every i ∈ I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) is such that:

30

416
Approved for Public Release; Distribution Unlimited.

1. Either there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1 and c∗i,2 = ĉi,ji2 , or

2. c∗i,1 and c∗i,2 are encryptions of the same message. Let x′i denote this message.

Condition B: For every i ∈ N\I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i), there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1

and c∗i,2 = ĉi,ji2 .

Let us inspect the outputs of Gf and G′f on the input z∗. We have that:

Gf (z∗) = f

(〈{
PKE.Dec

(
sk1, ĉ

i,ji
1

)}
i∈N\I

,
{
PKE.Dec

(
sk1, c

∗
i,1

)}
i∈I

〉)
,

G′f (z∗) = f

(〈{
PKE.Dec

(
sk2, ĉ

i,ji
2

)}
i∈N\I

,
{
PKE.Dec

(
sk2, c

∗
i,2

)}
i∈I

〉)
,

where for ` ∈ [2],

〈{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

〉
denotes the “ar-

rangement” of the values
{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

according to

their input positions in f . Now, let I′ ⊆ I be such that for every i ∈ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i)

satisfies the condition A(2). Thus, for every i ∈ I\ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) satisfies the condition

A(1). Then, we have:

Gf (z∗) = f
(〈{

x0i,ji
}
i∈N\I′ , {x

′
i}i∈I′

〉)
; G′f (z∗) = f

(〈{
x1i,ji

}
i∈N\I′ , {x

′
i}i∈I′

〉)
,

where ~X0 = {x01,j , . . . , x0n,j}
q
j=1 and ~X1 = {x11,j , . . . , x1n,j}

q
j=1 are the challenge messages.

Now, it follows from the I-Compatibility property in the IND-security definition (see Defini-
tion 3) that Gf (z∗) = G′f (z∗), which is a contradiction.

Completing the proof of Lemma 32. We now prove that for every valid input z, Gf (z) 6= G′f (z).
For the sake of contradiction, suppose not. That is, let z∗ be a valid input such that Gf (z∗) =
G′f (z∗). Following Claim 34, fix i ∈ [n], CT∗i = (c∗i,1, c

∗
i,2, π

∗
i) in z∗ to be such that either Case 1

or Case 2 holds.
First observe that since z∗ is a valid input, we have that Verify(crs, y∗i , π

∗
i) = 1, where

y∗i = (c∗i,1, c
∗
i,2, pk1, pk2, {Z

i,j
1 }, Zi1) is the statement corresponding to the proof string π∗i . Then,

since (CRSGen,Prove,Verify) is a statistically sound proof system, it follows that the statement
y∗i must be true, i.e., either there exists a real witness or a trapdoor witness for y∗i (see Section
4 for the definitions of real and trapdoor witnesses). We now consider the two cases:

Case 1. i ∈ I: Since c∗i,1 and c∗i,2 are encryptions of different messages, there does not exist

a real witness for y∗i . Then, suppose that there exists a trapdoor witness wtrap = (j, ri,j1) for

y∗i . That is, suppose that ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(c∗i,1, c
∗
i,2; ri,j1).

However, note that in experiments H4 and H5, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 .

Since Com is perfectly binding and either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we obtain a contradiction.

Case 2. i ∈ N\ I: First observe that since Zi2 is computed as a commitment to 1 in experiments
H4 and H5, it follows from the perfect binding property of Com that there does not exist a real
witness for y∗i . Then, suppose that there exists a trapdoor witness wtrap = (j, ri,j1) for y∗i . That

is, suppose that ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(c∗i,1, c
∗
i,2; ri,j1). However,

note that in experiments H4 and H5, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 . Since Com

is perfectly binding and either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we obtain a contradiction.

Lemma 35 (H5
c≡ H6). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H5 and H6 are computationally
indistinguishable.

31

417
Approved for Public Release; Distribution Unlimited.

Proof. The proof follows in the same manner as Lemma 31.

Lemma 36 (H6
c≡ H7). Assuming that iO is an indistinguishability obfuscator, (CRSGen,Prove,Verify)

is a proof system, and Com is perfectly binding, the outputs of experiments H6 and H7 are com-
putationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 32.

Lemma 37 (H7
c≡ H8). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H7 and H8 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 30.

Lemma 38 (H8
c≡ H9). Assuming that (CRSGen,Prove,Verify) is witness indistinguishable, the

outputs of experiments H8 and H9 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 29.

Lemma 39 (H9
c≡ H10). Assuming that Com is a (computationally) hiding commitment scheme,

the outputs of experiments H9 and H10 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 28.

B Completing SIM Security Proof for FE I
We now describe a series of hybrid experiments H0, . . . ,H8, where H0 corresponds to the real
world and H8 corresponds to the ideal world experiment. For every i, we will prove that the
output of Hi is computationally indistinguishable from the output of Hi+1.

Hybrid H0: This is the real experiment.

Hybrid H1: This experiment is the same as H0 except in the manner in which the key queries
of the adversary are answered. Let {x1,j , . . . , xn,j}qj=1 ← M be the challenge messages. Then,
whenever the adversary makes a key query f , we perform the following steps:

• Query the trusted party TP on function f . For every j1, . . . , jn ∈ [q], the trusted party
computes and returns the function output out[j1, . . . , jn] = f(x1,j1 , . . . , xn,jn).

• Compute the secret key SKf for function f as SKf ← iO(Sim.Gf), where Sim.Gf is as
described in Figure 2.

For every i ∈ [n], j ∈ [q], let ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j) denote the challenge ciphertext computed
by the experiment. Then, note that Sim.Gf has the master secret key MSK, the ciphertext pairs

{ĉi,j1 , ĉi,j2 } and the outputs {out[j1, . . . , jn]} hardwired in it.

Hybrid H2: This experiment is the same as H1 except that the setup algorithm computes the
commitments {Zi,j1 } in the following manner: let the challenge ciphertext ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).

Then, Zi,j1 ← Com(ĉi,j1 ‖ĉ
i,j
2).

Hybrid H3: This experiment is the same as H2 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the trapdoor witness.

Hybrid H4: This experiment is the same as H3 except that the setup algorithm computes
every Zi2 as a commitment to 1 (instead of 0). That is, for every i ∈ [n], Zi2 ← Com(1).

32

418
Approved for Public Release; Distribution Unlimited.

Hybrid H5: This experiment is the same as H4 except that in every challenge cipher-
text ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is an encryption of zeros, i.e., ĉi,j2 ←
FE.Enc(EKi, 0

k).

Hybrid H6: This experiment is the same as H5 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Sim.G′f) where Sim.G′f is the same as
the function Sim.Gf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H7: This experiment is the same as H6 except that in every challenge cipher-
text ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of zeros, i.e., ĉi,j1 ←
FE.Enc(EKi, 0

k).

Hybrid H8: This experiment is the same as H7 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← iO(Sim.Gf). Note that this is the ideal
world experiment.

This completes the description of the hybrid experiments. We note that the proof of in-
distinguishability of the hybrid experiments described above bear much similarity to the proof
of IND security (Section 4.1). Therefore, to avoid repetition, below we only focus on the key
hybrids that differ from the IND security case. Specifically, below, we prove indistinguishability
of hybrid experiments H0 and H1, and then H5 and H6. For details on the rest of the proof, see
Appendix A.

Lemma 40 (H0
c≡ H1). Assuming that iO is an indistinguishability obfuscator, the outputs of

experiments H0 and H1 are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . By a standard hybrid argument, the proof can be easily extended to the more general case
where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H0 and H1 is the manner in which the secret
key SKf for the key query f is computed: in experiment H0, SKf is an indistinguishability
obfuscation of Gf , while in H1, SKf is an indistinguishability obfuscation of Sim.Gf . Now, if
Gf and Sim.Gf have the same output behavior on all input points, then the computational
indistinguishability of H0 and H1 follows immediately from the indistinguishability of iO(Gf)
and iO(Sim.Gf). Thus, all that remains to prove is that for all inputs z, Gf (z) = Sim.Gf (z).

Towards that end, let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts computed

in experiments H1 and H2, where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). We say that an input z =
(CT1, . . . ,CTn) to Gf and Sim.Gf is special if for every CTi = (ci,1, ci,2, πi):

• The proof πi is accepting, and

• There exists ji ∈ [q] s.t. ci,1 = ĉi,ji1 and ci,2 = ĉi,ji2 .

Further, we call (j1, . . . , jn) to be the “index set” of z.
Now note that the only difference between the functions Gf and Sim.Gf is that on a special

input z with index set (j1, . . . , jn), Sim.Gf skips the usual decryption step and directly outputs
the value out[j1, . . . , jn] hardwired in its description. Recall that (by definition) out[j1, . . . , jn] =
f(x1,j1 , . . . , xn,jn) where {x1,j , . . . , xn,j}qj=1 denote the challenge messages. However, on such
an input z, by performing the decryption step, Gf obtains the messages (x1,j1 , . . . , xn,jn) and
therefore its output is f(x1,j1 , . . . , xn,jn) as well.

33

419
Approved for Public Release; Distribution Unlimited.

Lemma 41 (H5
c≡ H6). Assuming that iO is an indistinguishability obfuscator, Com is perfectly

binding, and (CRSGen,Prove,Verify) is a proof system, the outputs of experiments H5 and H6

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . By a standard hybrid argument, our proof can be easily extended to the more general case
where the adversary makes poly(k) number of key queries.

Now, note that the only difference between H5 and H6 is the manner in which the secret
key SKf for the key query f is computed: in experiment H5, SKf is an indistinguishability
obfuscation of Sim.Gf , while in H6, SKf is an indistinguishability obfuscation of Sim.G′f . Now, if

Sim.Gf and Sim.G′f have the same output behavior on all input points, then the computational
indistinguishability of H5 and H6 follows immediately from the indistinguishability of iO(Sim.Gf)
and iO(Sim.G′f). Thus, all that remains to prove is that for all inputs z, Sim.Gf (z) = Sim.G′f (z).

Towards that end, we first assume without loss of generality that the encryption scheme
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) does not have any decryption error. We make the
following claim:

Claim 42. For any input z, Sim.Gf (z) = ⊥ iff Sim.G′f (z) = ⊥.

Proof. Let z = (CT1, . . . ,CTn) be any input to Sim.Gf and Sim.G′f . For every i ∈ [n], let

CTi = (ci,1, ci,2, πi). Note that both Sim.Gf and Sim.G′f output ⊥ on input z iff there exists

i ∈ [n] such that Verify(crs, yi, πi) = 0, where yi = (ci,1, ci,2, pk1, pk2, {Z
i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. The claim immediately follows.

Following the above claim, we shall call an input z to Sim.Gf and Sim.G′f to be a valid input

if Sim.Gf (z) 6= ⊥ (and Sim.G′f (z) 6= ⊥). We make the following claim regarding valid inputs:

Claim 43. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts given to the adversary,

where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Let z = (CT1, . . . ,CTn) denote a valid input to Sim.Gf and

Sim.G′f . Then, for every CTi = (ci,1, ci,2, πi), there exists ji ∈ [q] s.t. ci,1 = ĉi,ji1 and ci,2 = ĉi,ji2 .

Proof. Suppose that the claim is false. That is, for a valid input z = (CT1, . . . ,CTn), ∃ CTi =
(ci,1, ci,2, πi) s.t. ∀ j ∈ [q], either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 . Now, since z is a valid input,

we have that Verify(crs, yi, πi) = 1, where yi = (ci,1, ci,2, pk1, pk2, {Z
i,j
1 }, Zi2) is the statement

corresponding to the NIWI proof πi. Then, since (CRSGen,Prove,Verify) is a statistically sound
proof system, it follows that the statement yi must be true. We consider the following two cases:

Case 1: The ciphertexts ci,1 and ci,2 are encryptions of the same message and there exists
randomness ri2 s.t. Z2 ← Com(0; ri2). However, note that in experiments H5 and H6, Zi2 is
computed as a commitment to 1. Since Com is a perfectly binding commitment scheme,
we obtain a contradiction.

Case 2: ∃j ∈ [q] and randomness ri,j1 such that Zi,j1 = Com(ci,1‖ci,2; ri,j1). However, note that

in experiments H5 and H6, Zi,j1 is computed as a commitment to ĉi,j1 ‖ĉ
i,j
2 . Since Com is

a perfectly binding commitment scheme and either ci,1 6= ĉi,j1 or ci,2 6= ĉi,j2 , we obtain a
contradiction.

This completes the proof of the above claim.

Completing the proof of Lemma 41. Following Claim 42, we only need to prove that for every
valid input z, Sim.Gf (z) = Sim.G′f (z). Now, let z = (CT1, . . . ,CTn) be any valid input to

Sim.Gf and Sim.G′f . From Claim 49, we have that for every i ∈ [n], there exists ji ∈ [q] such

that CTi = ĉi,ji1 , ĉi,ji2 , πi. Then, note that on such an input z = (CT1, . . . ,CTn), both Sim.Gf
and Sim.G′f output the same (programmed) value, i.e., out[j1, . . . , jn].

34

420
Approved for Public Release; Distribution Unlimited.

This completes the proof of Lemma 41.

C Proving IND Security for FE II
We now prove that the proposed scheme FE II is (t, poly(k))-IND-secure for any t ≤ n and
arbitrary poly(k) number of message queries. We will prove security via a series of hybrid
experiments H0, . . . ,H8, where H0 (resp., H8) corresponds to the real world experiment with
challenge bit b = 0 (resp., b = 1).

Hybrid H0: This is the real experiment with challenge bit b = 0.

Hybrid H1: This experiment is the same as H0 except that the setup algorithm computes
a “simulated” CRS for the simulation-sound NIZK proof system, i.e., the CRS is computed as
(crs, τ)← Sim.CRSGen(1k).

Hybrid H2: This experiment is the same as H1 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), π̂i,j is computed as a simulated proof, i.e., π̂i,j ← Sim.Prove(crs, τ, yi,j)

where the statement yi,j = (ĉi,j1 , ĉi,j2 , pk1, pk2, Zi).

Hybrid H3: This experiment is the same as H2 except that for every i ∈ N \ I, the setup
algorithm computes every Zi as a commitment to 1 (instead of 0), i.e., Zi ← Com(1).

Hybrid H4: This experiment is the same as H3 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the second ciphertext ĉi,j2 is an encryption of the challenge message x1i,j
(as opposed to x0i,j), i.e., ĉi,j2 ← FE.Enc(EKi, x

1
i,j).

Hybrid H5: This experiment is the same as H4 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← diO(H′f) where H′f is the same as the
function Hf except that:

1. It has secret key sk2 hardwired instead of sk1.

2. It decrypts the second component of each input ciphertext using sk2. More concretely, in
step 1(c), plaintext x′i is computed as x′i ← PKE.Dec(sk2, ci,2).

Hybrid H6: This experiment is the same as H5 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the first ciphertext ĉi,j1 is an encryption of the challenge message x1i,j (as

opposed to x0i,j), i.e., ĉi,j1 ← FE.Enc(EKi, x
1
i,j).

Hybrid H7: This experiment is the same as H6 except that for every key query f , the
corresponding secret key SKf is computed as SKf ← diO(Hf).

Hybrid H8: This experiment is the same as H7 except that the setup algorithm computes
every Zi as a commitment to 0.

Hybrid H9: This experiment is the same as H8 except that in every challenge ciphertext
ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j), the proof string π̂i,j is computed using the honest prover algorithm.

35

421
Approved for Public Release; Distribution Unlimited.

Hybrid H10: This experiment is the same as H9 except that the setup algorithm computes
an “honest” CRS for the NIZK proof system, i.e., the CRS is computed as crs ← CRSGen(1k).
Note that this is the real experiment with challenge bit b = 1.

This completes the description of the hybrids. We now prove their computational indistin-
guishability via a series of lemmas.

Lemma 44 (H0
c≡ H1). Assuming that (CRSGen,Prove,Verify) is a zero-knowledge argument

system, the outputs of experiments H0 and H1 are computationally indistinguishable.

Proof. This follows immediately from the fact that the distributions {CRSGen(1k)} and {Sim.CRSGen(1k)}
are computationally indistinguishable.

Lemma 45 (H1
c≡ H2). Assuming that (CRSGen,Prove,Verify) is a zero-knowledge argument

system, the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. Recall that the only difference between H1 and H2 is the manner in which the proof
strings π̂i,j in challenge ciphertexts ĈTi,j are computed: in H1, every π̂i,j is computed honestly
using the witness, while in H2, π̂i,j is a simulated proof computed using the simulator for the
NIZK argument system. Then, by a standard hybrid argument, the indistinguishability of H2

and H3 follows from the zero-knowledge property of the NIZK argument system.

Lemma 46 (H2
c≡ H3). Assuming that Com is a computationally hiding commitment scheme,

the outputs of experiments H2 and H3 are computationally indistinguishable.

Proof. Recall that the only difference between H2 and H3 is the manner in which the commitment
{Zi}i∈N\I are computed: in H2, every Zi is a commitment to 0, while in H3, Zi is a commitment
to 1. Further, note that the randomness used to compute Z is not used anywhere else in
the experiment. Then, the indistinguishability of H2 and H3 follows immediately from the
computational hiding property of Com.

Lemma 47 (H3
c≡ H4). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H3 and H4 are computationally
indistinguishable.

Proof. Recall that the only difference between H3 and H4 is the manner in which the second
ciphertexts ĉi,j2 in the challenge ciphertexts ĈTi,j are computed: in H3, ĉi,j2 is an encryption of

the challenge message x0i,j , while in H4, ĉi,j2 is an encryption of x1i,j . Further, note that nether

the randomness si,j2 used to compute ĉi,j2 nor the secret key sk2 is used anywhere else in the
experiment. Then, by a standard hybrid argument, the indistinguishability of H3 and H4 follows
from the semantic security of PKE.

Lemma 48 (H4
c≡ H5). Assuming that diO is a differing-inputs obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is simulation-sound, the outputs of experiments H4 and H5

are computationally indistinguishable.

Proof. We prove the lemma for the simplified case where the adversary makes a single key query
f . This query could either be made by adversary A1 or A2. In the former case, we refer to f
as a non-adaptive key query, while in the latter case, we refer to it as an adaptive key query.
We remark that by a standard hybrid argument, the proof can be easily extended to the more
general case where the adversary makes poly(k) number of (non-adaptive and adaptive) key
queries.

Now, note that the only difference between H4 and H5 is the manner in which the secret key
SKf for the key query f is computed: in experiment H4, SKf is a differing-inputs obfuscation of

36

422
Approved for Public Release; Distribution Unlimited.

Hf , while in H5, SKf is a differing-inputs obfuscation of H′f . It follows that if there exists a PPT
adversary A that distinguishes between the outputs of H4 and H5 with non-negligible probability,
then we can construct a PPT adversary A′ that distinguishes between diO(Hf) and diO(H′f)
with non-negligible probability. Then, it follows from Definition 9 that for such an adversary
A′, there exists a PPT extractor algorithm E that on input (Hf ,H′f) outputs an input value z∗

such that Hf (z∗) 6= H′f (z∗). We will use E to contradict the simulation-soundness property of
the NIZK argument system (CRSGen,Prove,Verify).

Towards that end, let z∗ = (CT∗1, . . . ,CT
∗
n), where for every i ∈ [n], CT∗i = (c∗i,1, c

∗
i,2, π

∗
i).

Without loss of generality, we assume that every proof string π∗i is accepting. This is because
otherwise from the definition of Hf and H′f , we have that Hf (z∗) 6= H′f (z∗). We make the
following claim about the input z∗.

Claim 49. Let {ĈT1,j , . . . , ĈTn,j}qj=1 denote the challenge ciphertexts in experiments H3 and

H4, where every ĈTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j). Then, there exists i ∈ [n], CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) in z∗

such that one of the following two cases holds:

Case 1: If i ∈ I, then c∗i,1 and c∗i,2 are encryptions of different messages, and for every j ∈ [q],

either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 .

Case 2: If i ∈ N \ I, then for every j ∈ [q], either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 .

Proof. Suppose that the claim is false. That is, the input z∗ = (CT∗1, . . . ,CT
∗
n) output by E is

such that:

Condition A: For every i ∈ I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) is such that:

1. Either there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1 and c∗i,2 = ĉi,ji2 , or

2. c∗i,1 and c∗i,2 are encryptions of the same message. Let x′i denote this message.

Condition B: For every i ∈ N\I, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i), there exists ji ∈ [q] such that c∗i,1 = ĉi,ji1

and c∗i,2 = ĉi,ji2 .

Let us now inspect the outputs of Hf and H′f on the input z∗. We have that:

Hf (z∗) = f

(〈{
PKE.Dec

(
sk1, ĉ

i,ji
1

)}
i∈N\I

,
{
PKE.Dec

(
sk1, c

∗
i,1

)}
i∈I

〉)
,

H′f (z∗) = f

(〈{
PKE.Dec

(
sk2, ĉ

i,ji
2

)}
i∈N\I

,
{
PKE.Dec

(
sk2, c

∗
i,2

)}
i∈I

〉)
,

where for ` ∈ [2],

〈{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

〉
denotes the “ar-

rangement” of the values
{
PKE.Dec

(
sk`, ĉ

i,ji
`

)}
i∈N\I

,
{
PKE.Dec

(
sk`, c

∗
i,`

)}
i∈I

according to

their input positions in f . Now, let I′ ⊆ I be such that for every i ∈ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i)

satisfies the condition A(2). Thus, for every i ∈ I\ I′, CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) satisfies the condition

A(1). Then, we have:

Hf (z∗) = f
(〈{

x0i,ji
}
i∈N\I′ , {x

′
i}i∈I′

〉)
; H′f (z∗) = f

(〈{
x1i,ji

}
i∈N\I′ , {x

′
i}i∈I′

〉)
,

where ~X0 = {x01,j , . . . , x0n,j}
q
j=1 and ~X1 = {x11,j , . . . , x1n,j}

q
j=1 are the challenge messages.

Now, regardless of whether f is a non-adaptive or adaptive key query, it follows from the
I-Compatibility property in the IND-security definition (see Definition 3) that Hf (z∗) = H′f (z∗),
which is a contradiction.

37

423
Approved for Public Release; Distribution Unlimited.

Completing the proof of Lemma 48. Following the above claim, fix CT∗i = (c∗i,1, c
∗
i,2, π

∗
i) in z∗ to

be such that either Case 1 or Case 2 holds. Let y∗i = (c∗i,1, c
∗
i,2, pk1, pk2, Zi) be the statement

corresponding to the proof string π∗i . Further, let ŷi,j be the statement corresponding to the

proof string π̂i,j in challenge ciphertext CTi,j = (ĉi,j1 , ĉi,j2 , π̂i,j).
We consider Case 1 and Case 2 separately.

Case 1. Since c∗i,1 and c∗i,2 are encryptions of different messages, we have that the statement

y∗i is false. Further, since for all j ∈ [q], either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we have that y∗i 6= ŷi,j .
Then, we have that the output z∗ of the extractor algorithm E includes an accepting proof
for a new, false statement y∗i . This contradicts the simulation-soundness property of the NIZK
argument system (CRSGen,Prove,Verify).

Case 2. Since Zi is computed as a commitment to 1 in experiments H3 and H4, it follows from
the perfect binding property of Com that the statement y∗i is false. Further, since for all j ∈ [q],

either c∗i,1 6= ĉi,j1 or c∗i,2 6= ĉi,j2 , we have that y∗i 6= ŷi,j . Then, we have that the output z∗ of the
extractor algorithm E includes an accepting proof for a new, false statement y∗i . This contradicts
the simulation-soundness property of the NIZK argument system (CRSGen,Prove,Verify).

Lemma 50 (H5
c≡ H6). Assuming that PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is a semantically-

secure public-key encryption scheme, the outputs of experiments H5 and H6 are computationally
indistinguishable.

Proof. The proof follows in the same manner as Lemma 47.

Lemma 51 (H6
c≡ H7). Assuming that diO is a differing-inputs obfuscator, Com is perfectly

binding and (CRSGen,Prove,Verify) is simulation-sound, the outputs of experiments H6 and H7

are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 48.

Lemma 52 (H7
c≡ H8). Assuming that Com is a computationally hiding commitment scheme,

the outputs of experiments H7 and H8 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 46.

Lemma 53 (H8
c≡ H9). Assuming that (CRSGen,Prove,Verify) is a NIZK argument system, the

outputs of experiments H8 and H9 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 45.

Lemma 54 (H9
c≡ H10). Assuming that (CRSGen,Prove,Verify) is a NIZK argument system,

the outputs of experiments H9 and H10 are computationally indistinguishable.

Proof. The proof follows in the same manner as Lemma 44.

D NA-SIM-secure MI-FE

NA-SIM security for multi-input FE is defined similarly to definition 4, except that now the
adversary is required to make key queries before (as opposed to after) choosing the challenge
messages. More concretely, we define (t, p, q)-NA-SIM-secure functional encryption where (as
earlier) t denotes the number of encryption keys known to the adversary and q denotes the
number of challenge messages per encryption key. The new parameter p denotes the total
number of non-adaptive key queries by the adversary. Below, we present the formal definition.

38

424
Approved for Public Release; Distribution Unlimited.

Definition 55 (NA-SIM Security). We say that a functional encryption scheme FE for n-ary
functions F is (t, p, q)-NA-SIM-secure if for every PPT adversary A = (A0,A1,A2), there exists
a PPT simulator S = (S0,S1,S2) such that the outputs of the following two experiments are
computationally indistinguishable:

Experiment REALFEA (1k):
(I, st0)← A0(1k) where |I| = t

(~EK,MSK)← FE.Setup(1k)

(M, st1)← AFE.Keygen(MSK,·)
1 (st0, ~EKI)

~X ←M where ~X = {x1,j , . . . , xn,j}qj=1

CTi,j ← FE.Enc(EKi, xi,j) ∀i ∈ [n], j ∈ [q]

α← A2(~CT, st1)

Output: (I,M, ~X, {f`}, α)

Experiment IDEALFES (1k):
(I, st0)← S0(1k)
(M, st1)← S1(st0)

α← STP(M,·,·)
2 (st1)

Output: (I,M, ~X, {g`}, α)

where {f`} denote the queries of A1 to FE.Keygen and {g`} denote the functions appearing
in the queries of S2 to TP such that |{f`}| = |{g`}| = p. The oracle TP(M, ·, ·) denotes the ideal
world trusted party that given the message distribution M, TP first samples a message vector
~X ←M , where ~X = {x1,j , . . . , xn,j}qj=1. It accepts input queries of the form (g, (j1, . . . , jn))

and outputs g(x1,j1 , . . . , xn,jn).

39

425
Approved for Public Release; Distribution Unlimited.

Optimally Resilient and Adaptively Secure

Multi-Party Computation with Low Communication Locality

Nishanth Chandran∗ Wutichai Chongchitmate† Juan A. Garay‡

Shafi Goldwasser§ Rafail Ostrovsky† Vassilis Zikas¶

Abstract

Secure multi-party computation (MPC) has been thoroughly studied over the past decades.
The vast majority of works assume a full communication pattern: every party exchanges mes-
sages with all the network participants over a complete network of point-to-point channels. This
can be problematic in modern large scale networks, where the number of parties can be of the
order of millions, as for example when computing on large distributed data.

Motivated by the above observation, Boyle, Goldwasser, and Tessaro [TCC 2013] recently
put forward the notion of communication locality, namely, the total number of point-to-point
channels that each party uses in the protocol, as a quality metric of MPC protocols. They
proved that assuming a public-key infrastructure (PKI) and a common reference string (CRS),
an MPC protocol can be constructed for computing any n-party function, with communication

locality O(logc n) and round complexity O(logc
′
n), for appropriate constants c and c′. Their

protocol tolerates a static (i.e., non-adaptive) adversary corrupting up to t < (1
3 − ε)n parties

for any given constant 0 < ε < 1
3 . These results leave open the following questions:

(1) Can we achieve low communication locality and round complexity while tolerating adaptive
adversaries?
(2) Can we achieve low communication locality with optimal resiliency t < n/2?

In this work we answer both questions affirmatively. First, we consider the model from
[TCC 2013], where we replace the CRS with a symmetric-key infrastructure (SKI). In this
model we give a protocol with communication locality and round complexity polylog(n) (as in
the [TCC 2013] work) which tolerates up to t < n/2 adaptive corruptions, under a standard
intractability assumption for adaptively secure protocols, namely, the existence of trapdoor
permutations whose domain has invertible sampling. This is done by using the SKI to derive
a sequence of random hidden communication graphs among players. A central new technique
then shows how to use these graphs to emulate a complete network in polylog(n) rounds while
preserving the polylog(n) locality. Second, we show how we can even remove the SKI setup
assumption at the cost, however, of increasing the communication locality (but not the round
complexity) by a factor of

√
n.

∗Microsoft Research, India, nichandr@microsoft.com.
†UCLA, wutichai@math.ucla.edu, rafail@cs.ucla.edu.
‡Yahoo Labs, garay@yahoo-inc.com.
§MIT and The Weizmann Institute of Science, shafi@theory.csail.mit.edu.
¶ETH Zurich, Switzerland, vzikas@inf.ethz.ch.

426
Approved for Public Release; Distribution Unlimited.

1 Introduction

Secure multi-party computation (MPC for short) allows a set of n parties to securely compute any
given function f on their private data. Ensuing the seminal works in the area [41, 26, 2, 14], the
systematic study of the problem over the last decades has lead to great improvements regarding
several efficiency measures, such as communication complexity (number of exchanged messages),
round complexity, and computation complexity. Until recently, however, essentially all MPC results
required all parties to communicate directly with each other over a complete network of point to
point channels, or by having access to a broadcast channel. While this requirement may be harmless
when the number of participants is small compared to the complexity of the function f , it is highly
problematic in settings where the number of parties is a dominant factor1.

Communication locality in MPC. Recently, Boyle, Goldwasser, and Tessaro [6], building on
work by King et al. on Byzantine agreement [32, 33] 2, introduced a new efficiency metric called
communication locality to address such settings. Informally, the communication locality of a pro-
tocol is the total number of different point-to-point channels that each party uses in the protocol.
The protocols provided in [6] for the computation of any polynomial time function f achieve a com-
munication locality of polylog(n) assuming a public-key infrastructure (PKI), a common reference
string (CRS), and the existence of a semantically secure public-key encryption and existentially un-
forgeable signatures. An example of a scenario where the complexity of the function may be much
smaller than the number of parties, is when securely computing the output of a sublinear algorithm,
which takes inputs from a small subset of q = o(n) of parties. (Sublinear algorithms are particularly
useful for computing statistics on large populations.) By assuming, in addition to the PKI and
semantically secure public-key encryption, the existence of a multi-signature scheme [38, 37], a (cer-
tifiable) fully homomorphic encryption (FHE) [7, 8], and simulation-sound adaptive non-interactive
zero-knowledge (NIZK) [4, 23], the authors also obtain a protocol for computing sublinear func-
tions, which communicates O((κ+n) ·polylog(n))-bit messages3 and terminates in polylog(n)+O(q)
rounds.

The solution of [6], however, has two major limitations:

(1) It cannot tolerate an adaptive adversary who may choose the parties to corrupt on the fly during
the protocol execution; it only tolerates a static adversary who decides on the faulty parties
prior to the protocol execution.

(2) It achieves a sub-optimal resiliency of t < (1/3− ε)n corrupted parties, for any given constant
0 < ε < 1/3, whereas traditional MPC protocols in the computational setting (without the low
communication locality requirement) can tolerate up to t < n/2 corruptions.

Our results. In this paper, we first show that by replacing the CRS with a slightly different setup
assumption, namely, a symmetric-key infrastructure (SKI) [21] where every pair of participants
shares a uniformly random key that is unknown to other participants, we can overcome both of
the above limitations. Specificially, we construct adaptively secure MPC protocols with commu-
nication locality polylog(n) tolerating any t < n/2 corruptions. (As mentioned above, this is the
optimal number of corruptions that can be tolerated, even in the complete communication setting
without the extra requirement of communication locality [26, 15].) Looking ahead, we will show

1 Interestingly, recent implementation results report remarkable performance of the state-of-the-art solutions for
small instances of the problem such as three-party computation [5] or in a lab environment when broadcast is assumed
for free (e.g., [3, 36, 16, 17, 19, 30]).

2[32, 33] in fact achieve “almost-everywhere” Byzantine agreement [22], which does not guarantee that all honest
players will receive an output (see “Other related work” below).

3κ is the security parameter.

1

427
Approved for Public Release; Distribution Unlimited.

how the SKI can be interpreted as a special type of random initial communication graph which
dictates which pairs of players can send point-to-point messages to each other to start with. The
graph is shared but “hidden:” each player will only know the restricted subset of polylog(n) players
it can send messages to and receive messages from.4.

Next, we show that we can remove the additional SKI assumption at the cost of increasing
the communication locality by a factor of

√
n. Both our constructions assume the existence of a

family of trapdoor permutations which has a reversed domain sampler [18, 25]. This is the weakest
known general assumption which is sufficient for non-committing encryption [11, 18], and thus
for adaptively secure MPC over non-private channels. Such families are known to exists under
standard number-theoretic assumptions such as the hardness of the decisional Diffie-Hellmann
problem (DDH) or the RSA assumption [18].

We remark that in order to circumvent the shortcomings in [6] we need to develop new and
quite different techniques, as the limitations to sub-optimal resiliency and non-adaptive adversaries
seem to be inherent in ther approach. This can be seen as follows. In [6], the parties elect n input
committees C1, . . . , Cn, as well as one “supreme” committee C—all of size polylog(n)—in a way that
ensures that (with high probability) at least a 2/3 fraction of the parties in each committee are
honest. Each protocol message of party pi is then secret-shared to committee Ci, which re-shares
it to the parties of the supreme committee C. Subsequently, the members of C compute the output
of the given function on the shared inputs and return it to the users (by sharing it to the input
committees, which then reconstruct to their associated input parties). All sharings are private and
robust so long as the adversary does not corrupt more than 1/3 of a committee members.

Clearly, the above cannot work if the adversary is allowed to adaptively corrupt parties de-
pending on his view of the election process. Such an adversary might choose to corrupt more
than a 1/3 fraction of the parties in some committee5 and thus violate the privacy of the protocol.
Furthermore, even for a static adversary, the above approach cannot yield an optimally resilient
(i.e., t < n/2) protocol, as an adversary who non-adaptively corrupts dn/2e − 1 of the parties has
a noticeable probability of corrupting 1/3 (or even 1/2) of the parties in some committee.

Interestingly, we note that under the additional assumptions of FHE and multi-signatures, [6]
obtains better communication complexity for computing sublinear algorithms than directly applying
our approach. Improving the communication complexity of our protocols is an enthralling direction
for future research.

Other related work. Our result should be contrasted with the work of Dani et al. [20], which
provides MPC in the information-theoretic setting assuming perfectly private communication chan-
nels with communication complexity of O(

√
n), but only offers security against a static adversary

and t < n/3 corruptions. For the problem of Byzantine agreement (BA), King and Saia [31] show
how to construct a protocol that is secure against adaptive corruptions, and where the communi-
cation complexity of every party is Õ(n). This leads to a BA protocol with Õ(n) communication
locality; however, their protocol only tolerates t < (13−ε)n corruptions (and is specific to Byzantine
agreement).

Another related body of work is on conducting Byzantine agreement and MPC when players are
not connected via a point-to-point network but rather via a sparse, public network. This has been
studied both in the context of BA [22, 40, 12, 13] and of MPC [24, 32, 33]. These results inevitably
only achieve the so called almost-everywhere versions of the problems, as the protocols “give up”
a number x = ω(1) of honest parties (and provide no guarantees for them). The interested reader

4In fact, one may alternatively state our setup as having the players share an initial hidden random graph, and
our result as a reduction from this setup.

5Recall that the adversary has a linear corruption “budget” t < (1/3−ε)n and the committees are of size polylog(n).

2

428
Approved for Public Release; Distribution Unlimited.

may refer to Appendix A for a short survey of the corresponding literature.

1.1 Overview of our results and techniques

In this paper we establish the feasibility of secure multiparty computation with low (i.e., polylog(n))
communication locality both for static and for adaptive adversaries corrupting any t < n/2 parties.
Our constructions assume a PKI and a symmetric-key infrastructure (SKI—see details below).
Furthermore, our protocols have polylog(n) round complexity. In more detail, we show the following:

Theorem 1. Assuming a PKI, an SKI, and trapdoor permutations with a reversed domain sampler,
there exists an MPC protocol secure against an adaptive adversary corrupting up to t < n/2 parties
and satisfying the following properties with overwhelming probability:

(Polylogarithmic communication locality) Every party communicates with at most O(log1+ε n)
other parties, for some constant ε > 0.

(Polylogarithmic round complexity) The protocol terminates after O(logε
′
n) rounds, for some

constant ε′ > 0.

Since we wish to obtain MPC with guaranteed output delivery for all honest players, our bound
on t < n

2 is optimal. Furthermore, if we do not wish to “give up” any party in the protocol, then
the best communication locality that one can hope to attain is ω(log n)6, and hence our protocols
are near optimal in terms of communication locality as well.

Next, we show that we can completely get rid of the SKI setup (while still guaranteeing adaptive
security) at the cost of increasing the communication locality (but not the round complexity). That
is, we show:

Theorem 2. Assuming a PKI and trapdoor permutations with a reversed domain sampler, there
exists an MPC protocol secure against an adaptive adversary corrupting up to t < n/2 parties and
satisfying the following conditions with overwhelming probability:

Every party communicates with at most O(
√
n log1+ε n) other parties, for some constant ε > 0.

The protocol terminates after O(logε
′
n) rounds for some constant ε′ > 0.

In the remainder of this section we summarize our main techniques and provide a high-level
overview of our MPC construction. Before we do that, we describe our model in a bit more
detail. All parties are connected via a complete network of point-to-point channels. For simplicity,
we assume that the channels are secure; however, as we assume a public-key infrastructure (PKI),
these channels can be implemented by encryption and authentication [26]. Furthermore, we assume
synchronous communication, i.e., our protocols proceed in rounds where messages send in any round
are delivered by the end of the round. An adversary can adaptively corrupt t < n/2 parties and
cannot observe whether or not two honest parties communicated. In addition, our construction
assumes a symmetric-key infrastructure (denoted SKI), where every pair (i, j) of parties shares a
uniformly random key ski,j ∈ {0, 1}κ for some security parameter κ. Note that there does not seem
to be a direct way of getting rid of the SKI assumption without increasing the communication
locality, as the direct approach of using the PKI for fair exchange would require (at least) a
round where every party communicates with all other parties to exchange the pairwise keys keys.
Removing the SKI assumption without increasing the locality is an intriguing open problem.

SKI as a hidden graph setup. Central to our results is a novel way of interpreting/transforming
a symmetric key-infrastructure into a special type of setup, which we refer to as hidden-graph setup
(HG).

6If a party communicates with only O(logn) parties in the protocol, then an adversary can simply guess these
O(logn) parties (with non-negligible probability) and corrupt them, thereby isolating this honest party.

3

429
Approved for Public Release; Distribution Unlimited.

Let G = (V,E) be an undirected graph, where V = [n] is the vertex set and E is the set
of edges in G. In slight abuse of notation, we also use E to denote the adjacency matrix of
G, i.e., E(i, j) = E(j, i) = 1 if there is an edge in G connecting vertices i and j; otherwise
E(i, j) = E(j, i) = 0. We let G(n, p) = (V,E) denote the Erdős-Rényi random graph on n vertices
where for every i, j ∈ V , Pr[(i, j) ∈ E] = p. We refer to such a graph as a p-random graph.

We say that the parties in [n] hold a hidden p-random graph setup (p-HG)7 if, after sampling
G = G(n, p), every party i ∈ [n] is given his corresponding row E(i, j) for j ∈ [n] and no other
information on E. Note that instead of the näıve encoding which would require n bits (i.e., give
each party the full vector corresponding to his row in E), we can simply give each party i a vector
Γ(i) which includes the parties i communicates with over the bilateral secure channel. Thus if party
i communicates with q parties, his p-HG setup will be of size q log(n).8

We now show how such a HG can be efficiently (and locally) computed from a SKI: Recall that
in an SKI every pair of parties i and j is given a uniformly random key ski,j . We use this key as
a seed to a pseudo-random function (PRF). Parties i and j will use the PRF (keyed with ski,j) to
(locally) compute the random coins needed to sample (i, j) for the graph G; i.e., i and j will use
the output of the PRF as coins in a sampling algorithm which picks a bit b to be 1 with probability
p. If b = 1, then i and j will communicate with each other directly in the protocol and (i, j) will be
an edge in the communication graph G. The security of the PRF ensures that the bit b computed
as above is distributed indistinguishably from the output of the sampling algorithm on uniformly
random coins. Without loss of generality, we will henceforth assume that the PRF keys that parties
share can be used to sample as many random graphs as needed.

Our adaptively secure construction will make use of several (polylog(n)-many) independent
HG’s. A sequence of `-many HG’s that is indistinguishable from a sequence of ` independent
p-HG’s can be generated as above, by querying the PRF on distinct (fixed) inputs.

Overview of our construction. At the heart of our construction lies a protocol for reliable
message transmission (RMT) in this communication-constrained setting. Such a protocol allows a
sender i to reliably send a message to a receiver j. Note that as we assume a completely connected
network, a trivial way of implementing RMT would be for party i to use the point-to-point channel
he shares with each j ∈ [n]. However, our goal is to achieve RMT where each party utilizes only a
polylogarithmic number of its direct point-to-point channels. Clearly, in such a setting we cannot
allow the adversary to know the neighbors of an honest party i ∈ [n] as this would enable the
adversary to “cut-off” (i.e., isolate) party i from the rest of the parties by corrupting all of its
neighbors.

This is where the hidden-graph setup comes in handy: Every party will only exchange messages
with its neighbors in this hidden graph and ignore all other interfaces.9 As we show, an adversary
who corrupts up to any constant fraction q < 1 of parties cannot make the length of the shortest
honest path between any two honest parties to be greater than logε

′
(n), for some ε′ > 0, except

with negligible probability. In particular, we show that if G′ denotes the graph that is obtained
by deleting from G all parties/nodes that such an adversary corrupts, then with overwhelming
probability, every two nodes in G′ (i.e., every two honest parties) are connected (in G′) by a path of
length at most logε

′
n. Thus, parties can achieve RMT by simply “flooding” the network; i.e., party

i will simply send message m, signed under its signing key, to all its neighbors; then, for logε
′
(n)

7Throughout this paper we only consider p = log1+ε(n)
n

for some ε > 0. Whenever ε is clear from the context we
might omit p and just refer to the setup as a “(hidden) random graph setup.”

8In our setting q = polylog(n) with overwhelming probability, thus, we get that a hidden graph setup is also of
size polylog(n).

9Note that the adversary might try to send messages to honest parties using all the corrupted parties. However,
the honest parties will ignore messages from all parties that are not their neighbors in their hidden graphs.

4

430
Approved for Public Release; Distribution Unlimited.

rounds, all parties in every round, will simply forward (the first validly signed) message that they
receive to all its neighbors. Since i and j are connected by a path of length N = logε

′
n in G′, then

after N rounds, j will receive at least one copy of m that is signed under i’s signing key and hence
will reliably receive the message m. Observe that the above RMT protocol tolerates any constant
fraction q < 1 of corruptions (i.e., up to t ≤ qn corrupted parties) and requires a standard PKI for
digital signatures (in addition to the HG). We assume standard digital signatures secure against
chosen-plaintext attacks. Further, since the message is guaranteed to reach all honest parties within
N rounds, the above RMT protocol can be used to have a message sent to all honest parties.10

Unfortunately, the above approach only works for a static adversary. The reason is that, while
corrupting parties (even adaptively) and learning their setup, does not reveal anything about the
hidden graph (other than the neighbors of corrupted parties themselves), the protocol itself might
reveal whether or not (i, j) ∈ E for honest parties i, j ∈ [n]. For example, if an adversarial party i
sends a message to another adversarial party j, and j receives this message in 3 rounds, then it must
be the case that there exists a path of length 3 between i and j. One might think that we can get
around this problem by simply having i encrypt the message under j’s public key; this, however, is
completely useless in the case when j is corrupted. Another idea might be to have i delay sending
its message; however, this too is useless when i is corrupted.11 As a result, constructing an RMT
protocol for the adaptive-corruption case ends up being much more challenging than in the static
case.

The high-level idea behind the protocol for the adaptive case is to sample a new Erdős-Rényi
random graph G = G(n, p), with p = logε n

n , at every round of the protocol. As long as the total
number of rounds of the protocol is polylogarithmic, so will be the total number of point-to-point
channels that an honest party uses (since in each round, every honest party might speak to at
most polylog(n)—potentially new—neighbors). The intuition for choosing a different HG for each
round is that any corruptions made by the adversary before round i are independent of the graph
selected in round i and hence this would be equivalent to the static adversary case. However, now
proving that honest parties can communicate reliably (and that there exists a path of bounded
length between any two honest parties) is delicate, constituting the crux of our technical result.

Having RMT, the next step is to design the MPC protocol. Recall that our goal is a protocol with
full security (i.e., including fairness) an optimal resiliency (i.e., tolerating t < n/2 corruptions) [15,
26]. One idea to achieve this is as follows: Since we have already established RMT between any two
honest parties, we can invoke any known MPC protocol Π secure for t < n/2 assuming authenticated
channels, over the virtual network induced by RMT. Whenever party i is instructed in Π to send
a message m to party j, we invoke RMT for this purpose. This approach would give an MPC
protocol tolerating up to t < n/2 corruptions, but does work generically (for any protocol Π) in
combination with our simulated communication channels.

To see why, observe that in our adaptively secure protocol, an increase of the round complexity
implies the same (asymptotic) increase of the honest parties’ communication locality. Indeed, since
using our RMT, every party communicates with O(logc n) (potentially new) parties in every round
1 ≤ ` ≤ D, we can only afford to run a protocol that runs in logc

′
n number of rounds for some

c′ > 0. Thus, in order for the above idea to work we need an adaptive MPC protocol over point-
to-point authenticated channels which terminates in polylog(n) rounds. Such a protocol can be
obtained by taking any constant-round MPC protocol that utilizes a point-to-point network of
secure channels and a broadcast channel (e.g., the protocol in [1]), and modifying it as follows: (1)

10Note, however, that if the sender is corrupted, there is no guarantee that the message is sent consistently.
11Note that we want to use RMT for every pair of parties; thus, the adversary might use information on the HG

learned in an execution of RMT with a corrupted sender and/or receiver to attack another RMT with honest sender
and receiver.

5

431
Approved for Public Release; Distribution Unlimited.

transmission over the point-to-point secure channels are emulated by calls to our RMT protocol
where the message is encrypted using non-committing encryption, and (2) calls to the broadcast
channel are emulated by a (randomized, authenticated) broadcast protocol which terminates in
polylog(n) rounds (cf. the protocol in [29]).

Remark 1 (Static security). Our primary goal in this paper is adaptive security. However, in the
static security setting our approach yields a protocol with polylog(n) locality which relies only on
semantically secure public-key encryption and existentially unforgeable signatures (as in [6]). The
protocol tolerates an optimal number of t < n/2 corruptions and assumes a PKI and a (single)
hidden graph setup12(instead of the PKI and CRS assumed in [6]).

Finally, we show (Section 5) how to avoid the SKI assumption, at the expense of an increased
communication locality (but not round complexity)—cf. Theorem 2. In a nutshell, the parties will
compute some kind of alternate random graph setup by having each party locally decide which of
his n point-to-point channels he will use; a channel between two (honest) parties i, j ∈ [n] is then
used only if both parties choose it. By adequately setting the probability of the honest parties’
decisions, the resulting communication graph will include an Erdős-Rényi graph which will allow us
to use our ideas from the SKI-based construction, with a guaranteed O(

√
n logδ n) communication

locality, for some constant δ > 0.

2 Model, Definitions and Building Blocks

As already mentioned earlier, we assume all parties share a public-key infrastructure (PKI) as well
as a symmetric-key infrastructure (SKI). In other words, every party has a public-key, secret-key
pair (for a digital signature scheme); every party i ∈ [n] receives party j’s public-key (for all j ∈ [n]).
In addition, every pair of parties i, j ∈ [n] share a secret key ski,j . Parties are connected by a fully
connected synchronous network; however, in our constructions every party will only communicate
with polylog(n) other parties.

We allow up to t < n
2 of the parties to be adaptively corrupted by a rushing adversary (meaning

that the adversary is allowed to corrupt parties dynamically during the protocol execution and
depending on his view, and that the adversary is able to postpone the sending of any given round’s
messages until after he receives the messages from the honest parties, resp.).

We consider the standard simulation-based notion of security for multiparty protocols via the
real/ideal world paradigm. In other words (and informally), we require that for every probabilistic-
polynomial time adversary A (that corrupts t of the parties) in a real-world execution of the
protocol, there exists a corresponding PPT adversary S in the ideal world who can simulate the
output of A given only access to the ideal world where S only learns the output of the evaluated
function. We prove our results for standalone security. We refer the reader to [9, 10] for further
details on this notion of security for multiparty computation. Throughout, we assume that n > κ,
the security parameter.

Our constructions rely on the standard intractability assumption for adaptively secure multi-
party protocols, namely, the existence of a family of trapdoor permutations with a reversed domain
sampler [18, 25]. Informally, these are trapdoor permutations with an extra property that there
exists an algorithm (the reversed domain sampler) which given an input and output can reconstruct
(sample) the corresponding random bits used by the perambulation function. This assumption is
sufficient for all the primitives used in this paper, namely: Pseudo-random functions (PRFs) [28],

12Note that, instead of an SKI, a single copy of our hidden graph can be represented as polylog(n) bits held by
each party corresponding to the vector of the indices of its neighbours.

6

432
Approved for Public Release; Distribution Unlimited.

existentially unforgeable signatures (assuming a PKI setup) [28], constant-round non-committing
encryption (informally, this is encryption which transforms an authenticated channel into a secure
one in the presence of an adaptive adversary [18]), and constant-round adaptively secure MPC over
a point-to-point network with (authenticated) broadcast [1] (see below).

Definition 3 ([39, 34]). A protocol for parties P = P1, · · · , Pn, where a distinguished player (called
the dealer) P ∗ ∈ P holds an initial input m, is a broadcast protocol tolerating t malicious parties if
the following conditions hold for any adversary controlling at most t parties:

Agreement: All honest parties output the same value v.

Validity: If the dealer is honest, then v = m.

Broadcast protocols that assume a public-key infrastructure are usually termed authenticated.
We also make use of the following fact about expected-constant-round broadcast and Byzantine

agreement protocols, implicit in [29].

Theorem 4 ([29]). Assuming a PKI, there exists a protocol ΠBC which achieves broadcast with
overwhelming probability against t < n/2 adaptive corruptions, running for log1+c(n) rounds on a
complete network, for some constant c > 0.

3 Reliable Communication in the Locality Model

In this section we prove our results for Reliable Message Transmission (RMT) between every pair
of honest parties in our communication-constrained setting, assuming a standard PKI (for digital
signatures) as well as an SKI, as defined above. The constructions in this section tolerate any
constant fraction of corrupted parties than what is required for fully secure MPC; that is, we only
assume that the number of corrupted parties in t ≤ qn, for constant q < 1 (arbitrarily close to 1).

3.1 Static security

We first show an RMT protocol that is secure against static corruptions. This will illustrate some
of the ideas that are needed for our adapively secure construction.

Setup phase. Recall that we work in a model in which parties share a public-key as well as a
symmetric-key infrastructure. That is, in the setup phase, party i receives a private key ski for a
signature scheme, and every party j receives the public key vki corresponding to ski, for all i ∈ [n].

The SKI allows for a hidden p-random graph setup (p-HG), with p = log1+ε n
n (for appropriately

chosen ε > 0), as explained above. Note that, because in this section we assume only a single
shared hidden graph, it is sufficient (in fact equivalent) that the keys in the SKI are one-bit long.

Construction idea. The hidden graph setup ensures that the adversary does not get to know
whether party i communicates with party j, unless he corrupts one of them. We show that given
such a p-HG, an adversary who (non-adaptively) corrupts any constant fraction q of the parties
cannot isolate any of the honest parties. In fact, we show a much stronger property for the graph G′

formed by removing (in the hidden graph) t = qn corrupted nodes; namely, that with overwhelming
probability (in n), every pair (i, j) of honest parties is connected by a path of length at most
N = logε

′
(n), for some ε′ > 0 which depends only on ε. Note that since parties start with a PKI,

we only require that honest parties i, j ∈ [n] are connected by a path of length N = logε
′
(n), for

some ε′ > 0 in graph G′. Parties can then achieve RMT by simply “flooding” the network; i.e.,
party i will simply send message m, signed under its signing key, to all its neighbors. Next, each
party in every round simply forwards the (first validly signed) message that it receives to all of

7

433
Approved for Public Release; Distribution Unlimited.

its neighbors. A formal description of the non-adaptively secure protocol for a sender i to reliably
send a message m to a receiver j, denoted by RMTi,j(m), is as follows. (Let Γ(i) denote party i’s
neighbors in G.)

Protocol RMTi,j(m)

1. Round 1: Party i sends (m, sigski(m)) to all nodes in Γ(i).

2. For each round ρ = 2, . . . , logε
′
(n):

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature
on m, was received for the first time from some of its neighbors, i.e., some node in Γ(i), in
the previous round, then party k sends (m,σ) to all its neighbors and halts. (If multiple
validly signed pairs were received in that round for the first time, then take the first one in a
lexicographic order.)

For receiver j: If a message (m,σ), where σ is party i’s valid signature on m, is received for
the first time from some node in Γ(j) then output m and halt. (If multiple validly signed
pairs are received in that round for the first time, then take the first one in a lexicographic
order.)

The security of protocol RMTi,j(m) (stated in Theorem 7) can be argued as follows: If i and j
are connected by a path of length N in G′, then after N rounds j will receive at least one copy of m
that is signed under i’s signing key, and hence will reliably receive the message m. Thus we simply
need to argue that the above holds for some N = polylog(n). To this direction, we first prove the
following lemma, which implies RMT between i and j for all honest i, j ∈ [n].

Lemma 5. Let G = (V,E) be a hidden p-random graph, and let A be an adversary who non-
adaptively chooses a set of parties to corrupt and by doing so learns all their neighbors in G.
Denote by U ⊆ V the set of corrupted nodes, and by G′ the subgraph on V \ U resulting from

erasing all nodes in U . If for some constant q < 1, |U | ≤ qn and p = d
n = log1+ε n

n , then, for any

constant 0 < k < 1−q
2 , G′ is an expander graph with edge expansion kd.

Proof. Since each pair of vertices in G′ is still connected with probability p independently of U , G′ is
a random graph G((1−q)n, p). Let n′ = (1−q)n and 0 < k < 1−q

2 . Then, for each S ⊆ V ′ = V \U ,

|S| = r ≤ n′

2 , we have

eG′(S, S) =
∑

v∈S,v′∈S

Xv,v′ ,

where Xv,v′ is the indicator whether there exists an edge between v and v′. Then

E[eG′(S, S)] =
∑

v∈S,v′∈S

E[Xv,v′] = |S||S|p = r(n′ − r)p.

By the Chernoff bound,

Pr[eG′(S, S) < kd|S|] ≤ e−
(
1− kn

n′−r

)2
r(n′−r)p

=

e−
(

1− kn
n′−r

)2
(n′−r)

2n

rd

=

e−
(
n′−r
n −k

)2

2·n
′−r
n

rd

.

Since 0 < r < n′

2 , we have

1− q
2

=
n′

2n
≤ n′ − r

n
≤ n′

n
= 1− q < 1.

8

434
Approved for Public Release; Distribution Unlimited.

Thus, (
n′−r
n − k

)2
2 · n′−rn

≥ 1

2
·
(

1− q
2
− k
)2

= c > 0.

For d = log1+ε n, we have

Pr[eG′(S, S) < kd|S|] ≤
(
e−c
)rd

=

(
1

nc′ log
ε n

)r
,

and by the union bound, the probability that eG′(S, S) < kd|S| for some subset S, |S| ≤ |V ′|/2 is
bounded by

n′
2∑

r=1

∑
S,|S|=r

Pr[eG′(S, S) < kd|S|] ≤

n′
2∑

r=1

(
n′

r

)(
1

nc′ log
ε n

)r

≤

n′
2∑

r=1

nr
(

1

nc′ log
ε n

)r

=

n′
2∑

r=1

(
1

nc′ log
ε n−1

)r
<

1
nc
′ logε n−1

1− 1
nc
′ logε n−1

= λ(n),

where λ(n) represents a function that is negligible in n. Therefore, G′ is an expander with edge
expansion kd with overwhelming probability.

The next corollary follows immediately from Lemma 5, by using the fact that an expander
graph as above has polylogarithmic diameter except with negligible probability. We make use
of the following intuitive terminology: for a given graph G = ([n], E) we say that two parties i
and j in [n] are G-connected by an honest path of length ` if there exists a sequence of connected
nodes PATH(i, j) from i to j in G such that for every node k ∈ PATH(i, j), node k is honest, and
|PATH(i, j)| = `.

Corollary 6. Let ε > 0, p = log1+ε n
n , and G be a hidden p-random graph. For any adversary who

(non-adaptively) corrupts at most t = qn parties, the following holds except with negligible (in n)
probability: there exists some ε′ > 0 which depends only on ε such that any two honest parties are
G-connected by an honest path of length at most logε

′
(n).

The security of protocol RMTi,j(m) follows now easily from the above corollary, as no matter
how the (static) adversary chooses the corrupted parties he cannot increase the diameter of the
graph defined by the honest parties and the hidden graph setup to more than polylog(n).

Theorem 7. Let 0 < q < 1, and T ⊂ [n] be the set of (non-adaptively) corrupted parties,
|T | = t ≤ qn. Assuming a PKI and an SKI, then RMTi,j is a secure RMT protocol between any
two honest nodes i, j ∈ [n]\T satisfying the following two conditions with overwhelming probability:

1. Every party communicates with at most O(log1+ε n) other parties;

2. the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

9

435
Approved for Public Release; Distribution Unlimited.

Proof. Since Lemma 5 shows that any message sent by an honest i will reach every honest j
within O(logε

′
(n)) rounds, it follows from the unforgeability property of the signature scheme that

j will always accept the message sent by honest i. Hence, the above protocol is a secure RMT
protocol. The communication locality of the protocol follows from the degree of G = G(n, p) which
is O(log1+ε n), except with negligible probability.

Parallel composition of RMT. In our MPC construction, we will require all nodes to execute
their respective RMT protocols in parallel (simultanesouly). That is, let mi,j be the message
that node i wishes to send to j via the RMT protocol, denoted RMTi,j(mi,j) as above. Now,
let RMTall(m) denote the protocol executed by all parties when RMTi,j(mi,j) for all i, j ∈ [n] are
executed in parallel. (That is, in round k of RMTall(m), all parties execute the kth round of protocol
RMTi,j(mi,j), for all i, j ∈ [n]). RMTall(·) is composed of n2 individual RMT protocols. We have
the following corollary.

Corollary 8. For all honest i, j ∈ [n], RMTall(m) is a reliable message transmission protocol for
sending mi,j from i to j, satisfying the following properties:

1. Every party communicates with at most O(log1+ε n) other parties in the protocol.

2. The protocol terminates after O(logε
′
n) rounds for some ε′ > 0.

Proof. From Lemma 5 we have that any message sent by any honest i will reach every honest
j within O(logε

′
n) rounds. Hence, from this and the unforgeability of the underlying signature

scheme, it follows by a standard hybrid argument that every honest j will always accept the
message sent by any honest i at the end of RMTall(m). Furthermore, note that the protocol’s
round complexity is equal to the maximum round complexity of its components, which equals
O(logε

′
n). Further, note that the communication locality of every party in RMTall(m) is equal to

the communication locality of the party in RMTi,j(mi,j), for any i, j ∈ [n]. Hence, the corollary
follows.

3.2 Adaptively secure RMT

As discussed in the Section 1.1 the above proof technique fails against adaptive adversaries. Infor-
mally, the issue is that an adversary can use the round in which a corrupted party/relayer receives
a message to deduce information on the communication graph (see Section 1.1 for more details
and a concrete example). In this section we describe an RMT protocol that is secure against such
an adaptive adversary. The idea is have the parties use a different, independent communication
graph for each round in the transmission scheme. As long as the transmission scheme does not have
more than polylog(n) rounds and in each round, every party communicates with at most polylog(n)
(additional) parties, the overall locality with be polylog(n).

The main challenge in the above idea is to prove that in this dynamically updated communi-
cation graph, the message will reach each recipient through an honest path in at most polylog(n)
rounds. Proving this constitute the main technical contribution of our work. The (adaptively se-
cure) RMT protocol AdRMT is similar to the protocol in the static case, except that in round ρ
parties forward messages received in the previous round to their neighbours in the communication
graph Gρ. We first describe the corresponding setup that it requires.

Setup phase. As in the static case, the parties share both a PKI and an SKI. The SKI will be
used here in the same spirit, except that instead of generating one Erdős-Rényi graph, G = G(n, p)
with p = logε n

n , it will be used to generate D such graphs, denoted G = (G1, . . . , GD). These graphs
can be sampled using the same PRF key ski,j that parties i and j share. As before, every node only

10

436
Approved for Public Release; Distribution Unlimited.

knows its own neighbors, and when the adversary corrupts a node j, he only learns j’s neighbors
in G1, . . . , GD.

The protocol is described below, followed by security statement and a high-level description of
its proof. (The formal proof can be found in Appendix B.)

Protocol AdRMTi,j(m)

1. Round 1: Party i sends (m, sigski(m)) to all its neighbors in graph G1.

2. For each round ρ = 2, . . . , logε
′
(n):

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature on m
was received for the first time from some of its neighbours in Gρ−1 in the previous round, then
party k sends (m,σ) to all its neighbors in graph Gρ and halts. (If multiple validly signed
pairs were received in that round for the first time, then take the first one in a lexicographic
order.)

For receiver j: If a message (m,σ), where σ is party i’s valid signature on m is received for
the first time from some of party j’s neighbours in Gρ, then output m and halt. (If more than
one validly signed pair is received in that round for the first time, then take the first one in a
lexicographic order.)

Theorem 9. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI and an SKI, protocol AdRMTi,j(m) is a secure RMT protocol between
any two honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof idea. As in the static case, we show that there exists a path of length at most O(logε
′
(n))

between any two honest nodes i, j ∈ [n] when we consider the collection of communication graphs
G that selects graph Gi as the communication graph in hop i. We prove this in three steps:

First, we prove that at every step of the protocol, even if an adversary corrupts a constant
fraction of the nodes in the random graph, the honest neighbors of any set S of size ≤ n

d that are
not in S, will be at least of size kd|S|, for some appropriate constant k (except with negligible
probability). More concretely, in Appendix B we prove the following lemma, where we let ε >

0, 0 < q < 1 be constants, d = log1+ε n, p = d
n = log1+ε n

n , and D = O(log n).

Lemma 10. Let G = G(n, p) be graph on V = [n], and U ⊆ V , |U | ≤ qn, chosen adaptively while
only learning edges connecting to U . Let G′ be the induced subgraph on V ′ = V \U . Then, for any
constant 0 < k < 1−q

2 , there exists a constant c > 0 such that, for sufficiently large n and for any
S ⊆ V ′ with |S| = r ≤ n

d = 1
p , the set of all neighbors of S that are not in S, Γ(S), has size at least

kd|S| except with negligible probability Pr =
(

1
nc logε n

)r
.

Next, via an application of Hoeffding’s inequality (see Lemma 16 in Appendix B,) we prove that
as long as the adversarial parties are chosen independently of the random neighbors chosen by any
party, a constant fraction of the party’s neighbors will be honest, except with negligible probability
(as long as the adversarial set is of size at most qn for some constant 0 < q < 1). Thus we get the
following.

11

437
Approved for Public Release; Distribution Unlimited.

Lemma 11. Let V = [n] and C ⊆ V , |C| = m, be a subset chosen uniformly at random. Let
0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen independently of C. Then,
for all 0 < δ < 1 − q, |C \ U | > (1 − q − δ)m except with probability e−2mδ

2
. In particular, for

m = log1+ε
′
n, |C \ U | >

(
1−q
2

)
m except with negligible probability. Furthermore, for q = 1

2 − ε,
|C \ U | > 1

2m except with negligible probability.

Finally, using Lemmas 10 and 11, we show that even when an adversary adaptively corrupts
parties in every round of the protocol, as long as the parties select a random graph at each round
of the protocol, there exists a path of length at most D = O(log n) between any two honest nodes
in [n]. Formally:

Lemma 12. Let G1, . . . , GD be graphs on V = [n] constructed independently as G(n, p). Let
U1, U2, . . . , UD ⊆ V be disjoint subsets with U = ∪Di=jUj such that |U | = qn where Uj is chosen
independently from Gj+1, . . . , GD, but adaptively, after learning the neighbors of Ui in Gi for i ≤ j.
Let G′i be the induced subgraph on Vi = V \ (∪ij=1Uj). Then, except with negligible probability, any
pair of vertices v, v′ ∈ V ′ = V \ U are reachable with respect to G′ = (G′1, . . . , G

′
D) by a path of

length at most D.

Combining these gives us our main theorem (Theorem 9).

Parallel composition of adaptively secure RMT. Once again, we will require all nodes i, j ∈
[n] to execute their respective RMT protocols in parallel simultaneously. Let AdRMTall(m) denote
the protocol executed by all parties when AdRMTi,j(mi,j) for all i, j ∈ [n] are executed in parallel.
That is, in round k of AdRMTall(m), all parties execute the kth round of protocol AdRMTi,j(mi,j)
(for all i, j ∈ [n]). Note that the graph Gk used in the kth round of the protocol depends only
on the round k and not on i and j; hence, we use the same graph Gk to send all the messages of
protocol AdRMTall(m). We have the following corollary:

Corollary 13. For all honest i, j ∈ [n], AdRMTall(m) is a reliable message transmission protocol
for sending mi,j from i to j, satisfying the following properties:

1. Every party communicates with at most O(log1+ε n) other parties in the protocol.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

The proof of this corollary is similar to Corollary 8’s.

4 Secure Multiparty Computation with Low Communication

We are now ready to describe our MPC protocol for securely evaluating any given (even reactive) n-
party function in the comunication-locality model. Our protocol is secure against t < n/2 adaptive
corruptions. The idea behind our MPC protocol is to use a constant-round adaptively secure MPC
protocol for t < n/2 working over point-to-point secure channels and broadcast (e.g., [1]), where
those resources are emulated via our RMT protocol of Section 3.2.

We let ΠBC denote the authenticated broadcast protocol guaranteed by Theorem 4 (Section 2).
The protocol achieves broadcast with overwhelming probability against t < n/2 adaptive corrup-
tions, running for log1+c n rounds on a complete network, for some constant c > 0. As pointed
out in [29], assuming unique process and message ID’s as in [35], ΠBC remains secure under parallel
composition.

Let Π∗BC denote the protocol which results by having the parties execute ΠBC where in each
round instead of using the point-to-point channels for exchanging their messages, the parties in-
voke AdRMTall from Section 3.2. Then it follows immediately from the security of AdRMTall

12

438
Approved for Public Release; Distribution Unlimited.

(Corollary 13) and the fact that each message transmission requires polylog(n) rounds that protocol
Π∗BC is also a secure broadcast protocol with polylogarithmic round complexity and communication
locality.

Lemma 14. Protocol Π∗BC described above achieves broadcast against t < n/2 adaptive corruptions
and satisfies the following conditions with overwhelming probability:

1. Every party communicaties with at most O(log1+ε n) parties for any constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds for some constant ε′ > 0.

Proof (sketch). The security of Π∗BC follows directly from the security of protocols ΠBC and
AdRMTall. The (asymptotic) round complexity is computed as follows: for each round ` of ΠBC,
protocol Π∗BC executes AdRMTall to have the parties exchange their round ` messages; thus, for
each round in ΠBC we need O(logε

′′
n) rounds in Π∗BC. Because ΠBC runs in O(logε

′
n) rounds, the

total round complexity of Π∗BC is O(logε
′+ε′′ n) rounds. We next argue the communication locality:

With overwhelming probability, in each round of Π∗BC, every party might communicate with at
most to O(log1+ε n) (potentially different) parties (for executing AdRMTall). Thus, since the total
number of rounds is O(logε

′+ε′′ n), then with overwhelming probability (by the union bound) the
total number of parties that each i ∈ [n] exchanges messages with using the point-to-point channels
is O(log1+ε+ε

′+ε′′ n).

The next step is to construct a secure message transmission protocol (SMT) which will allow a
sender i to securely (i.e., authentically and privately) send a message mi,j to a receiver j. Since we
have a PKI and an adaptively secure broadcast protocol, we can use the standard reduction of secure
channels to broadcast: The sender i encrypts mi,j under the receiver’s public key and broadcasts
the corresponding ciphertext ci,j . Upon receiving ci,j , party j decrypts it using his secret key and
recovers mi,j . However, in order for the above reduction to be secure (in a simulation-based manner)
against an adaptive adversary, we need to ensure that a simulator can “open” a ciphertext to any
message of its choice. This can be achieved by the use of a non-committing encryption scheme for
computing the ciphertext ci,j [11]. As proved in [18] constant-round non-committing encryption can
be constructed assuming the existence of families of trapdoor permutations with a reversed domain
sampler. Consistently with the notation introduced in the previous section, we use AdSMTi,j to
denote the above SMT protocol, and AdSMTall to denote the protocol composed of n2 individual
AdSMTi,j(mi,j) protocols (for all i, j ∈ [n]), run in parallel, where m = (m1,1,m1,2, . . . ,mnn).

With the above tools, we have:

Theorem 1. Assuming a PKI, an SKI, and trapdoor permutations with a reversed domain sam-
pler, there exists a protocol for securely evaluating any given n-party function against an adaptive
adversary who corrupts t < n/2 parties, satisfying the following two conditions with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties, for some constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds, for some constant ε′ > 0.

Proof (sketch). Let ΠMPC denote a constant-round MPC protocol which is secure against adaptive
corruptions of up to t < n/2 parties, where parties communicate over a complete network of point-
to-point channels and broadcast. (Such protocols are known to exist under the assumption in the
theorem, e.g., [1].) Furthermore, let Π∗MPC denote the protocol that results by instantiating in ΠMPC

the calls to the secure channels and broadcast by invocations of protocols Π∗BC and AdSMT, respec-
tively. We argue that Π∗MPC satisfies all the properties claimed in the theorem. The security of Π∗MPC
follows immediately from the security of the underlying protocol ΠMPC and the security of protocols

13

439
Approved for Public Release; Distribution Unlimited.

Π∗BC and AdSMTall. For the round complexity: For each round in ΠMPC, all message exchanges (i.e.,
point-to-point transmissions or broadcast calls) are exchanged in Π∗MPC by appropriate (parallel)
executions of protocols Π∗BC and AdSMTall, where the executions have unique round, protocol, and
message IDs.13 Thus, for every round in ΠMPC we need O(logε

′
n) rounds in Π∗MPC, for some given

constant ε′ > 0. Because ΠMPC terminates in a constant number of rounds, the round complexity
of Π∗MPC is also O(logε

′
n). In each of these rounds, every party might communicate with at most

O(log1+ε n) (potentially different) parties, (Recall that all parallel executions of Π∗BC and AdSMTall

use the same sequence of graph setups.) Thus, the total number of parties that each i ∈ [n] talks
directly to (i.e., via its point-to-point channels) is O(log1+ε+ε

′
n).

5 Getting Rid of the SKI

In this section we show how to get rid of the symmetric-key setup assumption, at the cost, however,
of increasing the communication-locality (but not the round complexity) by a factor of

√
n.

The idea for getting rid of the SKI is to have the parties compute some kind of an alternative
random graph setup. This is done as follows: each party i ∈ [n] locally decides which of his n
point-to-point channels he will use; a channel between two (honest) parties i, j ∈ [n] is then used
only if both parties choose it. (This is similar in spirit to the way the work of Chandran et al. [13]
handles “edge corruptions” in sparse networks.) By having each party decide to use each of his
channels with probability p = logε n√

n
for some given constant ε > 1 (and ignore all other channels)

we ensure that, with overwhelming probability, each (honest) party uses at most O(
√
n logδ n) of

its point-to-point channels for some constant δ > 0. Furthermore, each edge between two honest

parties i and j is chosen with probability p′ = p2 = log2ε n
n , thus the resulting communication graph

will include Erdős-Rényi graph G(n, p′) which will allow us to use our ideas from the previous
sections. Note however, that as the adversarial nodes might choose to communicate with all their
neighbors, the communication locality is no longer guaranteed to be O(logε n); notwithstanding, it
is guaranteed to be O(

√
n logδ n) with overwhelming probability.

RMT protocol. We now describe a reliable message transmission protocol which tolerates up to
t < qn adaptive corruptions, for any given constant q < 1. Our protocol (and proof) are similar to
the corresponding protocol from Section 3.2, with the only difference being that the parties choose
their neighbors in a setup procedure as above instead of sampling them by use of a PRF keyed
with their SKI-keys.

13Recall that the ID’s are needed to ensure security of Π∗BC under parallel composition [35].

14

440
Approved for Public Release; Distribution Unlimited.

Protocol AdRMTnoSKI
i,j (m)

1. Round 1 (Computing the setup): The parties execute the following code for every (i, j, ρ) ∈
[n]× [n]× [logε

′
n] in parallel (where ε′ > 1 is a given constant):

Party i samples a bit bρi,j where bρi,j = 1 with probability p = logε n√
n

for some given constant

ε > 1; and bρi,j = 0 otherwise.

If bρi,j = 0 for all ρ ∈ [logε
′
n], then party i ignores all messages on the point-to-point channel

between i and j.

If bρi,j = 1 then party i sends (bρi,j , ρ) to party j.

2. Round 2a: For each (i, j, ρ) ∈ [n] × [n] × [logε
′
n] : If bρi,j = 1 but party i received no message

(b, ρ) from party j in the previous round then i sets bρi,j := 0. For ρ = 1, . . . , logε
′
n : Party i sets

Γ(i)ρ := {j | bρi,j = 1} to be the set of parties/neighbors pi will communicate with in round ρ.

3. Round 3: Party i sends (m, sigski(m)) to parties in Γ(i)ρ.

4. For each round ρ = 3, . . . , logε
′
n:

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature on m
was received for the first time in the previous round ρ− 1 from some party in Γ(k)ρ−1, then
party k sends (m,σ) to all parties in Γ(k)ρ and halts. (If multiple validly signed pairs were
received in that round for the first time, then take the first one in a lexicographic order.)

For the receiver j: If a message (m,σ), where σ is party i’s valid signature on m is received
for the first time from some party in Γ(j)ρ, then output m and halt. (If more than one validly
signed pair is received in that round for the first time, then take the first one in a lexicographic
order.)

aThis round is redundant and could be executed at the beginning of the following round. Nonetheless, we
include it here because it simplifies the description and it does not affect the (asymptotic) round complexity
argument.

Theorem 15. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI, protocol AdRMTnoSKI

i,j (m) is a secure RMT protocol between any two
honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming probability:

1. Every party communicates with at most O(
√
n log1+δ n) other parties, for some constant δ > 0.

2. The protocol terminates after O(logε
′′
n) rounds, for some constant ε′′ > 0.

Proof (sketch). The proof that the round complexity is O(logε
′′
n) follows along the lines of The-

orem 9, because for each pair of honest i, j ∈ [n] and each ρ = 1, . . . , logε
′
n the set Γ(i)ρ−1 is

distributed as in an Erdős-Rényi graph, G = G(n, p′) with p′ = log2ε n
n . The communication locality

is argued as follows: It follows from a Chernoff bound that in each round ρ ∈ {1, . . . , logε
′
n} each

party talks to at most L = O(
√
n log1+c n) neighbors, for some constant c > 0, except with negligi-

ble probability. Thus with overwhelming probability the total number of neighbors that i chooses
in all logε

′
n + 2 rounds is O(

√
n log1+c+ε

′
n). Because honest parties ignore all parties that they

do not choose as neighbors the total number of parties that party i communicates with is at most
O(
√
n log1+c+ε

′
n).

Given Theorem 15, an MPC protocol with the desired communication-locality and round com-
plexity can be obtained by replacing in protocol Π∗MPC all invokations of AdRMTi,j with invocations
of AdRMTnoSKI

i,j . The proof is similar to the proof of Theorem 1.

Theorem 2. Assuming a PKI and the existence of trapdoor permutations with a reversed domain
sampler, there exists a protocol for securely evaluating any given n-party function against an adap-

15

441
Approved for Public Release; Distribution Unlimited.

tive adversary who corrupts t < n/2 parties. The protocol satisfies the following properties with
overwhelming probability:

1. Every party communicates with at most O(
√
n log1+ε n) other parties, for some constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds, for some constant ε′ > 0.

References

[1] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing, pages 503–
513, Baltimore, Maryland, USA, May 14–16, 1990. ACM Press.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10, Chicago, Illinois, USA, May 2–4,
1988. ACM Press.

[3] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 169–188,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages
103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[5] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th
European Symposium on Research in Computer Security, volume 5283 of Lecture Notes in
Computer Science, pages 192–206, Málaga, Spain, October 6–8, 2008. Springer, Berlin, Ger-
many.

[6] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In TCC, pages
356–376, 2013.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in
Theoretical Computer Science, pages 309–325, Cambridge, Massachusetts, USA, January 8–10,
2012. Association for Computing Machinery.

[8] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of
Computer Science, pages 97–106, Palm Springs, California, USA, October 22–25, 2011. IEEE
Computer Society Press.

[9] Ran Canetti. Security and composition of cryptographic protocols: A tutorial. Cryptology
ePrint Archive, Report 2006/465, 2006. http://eprint.iacr.org/2006/465.

[10] Ran Canetti. Security and composition of cryptographic protocols: a tutorial (part i). SIGACT
News, 37(3):67–92, 2006.

16

442
Approved for Public Release; Distribution Unlimited.

http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465
http://eprint.iacr.org/2006/465

[11] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In 28th Annual ACM Symposium on Theory of Computing, pages 639–648,
Philadephia, Pennsylvania, USA, May 22–24, 1996. ACM Press.

[12] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky. Improved fault tolerance and secure
computation on sparse networks. In ICALP (2), pages 249–260, 2010.

[13] Nishanth Chandran, Juan A. Garay, and Rafail Ostrovsky. Edge fault tolerance on sparse
networks. In Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 452–463, 2012.

[14] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure pro-
tocols (extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages
11–19, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[15] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In Juris Hartmanis, editor, STOC, pages 364–369. ACM, 1986.

[16] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart. Im-
plementing AES via an actively/covertly secure dishonest-majority MPC protocol. In Ivan
Visconti and Roberto De Prisco, editors, SCN 12: 8th International Conference on Security in
Communication Networks, volume 7485 of Lecture Notes in Computer Science, pages 241–263,
Amalfi, Italy, September 5–7, 2012. Springer, Berlin, Germany.

[17] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.
In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European
Symposium on Research in Computer Security, volume 8134 of Lecture Notes in Computer
Science, pages 1–18, Egham, UK, September 9–13, 2013. Springer, Berlin, Germany.

[18] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes based
on a general complexity assumption. In Mihir Bellare, editor, Advances in Cryptology –
CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 432–450, Santa
Barbara, CA, USA, August 20–24, 2000. Springer, Berlin, Germany.

[19] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 643–662, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Berlin, Germany.

[20] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Brief announcement: break-
ing the O(nm) bit barrier, secure multiparty computation with a static adversary. In ACM
Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal,
July 16-18, 2012, pages 227–228, 2012.

[21] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Composability and on-line
deniability of authentication. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptogra-
phy Conference, volume 5444 of Lecture Notes in Computer Science, pages 146–162. Springer,
Berlin, Germany, March 15–17, 2009.

[22] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks
of bounded degree (preliminary version). In Juris Hartmanis, editor, STOC, pages 370–379.
ACM, 1986.

17

443
Approved for Public Release; Distribution Unlimited.

[23] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In 31st Annual Symposium on Foun-
dations of Computer Science, pages 308–317, St. Louis, Missouri, October 22–24, 1990. IEEE
Computer Society Press.

[24] Juan A. Garay and Rafail Ostrovsky. Almost-everywhere secure computation. In EURO-
CRYPT, pages 307–323, 2008.

[25] Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations:
The state of the art. In Oded Goldreich, editor, Studies in Complexity and Cryptography, pages
406–421. Springer-Verlag, Berlin, Heidelberg, 2011.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual
ACM Symposium on Theory of Computing, pages 218–229, New York City,, New York, USA,
May 25–27, 1987. ACM Press.

[27] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, March 1963.

[28] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, pages 230–235, Research Triangle Park, North Carolina, October 30 – November 1,
1989. IEEE Computer Society Press.

[29] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117
of Lecture Notes in Computer Science, pages 445–462, Santa Barbara, CA, USA, August 20–24,
2006. Springer, Berlin, Germany.

[30] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure
MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 13: 20th Conference on Computer and Communications Security, pages
549–560, Berlin, Germany, November 4–8, 2013. ACM Press.

[31] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: scalable byzantine agreement
with an adaptive adversary. In Proceedings of the 29th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 420–429,
2010.

[32] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In SODA,
pages 990–999, 2006.

[33] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable com-
putation in peer-to-peer networks. In FOCS, pages 87–98, 2006.

[34] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[35] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated
byzantine agreement. In 34th Annual ACM Symposium on Theory of Computing, pages 514–
523, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

18

444
Approved for Public Release; Distribution Unlimited.

[36] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations, variants
and concrete efficiency. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 259–276, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Berlin, Germany.

[37] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 465–485, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin,
Germany.

[38] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In ACM CCS 01: 8th Conference on Computer and Communications Security,
pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

[39] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[40] Eli Upfal. Tolerating linear number of faults in networks of bounded degree. In PODC, pages
83–89, 1992.

[41] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, October 27–29, 1986. IEEE Computer Society Press.

A Almost-Everywhere Protocols

Prior to [6], two lines of works have studied the problem of constructing protocols for BA/MPC in
which every party communicates with only a few other parties in the protocol:

Protocols on incomplete networks. The vast majority of results for BA and MPC protocols
work in a model in which, every party involved in the protocol, shares a reliable and secure channel
with every other party. In large scale networks, such as the internet, such an assumption is infeasible
and this leads us to the question of whether one can construct BA and MPC protocols in which every
party communicates only with a few other parties. For the case of BA, the first work to consider
this problem was that of Dwork, Peleg, Pippenger, and Upfal [22], who constructed various graphs
of specific degrees on which one could run BA protocols. For example, they construct a graph G
of degree d = O(nε), for any constant 0 < ε < 1, along with a BA protocol in which every party
in the protocol communicates only with its neighbors in G. Such a protocol could tolerate t = αn
corrupt parties (for some constant α < 1

3). As another example, they also construct a graph of
constant degree, along with a BA protocol, that could tolerate t = O(n

logn) corrupt parties.
Now, since in their model, the communication graph is fixed and chosen prior to the adversary

corrupting parties, one cannot hope to achieve BA among all honest parties (as an adversary could
always corrupt just the neighbors of some honest party, thereby isolating it). Hence Dwork et al.
introduce and achieve the notion of almost-everywhere (a.e.) BA that unavoidably “gives up” x
honest nodes (and provides no guarantees for these honest nodes). In their protocols, x = O(t).
Somewhat surprisingly, Upfal [40], constructed graphs of constant degree, along with a BA protocol,
that could tolerate t = αn corrupt parties (for some constant α < 1

3); unfortunately, the running
time of Upfal’s algorithm is exponential (in n). To date, the best bounds known in this model are

19

445
Approved for Public Release; Distribution Unlimited.

due to Chandran, Garay, and Ostrovsky [12], who achieve a polynomial time BA protocol with
parameters d = O(logcn) (for some constant c > 1), t = αn and x = O(n

logn).
For the case of secure computation, Garay and Ostrovsky [24], introduced the notion of almost-

everywhere MPC (similar in spirit to a.e. BA) and showed how to take any a.e. BA protocol and
convert it into an a.e. MPC with the same (asymptotic) parameters. We remark that all the above
protocols provide information-theoretic security against an adaptive, computationally-unbounded,
adversary that can corrupt parties at any time during (or after) the protocol.

Protocols on complete networks. One could also consider a model in which parties are con-
nected by a complete network, but only talk to a few other parties during the protocol. Once again
this gives rise to protocols with low communication locality. Indeed, the works of King, Saia, San-
walani, and Vee [32, 33] consider this model and construct protocols for the task of leader election
as well as a.e. Byzantine agreement in which every party has a communication locality of O(logc n)
(for some constant c > 1). In fact, King et al. show a stronger result and construct protocols in
which every party only sends O(logc n) bits in the entire protocol. However, unlike the works on in-
complete networks, the works of King et al. [32, 33] only consider the case of static adversaries (i.e.,
they are secure only against an adversary that corrupts t = αn of the parties, for some constant
α < 1

3 , before the start of the protocol). These works also provide information-theoretic security.

B Proof of Theorem 9 (Adaptively secure RMT)

Hoeffding’s Lemma

Lemma 16. (Hoeffding’s Inequality [27]) Let S = {x1, . . . , xN} be a finite set of real numbers with
a = min

i
xi and b = max

i
xi. Let X1, . . . , Xn be a random sample drawn from S without replacement.

Let X =

n∑
i=1

Xi

n and µ =

N∑
i=1

xi

N = E[Xj]. Then for all δ > 0, Pr[X − µ ≥ δ] ≤ e−
2nδ2

(b−a)2 .

Theorem 9. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI and an SKI, protocol AdRMTi,j(m) is a secure RMT protocol between
any two honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. In the following, we provide details on the proof sketched in Section 3.2. In particular
we show that there exists a path of length at most O(logε

′
(n)) between any two honest nodes

i, j ∈ [n] when we consider the collection of communication graphs G that selects graph Gi as the
communication graph in hop i. The proof follows then easily similarly to the proof of Theorem 7.

As sketched in Section 3.2, to prove the above statement we proceed in three steps:

1. First, we shall prove in Lemma 10 that at every step of the protocol, even if an adversary
corrupts a constant fraction of the nodes in the random graph, the honest neighbors of any set
S of size ≤ n

d that are not in S, will be at least of size kd|S|, for some appropriate constant k
(except with negligible probability).

20

446
Approved for Public Release; Distribution Unlimited.

2. Next, via an application of Hoeffding’s inequality, we will prove in Lemma 11 that as long as
the adversarial parties are chosen independently of the random neighbors chosen by any party,
a constant fraction of the party’s neighbors will be honest, except with negligible probability
(as long as the adversarial set is of size at most qn for some constant 0 < q < 1).

3. Finally, using Lemmas 10 and 11, we will show in Lemma 12 that even when an adversary
adaptively corrupts parties in every round of the protocol, as long as the parties select a random
graph at each round of the protocol, there exists a path of length at most D = O(log n) between
any two honest nodes in [n].

Combining these will give us our main theorem (Theorem 9).

Step 1. To begin, let ε > 0, 0 < q < 1 be constants. Let d = log1+ε n, p = d
n = log1+ε n

n and
D = O(log n).

Lemma 10. Let G = G(n, p) be graph on V = [n], and U ⊆ V , |U | ≤ qn, chosen adaptively while
only learning edges connecting to U . Let G′ be the induced subgraph on V ′ = V \U . Then, for any
constant 0 < k < 1−q

2 , there exists a constant c > 0 such that, for sufficiently large n and for any
S ⊆ V ′ with |S| = r ≤ n

d = 1
p , the set of all neighbors of S that are not in S, Γ(S), has size at least

kd|S| except with negligible probability Pr =
(

1
nc logε n

)r
.

Proof. Let 0 < k < 1−q
2 and S ⊆ V ′ with |S| = r ≤ n

d = 1
p . Denote n′ = |V ′| ≥ (1 − q)n. Since

each pair of vertices in G′ is connected with probability p independently of U and other edges, G′

is a random graph G(n′, p).
For each v ∈ V ′ \ S, let Xv be the indicator of whether v ∈ Γ(S) = ΓG′(S). Then

Pr[Xv = 0] = Pr[no edge between v and any vertex in S] = (1− p)r.

Since rp < 1,

E[Xv] = Pr[Xv = 1] = 1− (1− p)r = rp−
(
r

2

)
p2 + . . . >

rp

2
.

Then

E[|Γ(S)|] = E[
∑
v/∈S

Xv] >
(n′ − r)rp

2
.

Since the Xv’s are independent, by the Chernoff Bound,

Pr[|Γ(S)| ≤ (1− δ)(n′ − r)rp
2

] ≤ Pr[|Γ(S)| ≤ (1− δ)E[|Γ(S)|]] ≤ e−
δ2E[|Γ(S)|]

2 ≤ e−
δ2(n′−r)rp

4 .

Now let δ = 1− 2kn
n′−r . Since r ≤ n

d , we have

(1− q)− 1

d
≤ n′ − r

n
≤ n′

n
< 1.

Let n be large enough such that d = log1+ε n > 2
1−q−2k . Then

c0 =
1

16
· ((1− q)− 2k)2 ≤ 1

4
·
(

(1− q)− 1

d
− 2k

)2

≤

(
n′−r
n − 2k

)2
4 · n′−rn

.

21

447
Approved for Public Release; Distribution Unlimited.

Thus,

Pr[|Γ(S)| ≤ kdr] ≤ e−
(

1− 2kn
n′−r

)2
(n′−r)rp

4 =

e−
(
n′−r
n −2k

)2

4·n
′−r
n

dr

≤
(

1

ec0

)dr
=

(
1

nc log
ε n

)r
.

where c = c0 log e.

We now proceed to show that as long as parties pick a fresh random graph in every round of
the protocol, there exists at least one path of length at most D between any two honest parties
i, j ∈ [n] that does not include any corrupted party. We formally define this through the notion of
reachability with respect to G.

Definition 17. Let G = (G1, . . . , GD) be an ordered collection of graphs on subsets (V1, . . . , VD)
of V . A pair of vertices v ∈ V1, v′ ∈ Vl are reachable with respect to G by a path of length l if there
exist v1, . . . , vl−1 ∈ V , such that (vi−1, vi) ∈ E(Gi), for i = 1, . . . , l, where v0 = v and vl = v′. We
denote Nl(v) = NGl (v) ⊆ Vl the subset of all vertices that are reachable from v with respect to G
with a path of length l.

Step 2. We first make use of Hoeffding’s lemma (stated in Appendix B) in order to prove a lemma
that we will use. We show:

Lemma 11. Let V = [n] and C ⊆ V , |C| = m, be a subset chosen uniformly at random. Let
0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen independently of C. Then,
for all 0 < δ < 1 − q, |C \ U | > (1 − q − δ)m except with probability e−2mδ

2
. In particular, for

m = log1+ε
′
n, |C \ U | >

(
1−q
2

)
m except with negligible probability. Furthermore, for q = 1

2 − ε,
|C \ U | > 1

2m except with negligible probability.

Proof. Let S = {x1, . . . , xn} where xi = 1 if i ∈ U , 0 otherwise. Then a = min
i
xi = 0, b = max

i
xi =

1 and µ =

n∑
i=1

xi

n = q. For each i = 1, . . . ,m, let Xi be the indicator of whether each element of C is

in U . Then Xi is a random sample drawn from S without replacement, and |C∩U | =
m∑
i=1

Xi = mX.

By Hoeffding’s Inequality,

Pr[|C ∩ U | ≥ (q + ε)m] = Pr[X − µ ≥ δ] ≤ e−2mδ2
.

Therefore, except with probability e−2mδ
2
, |C \ U | = m− |C ∩ U | > (1− q − δ)m.

Now let m = log1+ε
′
n and δ = 1−q

2 . We have that |C \ U | >
(
1−q
2

)
m except with probability

e−2(
1−q

2)
2
log1+ε′ n =

1

nc log
ε′ n

,

where c = 1
2(1− q)2 log e.

Finally, let q = 1
2 − ε and δ = ε. We have that |C \U | >

(
1−

(
1
2 − ε

)
− ε
)
m = 1

2m except with
probability 1

nc
′ logε

′
n

, where c′ = 2ε2 log e.

Remark 2. Note that this proof allows U to be chosen according to any distribution. The result
holds as long as C is chosen uniformly. In particular, we may allow U to be chosen adaptively.

22

448
Approved for Public Release; Distribution Unlimited.

Step 3. We now show:

Lemma 12. Let G1, . . . , GD be graphs on V = [n] constructed independently as G(n, p). Let
U1, U2, . . . , UD ⊆ V be disjoint subsets with U = ∪Di=jUj such that |U | = qn where Uj is chosen
independently from Gj+1, . . . , GD, but adaptively, after learning the neighbors of Ui in Gi for i ≤ j.
Let G′i be the induced subgraph on Vi = V \ (∪ij=1Uj). Then, except with negligible probability, any
pair of vertices v, v′ ∈ V ′ = V \ U are reachable with respect to G′ = (G′1, . . . , G

′
D) by a path of

length at most D.

Proof. For each v ∈ V ′, we will show that, except with negligible probability, there exists l = l(v) ≤
D such that V ′ ⊆ Nl(v) ∪ Nl+1(v). Hence, by the union bound over |V ′| = (1 − q)n vertices, the
proposition holds except with negligible probability.

Fix v ∈ V ′ and choose a constant k as in Lemma 10. For each i, denote ri = |Ni(v) \ Ui+1|.
Note that ΓG′i+1

(Ni(v) \ Ui+1) ⊆ Ni+1(v). For i such that ri ≤ n
d , we have

|Ni+1(v)| ≥ |ΓG′i+1
(Ni(v) \ Ui+1)| > kd|Ni(v) \ Ui+1|

except with probability Pri by Lemma 10.
Since Ui+1 is chosen from Vi independently of Ni(v), and Ni(v) is uniform on Vi, by Lemma 11,

except with negligible probability (call it P ′i),

|Ni(v) \ Ui+1| >
(

1− q
2

)
|Ni(v)|.

Inductively, ri = |Ni(v)\Ui+1| >
((

1−q
2

)
kd
)i

and eventually greater than n
d except with probability

l0∑
i=1

(Pri +P ′i), where l0 is the largest integer such that rl0 ≤ n
d . Since l0 � D = O(log n) as dD � n,

this probability is negligible.
Let n′ = |V ′| = (1 − q)n. There are two possibilities for rl0+1 = |Nl0+1(v) \ Ul0+2|: either 1)

n
d < rl0+1 ≤ n′

2 or 2) rl0+1 >
n′

2 .

Case 1: Assume that n
d < rl0+1 ≤ n′

2 . Denote r = rl0+1 and n0 = |Vr| ≥ n′. Then
n
d = 1

p < r ≤ n′

2 ≤ n0
2 . For sufficiently large n, we have (1 − p)

1
p ≈ e−1. Thus,

E[|Γ(Nl0+1(v))|] ≈ (n0 − r)(1 − e−rp). As in the proof of Lemma 10, by the Chernoff
bound, we have

Pr[|Γ(Nl0+1(v) \ Ul0+2)| ≤
n0
4

] ≤ e−
(

1− n0
4(n0−r)(1−e−rp)

)2
(n0−r)(1−e

−rp)

2

≤

e
−

(
(n0−r)(1−e

−rp)
n0

− 1
4

)2

2· (n0−r)(1−e−rp)
n0

n0

≤ 1

c′n0
≤ 1

c′n′
,

where c′ = e
1
2 (1−e−1)− 1

4
2 > 1 as 1 − e−1 < 1 − e−rp < 1 and 1

2 ≤
n0−r
n0

< 1. Thus, except with
negligible probability,

rl0+2 = |Nl0+2(v) \ Ul0+3| ≥
(

1− q
2

)
|Γ(Nl0+1(v) \ Ul0+2)| >

(
1− q

8

)
n0 ≥

(
1− q

8

)
n′

23

449
Approved for Public Release; Distribution Unlimited.

by Lemma 11. In this case, let l = l0 + 2.

Case 2: rl0+1 >
n′

2 . In this case, let l = l0 + 1.

In both cases, we have |Nl(v)\Ul+1| = rl > c2n
′ for some constant 0 < c2 < 1 except with negligible

probability. Then, for each v ∈ V ′ \Nl(v), the probability that v does not connect to any vertex in
Nl(v)\Ul+1 is (1−p)rl ≈ e−rlp ≤ 1

nc3 logε n , where c3 = c2(1−q) log e. By the union bound, the prob-

ability that any node in V ′ \Nl(v) is not in Γ(Nl(v) \Ul+1) ⊆ Nl+1(v) is at most 1
nc3 logε n−1 , which

is negligible. Hence, except with negligible probability, V ′ = Nl(v) ∪ Γ(Nl(v)) ⊆ Nl(v) ∪Nl+1(v).
Therefore, any v′ ∈ V ′ is reachable from v by a path of length at most D.

This completes the proof of Theorem 9.

24

450
Approved for Public Release; Distribution Unlimited.

Functional Signatures and Pseudorandom Functions

Elette Boyle
MIT

Shafi Goldwasser∗†

MIT and Weizmann
Ioana Ivan

MIT

October 29, 2013

Abstract

In this paper, we introduce two new cryptographic primitives: functional digital signatures and func-
tional pseudorandom functions.

In a functional signature scheme, in addition to a master signing key that can be used to sign any
message, there are signing keys for a function f , which allow one to sign any message in the range of f .
As a special case, this implies the ability to generate keys for predicates P , which allow one to sign any
message m, for which P (m) = 1.

We show applications of functional signatures to constructing succinct non-interactive arguments and
delegation schemes. We give several general constructions for this primitive based on different computa-
tional hardness assumptions, and describe the trade-offs between them in terms of the assumptions they
require and the size of the signatures.

In a functional pseudorandom function, in addition to a master secret key that can be used to evaluate
the pseudorandom function F on any point in the domain, there are additional secret keys for a function
f , which allow one to evaluate F on any y for which there exists an x such that f(x) = y. As a special
case, this implies pseudorandom functions with selective access, where one can delegate the ability to
evaluate the pseudorandom function on inputs y for which a predicate P (y) = 1 holds. We define and
provide a sample construction of a functional pseudorandom function family for prefix-fixing functions.

This work appeared in part as the Master Thesis of Ioana Ivan filed May 22 at MIT. We note
that independently the notion of pseudorandom functions with selective access was studied by Boneh-
Waters under the name of constrained pseudorandom functions [BW13] and by Kiayias, Papadopoulos,
Triandopoulos and Zacharias under the name delegatable pseudorandom functions [KPTZ13]. Subsequent
to our posting of an earlier manuscript of this work, Bellare and Fuchsbauer [BF13] and Backes, Meiser,
and Schröder [BMS13] additionally posted similar results on functional signatures.

∗This work was supported in part by Trustworthy Computing: NSF CCF-1018064.
†This material is based on research sponsored by the Air Force Research Laboratory under agreement number FA8750-11-2-

0225. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory
or the U.S. Government.

451
Approved for Public Release; Distribution Unlimited.

1 Introduction

We introduce new cryptographic primitives with a variety of accompanying constructions: functional digital
signatures (FDS), functional pseudorandom functions (F-PRF), and psuedorandom functions with selective
access (PRF-SA).1

Functional Signatures

In digital signature schemes, as defined by Diffie and Hellman [DH76], a signature on a message provides
information which enables the receiver to verify that the message has been created by a proclaimed sender.
The sender has a secret signing key, used in the signing process, and there is a corresponding verification key,
which is public and can be used by anyone to verify that a signature is valid. Following Goldwasser, Micali
and Rackoff [GMR88], the standard security requirement for signature schemes is unforgeability against
chosen-message attack: an adversary that runs in probabilistic polynomial time and is allowed to request
signatures for a polynomial number of messages of his choice, cannot produce a signature of any new message
with non-negligible probability.

In this work, we extend the classical digital signature notion to what we call functional signatures. In a
functional signature scheme, in addition to a master signing key that can be used to sign any message, there
are secondary signing keys for functions f (called skf), which allow one to sign any message in the range of
f . These additional keys are derived from the master signing key. The notion of security we require such
a signature scheme to satisfy is that any probabilistic polynomial time (PPT) adversary, who can request
signing keys for functions f1 . . . fl of his choice, and signatures for messages m1, . . .mq of his choice, can
only produce a signature of a message m with non-negligible probability, if m is equal to one of the queried
messages m1, . . .mq, or if m is in the range of one of the queried functions f1 . . . fl.

An immediate application of a functional signature scheme is the ability to delegate the signing pro-
cess from a master authority to another party. Suppose someone wants to allow their assistant to sign on
their behalf only those messages with a certain tag, such as “signed by the assistant”. Let P be a predi-
cate that outputs 1 on messages with the proper tag, and 0 on all other messages. In order to delegate the
signing of this restricted set of messages, one would give the assistant a signing key for the following function:

f(m) :=

{
m if P (m) = 1

⊥ otherwise
.

P could also be a predicate that checks if the message does not contain a given phrase, or if it is related to
a certain subject, or if it satisfies a more complex policy.

Another application of functional signatures is to certify that only allowable computations were performed
on data. For example, imagine the setting of a digital camera that produces signed photos (i.e the original
photos produced by the camera can be certified). In this case, one may want to allow photo-processing
software to perform minor touch-ups of the photos, such as changing the color scale or removing red-eyes,
but not allow more significant changes such as merging two photos or cropping a picture. But, how can an
original photo which is slightly touched-up be distinguished from one which is the result of a major change?
Functional signatures can naturally address this problem by providing the photo processing software with
keys which enable it to sign only the allowable modifications of an original photograph. Generalizing, we
think of a client and a server (e.g. photo-processing software), where the client provides the server with data
(e.g. signed original photos, text documents, medical data) which he wants to be processed in a restricted
fashion.A functional signature of the processed data provides proof of allowable processing.

Functional signatures can also be used to construct a delegation scheme. In this setting, there a client
who wants to allow a more powerful server to compute a function f on inputs chosen by the client, and

1We note that independently (and unknown to the authors) the notion of pseudorandom functions with selective access
was studied by Boneh-Waters under the name of constrained pseudorandom functions [BW13] and by Kiayias, Papadopoulos,
Triandopoulos and Zacharias under the name delegatable pseudorandom functions [KPTZ13]. Subsequent to our posting of an
earlier manuscript of this work, [BF13] and [BMS13] have additionally posted similar results on functional signatures.

1

452
Approved for Public Release; Distribution Unlimited.

wants to be able to verify that the result returned by the server is correct. The verification process should be
more efficient than for the client to compute f himself. The client can give the server a key for the function
f ′(x) = (f(x)|x). To prove that y = f(x) the prover gives the client a signature of y|x, which he could only
have obtained if y|x is in the range of f ′, that is, if y = f(x).

A desirable property of a functional signature scheme is function privacy : the signature should reveal
neither the function f that the secret key used in the signing process corresponds to, nor the message m that
f was applied to. In the example with the signed photos, one might not wish to reveal the original image
just that the final photographs were obtained by running one of the allowed functions on some image taken
with the camera.

An additional desirable property is succinctness: the size of the signature should only depend on the size
of the output f(m) and the security parameter (or just the security parameter), rather than the size of the
circuit for computing f .

Functional Pseudorandomness

Pseudorandom functions, introduced by Goldreich, Goldwasser, and Micali [GGM86], are a family of indexed
functions F = {Fs} such that: (1) given the index s, Fs can be efficiently evaluated on all inputs (2) no
probabilistic polynomial-time algorithm without s can distinguish evaluations Fs(xi) for inputs xi’s of its
choice from random values. Pseudorandom functions are useful for numerous symmetric-key cryptographic
applications, including generating passwords, identify-friend-or-foe systems, and symmetric-key encryption
secure against chosen ciphertext attacks. In the public-key setting, there is a construction of digital signatures
from pseudorandom functions [BG89], via the following paradigm: one may publish a commitment to secret
key s and henceforth be able to prove that y = Fs(x) for a pair (x, y) via a non-interactive zero-knowledge
(NIZK) proof.

In this work, we extend pseudorandom functions to a primitive which we call functional pseudorandom
functions (F-PRF). The idea is that in addition to a master secret key (that can be used to evaluate the
pseudorandom function Fs on any point in the domain), there are additional secret keys skf per function f ,
which allow one to evaluate Fs on any y for which there exists x such that f(x) = y (i.e y ∈ Range(f)). An
immediate application of such a construct is to specify succinctly the randomness to be used by parties in a
randomized distributed protocol with potentially faulty players, so as to force honest behavior. A centralized
authority holds a description of an index s of a pseudorandom function Fs. One may think of this authority
as providing a service which dispenses pseudorandomness (alternatively, the secret s can be shared among
players in an MPC). The authority provides each party id with a secret key sid which enables party id to (1)
evaluate Fs(y) whenever y = “id‖h”, where h corresponds to say the public history of communication, and
(2) use Fs(y) as her next sequence of coins in the protocol. To prove that the appropriate randomness was
used, id can utilize NIZK proofs. An interesting open question is how to achieve a verifiable F-PRF, where
there is additional information vks that can be used to verify that a given pair (x, Fs(x)) is valid, without
assuming the existence of an honestly generated common reference string, as in the NIZK setting. Note that
in this example the function f(x) = y is simply the function which appends the string prefix id to x. We
note that there are many other ways to force the use of proper randomness in MPC protocols by dishonest
parties, starting with the classical paradigm [GM82, GMW86] where parties interact to execute a “coin flip
in the well” protocol forcing players to use the results of these coins, but we find the use of F-PRF appealing
in its simplicity, lack of interaction and potential efficiency.

The notion of functional pseudorandom functions has many variations. One natural variant that immedi-
ately follows is pseudorandom functions with selective access: start with a pseudorandom function as defined
in [GGM86], and add the ability to generate secondary keys skPi (per predicate Pi) which enable computing
Fs(x) whenever Pi(x) = 1. This is a special case of F-PRF, as we can take the secret key for predicate Pi
to be skfi where fi(x) = x if Pi(x) = 1 and ⊥ otherwise. The special case of punctured PRFs, in which
secondary keys allow computing Fs(x) on all inputs except one, is similarly implied and has recently been
shown to have important applications (e.g., [SW13, HSW13]). Another variant is hierarchical pseudorandom
functions, with an additional property that parties with functional keys skf may also generate subordinate

2

453
Approved for Public Release; Distribution Unlimited.

keys skg for functions g of the form g = f ◦ f ′ (i.e., first evaluate some function f ′, then evaluate f). Note
that the range of such composition g is necessarily contained within the range of f .

Independent Work. A preliminary version of this work appeared in a Masters Thesis submitted on
May 22, 2013. We note that independently (and unknown to the authors) the notion of pseudorandom
functions with selective access was studied by Boneh-Waters under the name of constrained pseudorandom
functions [BW13] and by Kiayias, Papadopoulos, Triandopoulos and Zacharias under the name delegatable
pseudorandom functions [KPTZ13]. Subsequent to our posting of an earlier manuscript of this work, [BF13]
and [BMS13] have additionally posted similar results on functional signatures.

1.1 Our Results on Functional Signatures and Their Applications

We provide a construction of functional signatures achieving function privacy and succinctness, assuming
the existence of succinct non-interactive arguments of knowledge (SNARKS) and (standard) non-interactive
zero-knowledge arguments of knowledge (NIZKAoKs) for NP languages.

As a building block, we first give a construction of a functional signature scheme that is not succinct or
function private, based on a much weaker assumption: the existence of one-way functions.

Theorem 1.1 (Informal). Based on any one-way function, there exists a functional signature scheme that
supports signing keys for any function f computable by a polynomial-sized circuit. This scheme satisfies the
unforgeability requirement for functional signatures, but not function privacy or succinctness.

Overview of the construction: The master signing and verification keys for the functional signature
scheme will correspond to a key pair, (msk,mvk), in an underlying (standard) signature scheme.

To generate a signing key for a function f , we do the following. First, sample a fresh signing and
verification key pair (sk′, vk′) in the underlying signature scheme, and sign the concatenation f |vk′ using
msk. The signing key for f consists of this signature together with sk′. Given this signing key, a user
can sign any message m∗ = f(m) by signing m using sk′, and outputting this signature, together with the
signature of f |vk′ given as part of skf .

We then now show how to use a SNARK system, together with this initial construction, to construct a
succinct, function-private functional signature scheme.

A SNARK system for an NP language L with corresponding relation R is an extractable proof system
where the size of a proof is sublinear in the size of the witness corresponding to an instance. SNARK schemes
have been constructed under various non-falsifiable assumptions. Bitansky et al. [BCCT13] construct zero-
knowledge SNARKs where the length of the proof and the verifier’s running time are bounded by a polynomial
in the security parameter, and the logarithm of running time of the corresponding relation R(x,w), assuming
the existence of collision resistance hash functions and a knowledge of exponent assumption.2 (More details
are given in Section 2.3.)

Theorem 1.2 (Informal). Assuming the existence of succinct non-interactive arguments of knowledge (SNARKs),
NIZKAoK for NP languages, and a functional signature scheme that is not necessarily function-private or
succinct, there exists a succinct, function-private functional signature scheme that supports signing keys for
any function f computable by a polynomial-sized circuit.

Overview of the construction: Our construction makes use of non-succinct, non-function-private func-
tional signature scheme FS1 (which exists based on one-way functions by our construction above), and a
zero-knowledge SNARK system for NP.

In the setup algorithm for our functional signature scheme, we sample a key pair (msk,mvk) for the
functional signature scheme FS1, and common reference string crs for the SNARK system. We use msk as

2In [BCCT12], Bitansky et al. also show that any SNARK + NIZKAoK directly yield zero-knowledge (ZK)-SNARK with
analogous parameters.

3

454
Approved for Public Release; Distribution Unlimited.

the new master singing key and (mvk, crs) as the new master verification key. The key generation algorithm
is the same as in the underlying functional signature scheme FS1. To sign a message m∗ using a resulting key
skf , we generate a zero-knowledge SNARK for the following statement: ∃σ such that σ is a valid signature
of m∗ under mvk in the functional signature scheme FS1. To verify the signature, we run the verification
algorithm for the SNARK argument system.

Resorting to non-falsifiable assumptions, albeit strong, seems necessary to obtain succinctness for func-
tional signatures. We show that, given a functional signature scheme with short signatures, we can construct
a SNARG system.

Theorem 1.3 (Informal). If there exists a functional signature scheme supporting keys for all polynomial-
sized circuits f , that has short signatures (i.e of size poly(k) · (|f(m)| + |m|)o(1) for security parameter k),
then there exists a SNARG scheme with preprocessing for any language L ∈ NP with proof size poly(k) ·
(|w|+ |x|)o(1), where w is the witness and x is the instance.

The main idea in the SNARG construction is for the verifier (CRS generator) to give out a single signing
key skf for a function whose range consists of exactly those strings that are in L. Then, with skf , the prover
will be able to sign only those messages x that are in the language L, and thus can use this (short) signature
as his proof.

Gentry and Wichs showed in [GW11] that SNARG schemes with proof size poly(k) · (|w|+ |x|)o(1) cannot
be obtained using black-box reductions to falsifiable assumptions. We can thus conclude that in order to
obtain a functional signature scheme with signature size poly(k) · (|f(m)| + |m|)o(1) we must either rely on
non-falsifiable assumptions (as in our SNARK construction) or make use of non black-box techniques.

Finally, we can construct a scheme which satisfies unforgeability and functional privacy but not succinct-
ness based on the weaker assumption of non-interactive zero-knowledge arguments of knowledge (NIZKAoK)
for NP.

Theorem 1.4 (Informal). Assuming the existence of non-interactive zero-knowledge arguments of knowledge
(NIZKAoK) for NP, there exists a functional signature scheme that supports signing keys for any function
f computable by a polynomial-sized circuit. This scheme satisfies function privacy, but not succinctness: the
size of the signature is dependent on the size of f and m.

Overview of the construction: The construction is analogous to the SNARK-based construction in the
previous construction, with the SNARK system replaced with a NIZKAoK system. Namely, a signature will
be a NIZKAoK for the following statement: ∃σ such that σ is a valid signature of m∗ under mvk, in an
underlying non-succinct, non-function-private functional signature scheme, as before (recall such a scheme
exists based on OWF). The signature size is now polynomial in the size of σ, which, if m∗ = f(m), and
sigma was generated using skf , is itself polynomial in the security parameter, |m|, and |f |.

1.1.1 Relation to Delegation:

Functional signatures are highly related to delegation schemes. A delegation scheme allows a client to
outsource the evaluation of a function f to a server, while allowing the client to verify the correctness of
the computation more efficiently than computing the function himself. We show that given any functional
signature scheme supporting a class of functions F , we can obtain a delegation scheme in the preprocessing
model for functions in F , with related parameters.

Theorem 1.5 (Informal). If there exists a functional signature scheme for function class F , with signature
size s(k), and verification time t(k), then there exists a one-round delegation scheme for functions in F ,
with server message size s(k) and client verification time t(k).

Overview of the construction: The client can give the server a key skf ′ for the function f ′(x) = (f(x)|x).
To prove that y = f(x), the prover gives the client a signature of y|x, which he could only have obtained
if y|x is in the range of f ′; that is, if y = f(x). The length of a proof is equal to the length of a signature

4

455
Approved for Public Release; Distribution Unlimited.

in the functional signature scheme, s(k), and the verification time for the delegation scheme is equal to the
verification time of the functional signature scheme.

1.2 Summary of our Results on Functional Pseudorandom Functions and Se-
lective Pseudorandom Functions

We present formal definitions and constructions of functional pseudorandom functions (F-PRF) and pseu-
dorandom functions with selective access (PRF-SA). In particular, we present a construction based on the
existence of one-way functions of a functional pseudorandom function family supporting the class of prefix
-fixing functions. Our construction is based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF
construction [GGM86].

Theorem 1.6 (Informal). Assuming the existence of OWF, there exists a functional PRF that supports
keys for the following class of functions related to prefix matching: Fpre = {fz|z ∈ {0, 1}m,m ≤ n}, where
fz(x) = x if z is a prefix of x, and ⊥ otherwise. The pseudorandomness property holds against a selective
adversary, who declares the functions he will query before seeing the public parameters.

We remark that one can directly obtain a fully secure F-PRF for Fpre, in which security holds against an
adversary who adaptively requests key queries, from our selectively secure construction, with a loss of 2−n

in security for each functional secret key skfz queried by the adversary. This is achieved simply by guessing
the adversary’s query fz ∈ Fpre. For appropriate choices of the input length n, security of the underlying
OWF, and number of key queries, this still provides the required security.

Overview of the construction. We show that the original Goldreich-Goldwasser-Micali (GGM) tree-
based construction [GGM86] provides the desired functionality, where the functional key skf corresponding
to a prefix-fixing function fz(x) = z1z2 · · · zixi+1 · · ·xn will be given by the partial evaluation of the PRF
down the tree, at the node corresponding to prefix z1z2 · · · zi.

This partial evaluation clearly enables a user to compute all possible continuations in the evaluation tree,
corresponding to the output of the PRF on any input possessing prefix z. Intuitively, security holds since
the other partial evaluations at this level i in the tree still appear random given the evaluation skf (indeed,
this corresponds to a truncated i-bit input GGM construction).

Punctured pseudorandom functions. Punctured pseudorandom functions [SW13] are a special case
of functional PRFs where one can generate keys for the function family F = {fx(y) = y if y 6= x, and ⊥
otherwise}. Namely, a key for function fx allows one to compute the pseudorandom function on any input
except for x. Punctured PRFs have recently proven useful as one of the main techniques used in proving
the security of various cryptographic primitives based on the existence of indistinguishability obfuscation.
Some examples include a construction of public-key encryption from symmetric-key encryption and the con-
struction of deniable encryption given by Sahai and Waters in [SW13], as well as an instantiation of random
oracles with a concrete hash function for full-domain hash applications by Hohenberger et al. in [HSW13].

We note that the existence of a functional PRF for the prefix-fixing function family gives a construction
of punctured PRFs. A key that allows one to compute the PRF on all inputs except x = x1 . . . xn consists of
n functional keys for the prefix-fixing function family for prefixes: x̄1, x1x̄2, x1x2x̄3 . . . x1x2 . . . xn−1x̄n. We
remark that while n prefix-matching keys are revealed, there are only 2n such sets of keys (corresponding to
the 2n choices for the punctured input x), and thus we lose only 2−n security when complexity leveraging
from selective to full security. For appropriate choice of underlying OWF security, this yields fully secure
punctured PRFs for any desired poly-sized inputs, based on OWFs.

Corollary 1.7. Assuming the existence of OWF, there exists a (fully) secure punctured PRF for any desired
poly-size input length.

5

456
Approved for Public Release; Distribution Unlimited.

Other notions. Our construction has the additional beneficial property of hierarchical key generation:
i.e., a party with a functional key skfz for a prefix z may generate valid “subordinate” functional keys skfz′
for any prefix z′ = z|∗. That is, we prove the following additional statement.

Corollary 1.8 (Informal). Assuming the existence of OWF, there exists a hierarchical functional PRF for
the class of functions Fpre.

Recall that we can also view the prefix-matching function as a predicate allowing only signatures of
message that begin with a prefix z. As an immediate corollary of the above, we achieve (hierarchical)
functional PRFs with selective access for the corresponding class of prefix-matching predicates:

Corollary 1.9 (Informal). Assuming the existence of OWF, there exists a (hierarchical) functional PRF with
selective access for the class of prefix-matching predicates Ppre = {Pz|z ∈ {0, 1}m,m ≤ n}, where Pz(x) = 1
if z is a prefix of x, and 0 otherwise. The pseudorandomness property holds against a selective adversary (or
against an adaptive adversary, with a security loss of 2−n per key query).

1.3 Open Problems

The size of the signatures in our SNARK-based functional signature scheme is dependent only of the security
parameter, but it is based on non-falsifiable assumptions. In Section 4, we show that, for a functional
signature scheme that supports signing keys for a function f , a signature of y = f(x) cannot be sublinear
in the size of y or x, unless the construction is either proven secure under a non-falsifiable assumption or
makes use of non blac-kbox techniques. No lower bound exists that relates the size of the signature to
the description of f . Constructing functional signatures with short (sublinear in the size of the functions
supported) signatures and verification time under falsifiable assumptions remains an open problem.

An interesting problem left open by this work is to construct a functional PRF that is also verifiable. A
verifiable PRF, introduced by Micali, Rabin and Vadhan in [MRV99] has the property that, in addition to
the secret seed of the PRF, there is a corresponding public key and a way to generate a proof πx given the
secret seed, such that given the public key, x, y and πx one can check that y is indeed the output of the
PRF on x. The public parameters and the proof should not allow an adversary to distinguish the outputs
of the PRF from random on any point for which the adversary has not received a proof. A construction of
standard verifiable PRFs was given by Lysyanskaya based on the many-DH assumption in bilinear groups
in [Lys02].

One may extend the notion of verifiable PRFs to the setting of functional PRFs by enabling a user with
functional key skf to also generate verifiable proofs πx of correctness for evaluations of the PRF on inputs x
for which his key allows. We note that such a verifiable functional pseudorandom function family supporting
keys for a function class F , implies a functional signature scheme that supports signing keys for the same
function class, so the lower bound mentioned for functional signatures applies also to the proofs output in
the verifiable functional PRF context.

1.4 Other Related Work

Functional Encryption. This work is inspired by recent results on the problem of functional encryption,
which was introduced by Sahai and Waters in [SW05], and formalized by Boneh et al. in [BSW11]. In the
past few years there has been significant progress on constructing functional encryption schemes for general
classes of functions (e.g., [GVW12, GKP+12, GKP+13]). In this setting, a party with access to a master
secret key can generate secret keys for any function f , which allows a third party who has this secret key
and an encryption of a message m to learn f(m), but nothing else about m. In [GKP+12], Goldwasser et
al. construct a functional encryption scheme that can support general functions, where the ciphertext size
grows with the maximum depth of the functions for which keys are given. They improve this result in a
follow-up work [GKP+13], which constructs a functional encryption scheme that supports decryption keys
for any Turing machine. Both constructions are secure according to a simulation-based definition, as long as
a single key is given out. In [AGVW13], Agrawal et al. show that constructing functional encryption schemes

6

457
Approved for Public Release; Distribution Unlimited.

achieving this notion of security in the presence of an unbounded number of secret keys is impossible for
general functions. In contrast, no such impossibility results are known in the setting of functional signatures.

Connections to Obfuscation. The goal of program obfuscation is to construct a compiler O that takes
as input a program P and outputs a program O(P) that preserves the functionality of P , but hides all other
information about the original program. In [BGI+01] Barak et al. formalize this, requiring that, for every
adversary having access to an obfuscation of P that outputs a single bit, there exists a simulator that only
has blackbox access to P and whose output is statistically close to the adversary’s output:

Pr[A(O(P)) = 1]− Pr[SP (1|P |) = 1] = negl(|P |)

Barak et al. [BGI+01] construct a class of programs and an adversary for which no simulator can exist,
therefore showing that this definition is not achievable for general functions. Furthermore, in [GK05],
Goldwasser and Kalai give evidence that several natural cryptographic algorithms, including the signing
algorithm of any unforgeable signature scheme, are not obfuscatable with respect to this strong definition.

Consider the function Sign ◦ f , where Sign is the signing algorithm of an unforgeable signature scheme,
f is an arbitrary function and ◦ denotes function composition. Based on the results in [GK05] we would
expect this function not to be obfuscatable according to the blackbox simulation definition. A meaningful
relaxation of the definition is that, while having access to an obfuscation of this function might not hide
all information about the signing algorithm, it does not completely reveal the secret key, and does not
allow one to sign messages that are not in the range of f . In our function signature scheme, the signing
key corresponding to a function f achieves exactly this definition of security, and we can think of it as an
obfuscation of Sign ◦ f according to this relaxed definition. Indeed it has recently come to our attention that
Barak in an unpublished manuscript has considered delegatable signatures, a highly related concept.

Homomorphic Signatures. Another related problem is that of homomorphic signatures. In a homomor-
phic signature scheme, a user signs several messages with his secret key. A third party can then perform
arbitrary computations over the signed data, and obtain a new signature that authenticates the resulting
message with respect to this computation. In [GW12], Gennaro and Wichs construct homomorphic message
authenticators, which satisfy a weaker unforgeability notion than homomorphic signatures, in that the verifi-
cation is done with respect to a secret key unknown to the adversary. They impose an additional restriction
on the adversary, who is not allowed to make verification queries. For homomorphic signature schemes with
public verification, the most general construction of Boneh and Freeman [BF11] only allows the evaluation of
multivariate polynomials on signed data. Constructing homomorphic signature schemes for general functions
remains an open problem.

Signatures of correct computation. Papamanthou, Shi and Tamassia considered a notion of functional
signatures under the name “signatures of correct computation” in [PST13]. They give constructions for
schemes that support operations over multivariate polynomials, such as polynomial evaluation and differ-
entiation. Their constructions are secure in the random oracle model and allow efficient updates to the
signing keys: the keys can be updated in time proportional to the number of updated coefficients. In con-
trast, our constructions that support signing keys for general functions, assuming the existence of succinct
non-interactive arguments of knowledge.

Independent work. Finally, as mentioned earlier, related notions to functional PRFs appear in the
concurrent and independent works [BW13, KPTZ13]. Based on the Multilinear Decisional Diffie-Hellman
assumption (a recently coined assumption related to existence of secure multilinear maps), [BW13] show that
PRFs with Selective Access can be constructed for all predicates describable as polynomial-sized circuits.
We remark that this is not equivalent to functional PRFs for polynomial-sized circuits, which additionally
captures NP relations (i.e., the predicate y ∈ Range(f) may not be efficiently testable directly).

Subsequent to our posting of an earlier manuscript of this work, [BF13] and [BMS13] have additionally
posted similar results on functional signatures.

7

458
Approved for Public Release; Distribution Unlimited.

1.5 Overview of the paper

In Section 2, we describe several primitives which will be used in our constructions. In Section 3, we give a
formal definition of functional signature schemes, and present three constructions satisfying the definition. In
Section 4, we show how to construct delegation schemes and succinct non-interactive arguments (SNARGs)
from functional signatures schemes. In Section 5, we give a formal definition of functional pseudorandom
functions and pseudorandom functions with selective access, and present a sample construction for the
prefix-fixing function family.

2 Preliminaries

In this section we define several cryptographic primitives that are used in our constructions.

2.1 Signature Schemes

Definition 2.1. A signature scheme for a message space M is a tuple (Gen,Sign,Verify):

• Gen(1k) → (sk, vk): the key generation algorithm is a probabilistic, polynomial-time algorithm which
takes as input a security parameter 1k, and outputs a signing and verification key pair (sk, vk).

• Sign(sk,m)→ σ: the signing algorithm is a probabilistic polynomial time algorithm which is given the
signing key sk and a message m ∈M and outputs a string σ which we call the signature of m.

• Verify(vk,m, σ) → {0, 1}: the verification algorithm is a polynomial time algorithm which, given the
verification key vk, a message m, and signature σ, returns 1 or 0 indicating whether the signature is
valid.

A signature scheme should satisfy the following properties:
Correctness

∀(sk, vk)← Gen(1k),∀m ∈M,∀σ ← Sign(sk,m),

Verify(vk,m, σ)→ 1

Unforgeability under chosen message attack
A signature scheme is unforgeable under chosen message attack if the winning probability of any probabilistic
polynomial time adversary in the following game is negligible in the security parameter:

• The challenger samples a signing, verification key pair (sk, vk)← Gen(1k) and gives vk to the adversary.

• The adversary requests signatures from the challenger for a polynomial number of messages. In round
i, the adversary chooses mi based on m1, σ1, . . .mi−1, σi−1, and receives σi ← Sign(sk,mi).

• The adversary outputs a signature σ∗ and a message m∗, and wins if Verify(vk,m∗, σ∗) → 1 and the
adversary has not previously received a signature of m∗ from the challenger.

Lemma 2.2 ([Rom90]). Under the assumption that one-way functions exist, there exists a signature scheme
which is secure against existential forgery under adaptive chosen message attacks by polynomial-time algo-
rithms.

2.2 Non-Interactive Zero Knowledge

Definition 2.3. [FLS90, BFM88, BSMP91]: Π = (Gen,Prove,Verify,S = (Scrs,SProof)) is an efficient adap-
tive NIZK argument system for a language L ∈ NP with witness relation R if Gen,Prove,Verify,Scrs,SProof
are all PPT algorithms, and there exists a negligible function µ such that for all k the following three
requirements hold.

8

459
Approved for Public Release; Distribution Unlimited.

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs))→ 1.

• Adaptive Soundness: For all PPT adversaries A, if crs← Gen(1k) is sampled uniformly at random,
then the probability that A(crs) will output a pair (x, π) such that x 6∈ L and yet Verify(crs, x, π)→ 1,
is at most µ(k).

• Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k)→ 1]− Pr[ExpSA(k)→ 1]
∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

We next define the notion of a NIZK argument of knowledge.

Definition 2.4. Let Π = (Gen,Prove,Verify,S = (Scrs,SProof)) be an efficient adaptive NIZK argument
system for an NP language L ∈ NP with a corresponding NP relation R. We say that Π is a argument-of-
knowledge if there exists a PPT algorithm E = (E1,E2) such that for every adversary A,

|Pr[A(crs)→ 1|crs← Gen(1k)]− Pr[A(crs)→ 1|(crs, trap)← E1(1k)]| = negl(k)

For every PPT adversary A,

Pr[A(crs)→ (x, π) and E(crs, trap, x, π)→ w∗ s.t. Verify(crs, x, π)→ 1 and (x,w∗) /∈ R]

= negl(k),

where the probabilities are taken over (crs, trap)← E1(1k), and over the random coin tosses of the extractor
algorithm E2.

We note that we require the distributions over the honestly generated crs, and the crs generated by the
extractor E1 to be statistically close, whereas they are often required to be just computationally indistinguish-
able. However, if one is satisfied with computational zero knowledge (as is the case for us), this is actually
without loss of generality. Namely, given any NIZKAoK Π = (Gen,Prove,Verify,S = (Scrs,SProof),E =
(E1,E2)) for which the CRS output by Gen(1k) and E1(1k) are only computationally indistinguishable, we
claim that the system Π′ formed by using E1 also as the honest CRS generation algorithm (i.e., replacing
Gen) is also a NIZKAoK, and satisfies our statistical indistinguishability requirement.

Claim 2.5. Suppose Π as above is a NIZKAoK for which {crs : crs← Gen(1k)}
c∼= {crs : (crs, trap)← E1(1k)}

are only computationally indistinguishable. Then Π′ := (E1,Prove,Verify,S = (Scrs,SProof),E = (E1,E2)) is
a NIZKAoK as in Definition 2.4.

9

460
Approved for Public Release; Distribution Unlimited.

Proof. Clearly extraction and adaptive soundness are maintained. Completeness must still hold for any
statement/witness pairs (x,w) produced by an efficient adversary, due to the computational indistinguisha-
bility of CRSs generated by Gen and E1; otherwise there exists an efficient distinguishing algorithm who
generates honest proofs and tests whether they verify. Finally, adaptive zero knowledge must hold for the
same simulator algorithms S = (Scrs,SProof). Indeed, for PPT adversary A, consider a third experiment
ExpE
A(k) defined by generating (crs, trap) ← E1(1k), and returning AProve(crs,·,·)(crs). That is, ExpE

A(k) is
identical to the real-world experiment ExpA(k) except that the CRS is generated according to E1 instead
of Gen (and, in particular, corresponds to the real-world experiment for the modified scheme Π′). By the
computational indistinguishability of CRSs generated by Gen and E1, it holds that ExpA(k) and ExpE

A(k) are
computationally indistinguishable. But by the adaptive zero knowledge property of the original scheme Π,
we have that ExpA(k) is computationally indistinguishable from the simulated experiment ExpSA(k). Thus,
it must be that ExpE

A(k) is computationally indistinguishable from ExpSA(k): that is, Π′ satisfies adaptive
zero knowledge.

Remark. There is a standard way to convert any NIZK argument system Π to a NIZK argument-of-
knowledge system Π′. The idea is to append to the crs a public key pk corresponding to any semantic secure
encryption scheme. Thus, the common reference string corresponding to Π′ is of the form crs′ = (crs, pk). In
order to prove that x ∈ L using a witness w, choose randomness r ← {0, 1}poly(k), compute c← Encpk(w, r)
and compute a NIZK proof π, using the underlying NIZK argument system Π, that (pk, x, c) ∈ L′, where

L′ , {(pk, x, c) : ∃(w, r) s.t. (x,w) ∈ R and c← Encpk(w, r)}.

Let π′ = (π, c) be the proof.
The common reference string simulator E1 will generate a simulated crs′ by generating (crs, trap) using

the underlying simulator Scrs, and by generating a public key pk along with a corresponding secret key sk.
Thus, trap′ = (trap, sk). The extractor algorithm E2, will extract a witness for x from a proof π′ = (π, c) by
using sk to decrypt the ciphertext c.

We note that the distribution over the honestly generated crs, and the crs generated by E1 are statistically
close, as required in our definition above.

Lemma 2.6 ([FLS90]). Assuming the existence of enhanced trapdoor permutations, there exists an efficient
adaptive NIZK argument of knowledge for all languages in NP.

2.3 Succinct Non-Interactive Arguments (SNARGs)

Definition 2.7. Π = (Gen,Prove,Verify) is a succinct non-interactive argument for a language L ∈ NP with
witness relation R if it satisfies the following properties:

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs)) = 1.

• Adaptive Soundness: There exists a negligible function µ(k), such that, for all PPT adversaries A,
if crs ← Gen(1k) is sampled uniformly at random, then the probability that A(crs) will output a pair
(x, π) such that x 6∈ L and yet Verify(crs, x, π) = 1, is at most µ(k).

• Succinctness: There exists an universal polynomial p(·) that does not depend on the relation R, such
that

∀x,w s.t R(x,w) = 1, crs← Gen(1k), π ← Prove(x,w, crs),

|π| ≤ p(k + logR)

where R denotes the runtime of the relation associated with language L. We note that the definition
of succinctness considered in the lower bound of [GW11] is weaker, in that they require the proof size
to only be bounded by r(k) · (|x|+ |w|)o(1), for some polynomial r(·).

10

461
Approved for Public Release; Distribution Unlimited.

Definition 2.8. A SNARG Π = (Gen,Prove,Verify) is a succinct non-interactive argument of knowl-
edge(SNARK) for a language L ∈ NP with witness relation R if there exists a negligible function µ(·)
such that, for all PPT provers P ∗, there exists a PPT algorithm EP∗ = (E1

P∗ ,E
2
P∗) such that for every

adversary A,

|Pr[A(crs)→ 1|crs← Gen(1k)]− Pr[A(crs)→ 1|(crs, trap)← E1
P∗(1

k)]| = µ(k),

and,

Pr[P ∗(crs)→ (x, π) and E2
P∗(crs, trap, x, π)→ w∗ s.t. Verify(crs, x, π)→ 1 and (x,w∗) /∈ R]

= µ(k).

where the probabilities are taken over (crs, trap)← E1
P∗(1

k), and over the random coin tosses of the extractor
algorithm E2

P∗ .

Remark As in the NIZK definition, we require the distributions over the honestly generated crs, and
the crs generated by the extractor E1

P∗ to be statistically close. We note that the SNARK construction in
[BCCT13] satisfies a stronger definition, where the extraction process has to work for a honestly generated
crs, without having access to a trapdoor.

Definition 2.9. A SNARK Π = (Gen,Prove,Verify,E) is a zero-knowledge SNARK for a language L ∈ NP
with witness relation R if there exist PPT algorithmsS = (Scrs,SProof) satisfing the following property:
Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k)→ 1]− Pr[ExpSA(k)→ 1]

∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

There are several constructions of SNARKs known, all based on non-falsifiable assumptions. A falsifiable
assumption is an assumption that can be modeled as a game between an efficient challenger and an adversary.
Most standard cryptographic assumptions are falsifiable. This includes both general assumptions like the
existence of OWFs, trapdoor predicates, and specific assumptions (discrete logarithm, RSA, LWE, hardness
of factoring).

Lemma 2.10 ([BCCT13]). A SNARK system for any language L ∈ NP can be constructed assuming the
existence of collision-resistant hash function and knowledge of exponent assumptions.

Lemma 2.11 ([BCCT12]). If there exist SNARKs and NIZKAoK for NP, then there exist zero-knowledge
SNARKs for all languages in NP.

In [GW11] Gentry and Wichs show that no construction of SNARGs, with proof size bounded by r(k) ·
(|x| + |w|)o(1), for some polynomial r(·), can be proved secure under a black-box reduction to a falsifiable
assumption. A black-box reduction is one that only uses oracle access to an attacker, and does not use that
adversary’s code in any other way. The definition of succinctness in [GW11] is a relaxation of the one in
definition Definition 2.8, which makes their lower bound result stronger.

11

462
Approved for Public Release; Distribution Unlimited.

2.4 Delegation Schemes

A delegation scheme allows a client to outsource the evaluation of a function F to a server, while allowing
the client to verify the correctness of the computation. The verification process should be more efficient
than computing the function. We formalize these requirements below, following the definition introduced by
Gennaro et al. in [GGP10].

Definition 2.12 ([GGP10]). A delegation scheme for a function F consists of a tuple of algorithms (KeyGen,
Encode, Compute, Verify)

• KeyGen(1k, F) → (enc, evk, vk): The key generation algorithm takes as input a security parameter k
and a function F , and outputs a key enc that is used to encode the input, an evaluation key evk that
is used for the evaluation of the function F , and a verification key vk that is used to verify that the
output was computed correctly.

• Encode(enc, x) → σx: The encoding algorithm uses the encoding key enc to encode the function input
x as a public value σx, which is given to the server to compute with.

• Compute(evk, σx)→ (y, πy): Using the public evaluation key, evk and the encoded input σx, the server
computes the function output y = F(x), and a proof πy that y is the correct output.

• Verify(vk, x, y, πy) → {0, 1}: The verification algorithm checks the proof πy and outputs 1(indicating
that the proof is correct), or 0 otherwise.

We require a delegation scheme to satisfy the following requirements:

Correctness
For all vk, x, y, πy such that (enc, evk, vk)← KeyGen(1k, F), σx ← Encode(enc, x), (y, πy)← Compute(evk, σx),

Verify(vk, x, y, πy)→ 1

Authentication
For all PPT adversaries, the probability that the adversary is successful in the following game is negligible:

• The challenger runs KeyGen(1k, F)→ (enc, evk, vk), and gives (evk, vk) to the adversary.

• The adversary gets access to an encoding oracle, Oenc(·) = Encode(enc, ·).
• The adversary is successful if it can produce a tuple (x, y, πy) such that y 6= F (x) and Verify(vk, x, y, πy)→

1.

Efficient verification
Let T (n) be the running time of the verification algorithm on inputs of size n. Let TF (n) be the running
time of F on inputs of size n. We require the worst-case running time of the verification algorithm to be sub
linear in the worst case running time of F ,

T (n) ∈ o(TF (n))

2.5 Pseudorandom Generators and Functions

Definition 2.13. A pseudorandom generator (PRG) is a length expanding function prg : {0, 1}k → {0, 1}n
(for n > k) such that prg(Uk) and Un are computationally indistinguishable, where Uk is a uniformly
distributed k-bit string and Un is a uniformly distributed n-bit string.

Definition 2.14. [GGM86] A family of functions F = {Fs}s∈S , indexed by a set S, and where Fs : D →
R for all s, is a pseudorandom function (PRF) family if for a randomly chosen s, and all PPT A, the
distinguishing advantage Prs←S [Afs(·) = 1] − Prf←(D→R)[Aρ(·) = 1] is negligible, where (D → R) denotes
the set of all functions from D to R.

12

463
Approved for Public Release; Distribution Unlimited.

3 Functional Signatures: Definition and Constructions

3.1 Formal Definition

We now give a formal definition of a functional signature scheme, and explain in more detail the unforgeability
and function privacy properties a functional signature scheme should satisfy.

Definition 3.1. A functional signature scheme for a message spaceM, and function family F = {f : Df →
M} consists of algorithms (FS.Setup, FS.KeyGen, FS.Sign, FS.Verify):

• FS.Setup(1k)→ (msk,mvk): the setup algorithm takes as input the security parameter and outputs the
master signing key and master verification key.

• FS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the master signing key and a
function f ∈ F (represented as a circuit), and outputs a signing key for f .

• FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the signing key for a function
f ∈ F and an input m ∈ Df , and outputs f(m) and a signature of f(m).

• FS.Verify(mvk,m∗, σ) → {0, 1}: the verification algorithm takes as input the master verification key
mvk, a message m and a signature σ, and outputs 1 if the signature is valid.

We require the following conditions to hold:

Corectness:
∀f ∈ F ,∀m ∈ Df , (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f), (m∗, σ)← FS.Sign(f, skf ,m),

FS.Verify(mvk,m∗, σ) = 1.

Unforgeability:
The scheme is unforgeable if the advantage of any PPT algorithm A in the following game is negligible:

• The challenger generates (msk,mvk)← FS.Setup(1k), and gives mvk to A

• The adversary is allowed to query a key generation oracle Okey, and a signing oracle Osign, that share a
dictionary indexed by tuples (f, i) ∈ F × N, whose entries are signing keys: skif ← FS.KeyGen(msk, f).
This dictionary keeps track of the keys that have been previously generated during the unforgeability
game. The oracles are defined as follows :

– Okey(f, i) :

∗ if there exists an entry for the key (f, i) in the dictionary, then output the corresponding value,
skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i) → skif to the

dictionary, and output skif
– Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then generate a signature on f(m)
using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry (f, i) → skif to the

dictionary, and generate a signature on f(m) using this key: σ ← FS.Sign(f, skif ,m).

• The adversary wins if it can produce (m∗, σ) such that

– FS.Verify(mvk,m∗, σ) = 1.

– there does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey oracle.

– there does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle and m∗ = f(m).

Function privacy:
Intuitively, we require the distribution of signatures on a message m′ generated via different keys skf to be
computationally indistinguishable, even given the secret keys and master signing key. Namely, the advantage
of any PPT adversary in the following game is negligible:

13

464
Approved for Public Release; Distribution Unlimited.

• The challenger honestly generates a key pair (mvk,msk) ← FS.Setup(1k) and gives both values to the
adversary. (Note wlog this includes the randomness used in generation).

• The adversary chooses a function f0 and receives an (honestly generated) secret key skf0 ← FS.KeyGen(msk, f0).

• The adversary chooses a second function f1 for which |f0| = |f1| (where padding can be used if there is
a known upper bound) and receives an (honestly generated) secret key skf1 ← FS.KeyGen(msk, f1).

• The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and f0(m0) = f1(m1).

• The challenger selects a random bit b ← {0, 1} and generates a signature on the image message m′ =
f0(m0) = f1(m1) using secret key skfb , and gives the resulting signature σ ← FS.Sign(skfb ,mb) to the
adversary.

• The adversary outputs a bit b′, and wins the game if b′ = b.

Succinctness:
There exists a polynomial s(·) such that for every k ∈ N, f ∈ F ,m ∈ Df , it holds with probability 1
over (msk,mvk)← FS.Setup(1k); skf ← FS.KeyGen(msk, f); (f(m), σ)← FS.Sign(f, skf ,m) that the resulting
signature on f(m) has size |σ| ≤ s(k, |f(m)|). In particular, the signature size is independent of the size |m|
of the input to the function, and of the size |f | of a description of the function f .

3.2 Construction

In this section, we present a construction of a (succinct) functional signature scheme, based on succinct
non-interactive arguments of knowledge (SNARKs).

Theorem 3.2. Assuming the existence of SNARKs for NP, there exists a succinct, function-private func-
tional signature scheme for the class of polynomial-size circuits.

We achieve this via two steps. We first give a construction of a weaker functional signature scheme,
achieving correctness and unforgeability but not succinctness or function privacy, based on one-way functions.
We then show how to use any weak functional signature scheme (satisfying correctness and unforgeability),
together with a SNARK system, to obtain a functional signature scheme that is additionally succinct and
function-private. In a third construction, we demonstrate that if one does not require the signatures to be
succinct (but still demand function privacy), this transformation can be achieved based on non-interactive
zero-knowledge arguments of knowledge (NIZKAoKs).

We present these three constructions in the following three subsections.

3.2.1 OWF-based construction

In this section we give a construction of a functional signature scheme from any standard signature scheme
(i.e., existentially unforgeable under chosen-message attack). Our constructed functional signature scheme
satisfies the unforgeability property given in Definition 3.1, but not function privacy or succinctness. Since
standard signature schemes can be based on one-way functions (OWF) [Rom90], this shows that we can also
construct functional signature schemes under the assumption that OWFs exist.

The main ideas of the construction are as follows. The master signing and verification keys (msk,mvk)
will simply be a standard key pair for the underlying signature scheme. As part of the signing key for a
function f , the signer receives a fresh key pair (sk, vk) for the underlying signature scheme, together with
a signature (with respect to mvk) on the function f together with vk. We can think of this signature as a
certificate authenticating that the owner of key vk has received permission to sign messages in the range of
f . We describe the construction below.

Let Sig = (Sig.Setup,Sig.Sign,Sig.Verify) be a signature scheme that is existentially unforgeable under chosen
message attack. We construct a functional signature scheme FS1 = (FS1.Setup, FS1.KeyGen, FS1.Sign,
FS1.Verify) as follows:

14

465
Approved for Public Release; Distribution Unlimited.

• FS1.Setup(1k):

– Sample a signing and verification key pair for the standard signature scheme (msk,mvk)← Sig.Setup(1k),
and set the master signing key to be msk, and the master verification key to be mvk.

• FS1.KeyGen(msk, f):

– choose a new signing and verification key pair for the underlying signature scheme: (sk, vk) ←
Sig.Setup(1k).

– compute σvk ← Sig.Sign(msk, f |vk), a signature of f concatenated with the new verification key vk.

– create the certificate c = (f, vk, σvk).

– output skf = (sk, c).

• FS1.Sign(f, skf ,m):

– parse skf as (sk, c), where sk is a signing key for the underlying signature scheme, and c is a certificate
as described in the KeyGen algorithm.

– sign m using sk: σm ← Sig.Sign(sk,m).

– output (f(m), σ), where σ = (m, c, σm)

• FS1.Verify(mvk,m∗, σ):

– parse σ = (m, c = (f, vk, σvk), σm) and check that:

1. m∗ = f(m).

2. Sig.Verify(vk,m, σm)→ 1: σm is a valid signature of m under the verification key vk.

3. Sig.Verify(mvk, vk|f, σvk) = 1: σvk is a valid signature of f |vk under the verification key mvk.

Theorem 3.3. If the signature scheme Sig is existentially unforgeable under chosen message attack, FS1 as
specified above satisfies the unforgeability requirement for functional signatures.

Proof. Fix a PPT adversary AFS, and let Q(k) be a polynomial upper bound on the number of queries made
by AFS to the oracles Okey and Osign. We will use AFS to construct an adversary Asig such that, if AFS wins
in the unforgeability game for functional signatures with non-negligible probability, then Asig breaks the
underlying signature scheme, which is assumed to be secure against chosen message attack.

For AFS to win the functional signature unforgeability game, it must produce a message signature pair
(m∗, σ), where σ = (m, (f, vk, σvk), σm) such that:

• σm is a valid signature of m under the verification key vk.

• σvk is a valid signature of f |vk under mvk.

• f(m) = m∗.

• AFS has not sent a query of the form Okey(f̃ , i) to the signing key generation oracle for any f̃ that has
m∗ in its range.

• AFS hasn’t sent a query of the form Osign(f̃ , i, m̃) to the signing oracle for any f̃ , m̃ such that f̃(m̃) = m∗

There are two cases for such a forgery (m∗, σ), where σ = (m, (f, vk, σvk), σm):

• Type I forgery: The values (f, vk) are such that the concatenated pair f |vk has not already been
signed under mvk during any point of the signing and key oracle queries during the security game.

• Type II forgery: The values (f, vk) are such that the concatenated pair f |vk has been signed under
mvk during the course of AFS’s oracle queries.

Here we refer to all mvk signatures generated by the oracles Osign, Okey as intermediate steps in order to
answer AFS’s respective queries.

We now describe the constructed signature adversary, Asig. In the security game for the standard (exis-
tentially unforgeable under chosen message attack) signature scheme, Asig is given the verification key vksig,

15

466
Approved for Public Release; Distribution Unlimited.

and access to a signing oracle ORegsig . He is considered to be successful in producing a forgery if he outputs
a valid signature for a message that was not queried from ORegsig .

Asig interacts with AFS, playing the role of the challenger in the security game for the functional signature
scheme. This means that Asig must simulate the Okey and Osign oracles. AFS flips a coin b, indicating his
guess for the type of forgery AFS will produce, and places his challenge accordingly.

Case 1: b = 1: Asig guesses that AFS will produce a Type I forgery:
First Asig forwards his challenge verification key vksig to AFS as the master verification key in the functional

signature security game.
To simulate the Okey, and Osign oracles, Asig maintains a dictionary indexed by tuples (f, i), whose entries

are signing keys for the functional signature scheme that have already been generated. Asig answers the
queries issued by AFS as follows:

• Okey(f, i) :

– if there exists an entry for the key (f, i) in the dictionary, then output the corresponding value,
skif .

– otherwise, Asig generates a new key pair for the underlying signature scheme, (sk, vk)← Sig.Setup(1k),
obtains σvk ← ORegsig(f |vk) from its own signing oracle (in the standard signature challenge), and
returns skf = (sk, σvk) to AFS. It also sets entry (f, i) in its dictionary to skf .

• Osign(f, i,m):

– if there exists an entry for the key (f, i) in the dictionary, skif = (sk, σvk). It then generates a

signature using skif : that is, generate a signature σm ← Sig.Sign(sk,m), and output (f(m), σ),
where σ = (m, c = (f, vk, σvk), σm).

– otherwise, Asig generates a new key pair for the regular signature scheme, (sk, vk)← Sig.Setup(1k),
obtains σvk ← ORegsig(f |vk) from its signing oracle, and sets entry (f, i) in its dictionary to skf =
(sk, σvk). It then generates σm ← Sig.Sign(sk,m), and outputs (f(m), σ), where σ = (m, c =
(f, vk, σm), σvk).

Eventually, AFS outputs a signature (m∗, σ), where σ = (m, (f, vk, σvk), σm). Asig outputs (f |vk, σvk) as
its message-forgery pair in the security game for the standard signature scheme.

Case 2: b = 0: Asig guesses that AFS will produce a Type II forgery:
Asig generates a new key pair (msk,mvk)← Sig.Setup(1k) himself, and forwards mvk to AFS. He also guesses
a random index q between 1 and Q(k), denoting which of AFS’s signing queries he will embed his challenge
verification key in. He keeps track of the number of keys generated so far in a variable NUMKEY S, which
is initialized to 0. As before, Asig maintains a dictionary indexed by tuples (f, i), whose entries are signing
keys for the functional signature scheme that have already been generated. Asig answers the queries issued
by AFS as follows:

• Okey(f, i) :

– if there exists an entry for the key (f, i) in the dictionary, with value CHALLENGE, abort

– if there exists an entry for the key (f, i) in the dictionary and its value is not CHALLENGE, then
output the corresponding value, skif .

– otherwise, Asig generates a new key pair for the regular signature scheme, (sk, vk)← Sig.Setup(1k),
generates σvk ← Sign(msk, f |vk) himself, and returns skf = (sk, σvk) to AFS. It also sets entry (f, i)
in its dictionary to skf .

• Osign(f, i,m):

– if there exists an entry for the key (f, i) in the dictionary, skif = (sk, σvk), generate σm ←
Sig.Sign(sk,m), and output (f(m), σ), where σ = (m, c = (f, vk, σvk), σm).

– if there is no (f, i) entry in the dictionary, and NUMKEY S 6= q, Asig generates a new key
pair for the regular signature scheme, (sk, vk) ← Sig.Setup(1k), signs f |vk himself with respect

16

467
Approved for Public Release; Distribution Unlimited.

to msk: σvk ← Sig.Sign(msk, f |vk), and sets entry (f, i) in its dictionary to skf . It then generates
a signature on m with respect to the new key sk: σm ← Sig.Sign(sk,m), and outputs (f(m), σ),
where σ = (m, c = (f, vk, σvk), σm). NUMKEY S is then incremented.

– if there is no (f, i) entry in the dictionary and NUMKEY S = q, or if the (f, i) entry in the dic-
tionary is set to CHALLENGE, then Asig queries its oracle for a signature of m under vksig,
σm ← ORegsig(m), computes σvk ← Sig.Sign(msk, f |vksig), and outputs (f(m), σ), where σ =
(m, c = (f, vk, σvk), σm). If there is no (f, i) entry in the dictionary, Asig sets it to CHALLENGE.
NUMKEY S is then incremented.

If Asig does not abort, AFS will eventually output a signature (m∗, σ), where σ = (m, (f, vk, σvk), σm).
Asig outputs (m,σm) as its forgery in the security game for the standard signature scheme with respect to
vksig.

We will now argue that if AFS forges in the functional signature scheme with non-negligible probability
then Asig is wins the unforgeability game for the standard signature scheme with non-negligible probability.

First note that as long as Asig does not abort (i.e., the bad situation is not encountered where the
adversary requests the secret key corresponding to the embedded vksig challenge), then his answers to the
AFS’s keygen and signing queries are simulated perfectly as in the real world. Further, as long as there is not
an abort, the view of AFS is independent of Asig’s choice of b and q, as they only determine which verification
key is the challenge verification key vksig

Now, if AFS produces a Type I forgery, then by definition this forgery must include a signature on a
new message f |vk that was not ever signed under the master verification key mvk during the course of any
oracle query response. Thus, if AFS makes a Type I forgery and Asig guessed b = 1 (embedding his challenge
signature key in the position of the mvk), then AFS’s forgery includes a signature on a new message f |vk that
Asig did not query to his signature oracle, constituting a forger in the unforgeability game for the standard
signature scheme.

If AFS produces a Type II forgery, then the corresponding f |vk was already signed under the master
verification key mvk during the course of one of the oracle queries. This cannot have occurred during a Okey

query, as it would mean that AFS queried Okey on the function f , and producing a signature with respect to
this f is not a valid forgery in the functional signature scheme. It must then have been signed during an
Osign query. Namely, the verification key vk must have been freshly generated during a query of the form
Osign(f, i,m) for which no entry under index (f, i) previously existed, and then the pair f |vk was signed.

Note that if AFS produces a Type II forgery and Asig guessed b = 0 and the correct q to embed his
challenge, and Asig does not abort, the forgery produced by AFS must include a signature of a new message
m̃ with respect to vksig, for a m̃ that Asig hasn’t queried from his signing oracle, and therefore Asig can use
this forgery as its own forged signature in the unforgeability game for the standard signature scheme.

We note that, if Asig does abort, it must be that he embedded his challenge in a query q of the form
Osign(f, i,m), and later AFS issued a key generation query Osign(f, i). But this query can’t be the signing
query q∗ for which the adversary receives a signature of f |vk under mvk, and later outputs a signature of
f(m′) for another m′. Since the adversary has queried the Osign(f, i), no message in the range of f would be
considered a forgery in the functional signature game. We can conclude that, if Asig aborts, he didn’t guess
q∗ correctly, so we don’t need to consider this case separately.

Denoting by b, q the guesses of Asig, we have that success probability of if Asig is therefore:

17

468
Approved for Public Release; Distribution Unlimited.

Pr[Asig forges in signature challenge]

≥ Pr[b = 1 ∧ AFS outputs Type I forgery]

+
∑

q∗∈[Q(k)]

Pr[b = 0 ∧ q = q ∗ ∧ Asig does not abort ∧ AFS outputs Type II forgery wrt vkq∗]

= Pr[b = 1 ∧ AFS outputs Type I forgery]

+
∑

q∗∈[Q(k)]

Pr[b = 0 ∧ q = q∗ ∧ AFS outputs Type II forgery on vkq∗]

≥ 1

2
Pr[AFS outputs Type I forgery] +

1

2Q(k)

∑
i∗∈[Q(k)]

Pr[AFS outputs Type II forgery on vkq∗]

≥ 1

2Q(k)

Pr[AFS outputs Type I forgery] +
∑

i∗∈[Q(k)]

Pr[AFS outputs Type II forgery on vkq∗]

=

1

2Q(k)
Pr[AFS forges]

Thus, if AFS produces a forgery in the functional signature scheme with non-negligible probability 1/P (k),
then Asig successfully forges in the underlying signature scheme with non-negligible probability 1/2P (k)Q(k).
But, this cannot be the case, since we’ve assumed that SIg is existentially unforgeable against chosen-message
attack. We conclude that FS1 satisfies the unforgeability requirement for functional signatures.

While this construction is secure under a very general assumption (the existence of one-way functions), it
does not provide function privacy guarantees (indeed, the signature contains a description of the relevant pre
image and function), and its efficiency can be greatly improved. The size of a signature generated with key
skf (σ ← FS.Sign(skf ,m)) in this scheme is proportional to the size of |f |+ |m| plus the size of a signature of
the standard signature scheme. In contrast, we will next show how to use SNARKs to construct a functional
signature where the signature size is proportional to |f(m)|, instead of |f |+ |m|.

3.2.2 Succinct, Function-Private Functional Signatures from SNARKs

We demonstrate how to combine any unforgeable functional signature scheme (such as the OWF-based
construction from the previous section) together with a succinct non-interactive argument of knowledge
(SNARK) to obtain a new functional signature scheme also satisfying succinctness and function privacy.

Let FS1 = (FS1.Setup,FS1.Sign,FS1.Verify) be a functional signature scheme, satisfying the unforgeability
game as in Definition 3.1, but not necessarily function privacy or succinctness. Let Π = (Gen, Prove, Verify,
S = (Scrs,SProof), E = (E1,E2)) be an efficient adaptive zero-knowledge SNARK system for the following NP
language L:

L = {(m,mvk) | ∃σ s.t. FS1.Verify(mvk,m, σ) = 1}.

We show how to use FS1 and Π to construct a new functional signature scheme that also satisfies function
privacy and succinctness.

• FS2.Setup(1k):

– choose a master signing key, verification key pair for FS1: (msk′,mvk′)← FS1.Setup(1k).

– choose a crs for the zero-knowledge SNARK: crs← Π.Gen(1k).

– set the master secret key msk = msk′, and the master verification key mvk = (mvk′, crs).

• FS2.KeyGen(msk, f):

18

469
Approved for Public Release; Distribution Unlimited.

– the key generation algorithm is the same as in the underlying functional signature scheme: skf ←
FS1.KeyGen(msk, f).

• FS2.Sign(f, skf ,m):

– generate a signature on m in the underlying functional signature scheme: σ′ ← FS1.Sign(f, skf ,m).

– generate π ← Π.Prove((f(m),mvk′), σ′, crs), a zero-knowledge SNARK that (f(m),mvk′) ∈ L,
where L is defined as above, and output (m∗ = f(m), σ = π). Informally, π is a proof that the
signer knows a signature of f(m) in the underlying functional signature scheme.

• FS2.Verify(mvk,m∗, σ):

– output Π.Verify(crs,m∗, σ): i.e., verify that σ is a valid argument of knowledge of a signature of
f(m) in the underlying functional signature scheme.

Theorem 3.4. Assume the existence of an unforgeable (but not necessarily succinct or function-private)
functional signature scheme FS1 supporting the class F of polynomial-sized circuits, and Π be an adaptive
zero-knowledge SNARK system for NP . Then there exists succinct, function-private functional signatures
for F .

Proof of unforgeability
Suppose there exists an adversary AFS2 that produces a forgery in the new functional signature scheme with
non-negligible probability. We show how to construct an adversary AFS1 that uses AFS2 to produce a forgery
in the underlying functional signature scheme.

AFS1 plays the role of the challenger in the security game for AFS2. He gets a verification key mvkFS1 in
his own unforgeability game, generates (crs, trap)← E1(1k), a simulated CRS for the ZK-SNARK, together
with a trapdoor, and forwards mvkFS2 = (mvkFS1, crs) to AFS2 as the new master verification key. AFS2 makes
two types of queries:

• OkeyFS2(f, i), which AFS1 answers (honestly) by forwarding them to its KeyGen oracle, OkeyFS1(f, i)

• OsignFS2(f,m, i), in which case AFS1 forwards the query to his signing oracle, and receives a signature
σFS1 ← OsignFS1(f,m, i). It then outputs π ← Π.Prove((f(m),mvkFS1), σ, crs) as his signature of f(m).

After querying the oracles, AFS2 will output an alleged forgery in the functional signature scheme, π∗, on
some message m∗. AFS1 runs the extractor E2(crs, trap, (m∗,mvkFS1), π

∗) to recover a witness w = σ such
that FS1.Verify(mvkFS1,m

∗, σ) = 1 Asig then submits σ as a forgery in his own unforgeability game.

We now prove that if AFS2 forges with noticeable probability, then AFS1 also forges with noticeable
probability in his own security game.

Hybrid 0. The real-world functional signature challenge experiment. Namely, the CRS is generated in the
honest fashion crs ← Gen(1k), and the adversary’s signing queries are answered honestly. Denote the
probability of the adversary producing a valid forgery in the functional signature FS2 scheme within
this experiment by Forge0.

Hybrid 1. The same experiment as Hybrid 0, except the CRS is generated using the extraction-enabling
procedure, (crs, trap) ← E1(1k). The remainder of the experiment continues as before with respect
to crs. Denote the probability of the adversary producing a valid forgery in the functional signature
scheme within this experiment by Forge1.

Hybrid 2. The interaction with the adversary is the same as in Hybrid 1. Denote by M the set of all
messages signed with mskFS1 in the underlying functional signature scheme during the course of the
experiment, as a result of AFS1’s key and signing oracle queries. At the experiment conclusion, the
ZK-SNARK extraction algorithm is executed on the adversary’s alleged forgery π∗ (on message m∗) in
the functional signature scheme: i.e., (σ∗)← E2(crs, trap, (m∗,mvkFS1), π

∗).

Denote by Extract2 the probability that σ∗ is a valid signature in the underlying functional signature
scheme FS1 on a message m∗ such that f∗ /∈M . Note that this corresponds to the probability of AFS1

successfully producing a forgery.

19

470
Approved for Public Release; Distribution Unlimited.

Unforgeability of the functional signature scheme follows from the following sequence of lemmas.

Lemma 3.5. Forge0 ≤ Forge1 + negl(k).

Proof. Follows directly from the fact that the CRS values generated via the standard algorithm Gen and
those generated by the extraction-enabling algorithm E1 are statistically close, as per Definition 2.8.

More formally, suppose there exists a PPT adversary A for which Forge1 < Forge0 − ε for some ε. Then
the following (not necessarily efficient) adversary Acrs distinguishes between CRS values with advantage ε.
In the CRS challenge, Acrs is given a value crs (generated by either the standard algorithm or the extraction-
enabling algorithm). First, Acrs generates a key pair (mskFS1,mvkFS1)← FS1.Setup(1k) for the underlying
functional signature scheme, and sends mvkFS2 = (mvkFS1, crs) to A. He answers AFS2’s queries as in
Hybrid 0, generating signatures and proofs as required (note that A holds the master secret key mskFS1,
which allows him to answer the queries). At the conclusion of AFS2’s query phase, he outputs an alleged
forgery π∗ in the functional signature scheme. The adversary Acrs tests whether π∗ is indeed a forgery.
We note that this verification process might not be efficient, since Acrs needs to test whether the message
whose signature AFS2 claims to have forged is actually not in the range of any of the functions f that AFS2
has requested signing keys for. If the forgery verifies, Acrs outputs “standard crs”; otherwise, he outputs
“extractable crs”. His advantage in the CRS distinguishing game is precisely Forge1 − Forge0, as desired.
Since the real and simulated CRS strings are supposed to be statistically close, the distinguishing advantage
Forge1 − Forge0 has to be negligible even for an inefficient adversary.

Lemma 3.6. Forge1 ≤ Extract2 + negl(k).

Proof. This holds by the extraction property of the ZK-SNARK system (Definition 2.8).
Namely, if there exists a PPT adversary A for which Forge1 > Extract2 + ε for some ε, then the following

adversary AExt successfully produces a properly-verifying proof π for which extraction fails with probability
ε (which must be negligible by the SNARK extraction property).
AExt receives a CRS value crs generated via (crs, trap)← E1(1k). He samples a key pair (mskFS1,mvkFS1)

← FS1.Setup(1k) for the underlying functional signature scheme, sends mvkFS2 = (mvkFS1, crs) to the
adversary A, and answers all of A’s key and signing oracle queries as in Hybrid 1.

Now, let M the collection of all messages f which were signed by AExt during the course of the interaction
withA. Suppose that π∗ is a valid forgery onm∗ in the functional signature scheme; in particular, π∗ is a valid
proof that (m∗,mvkFS1) ∈ L. We argue that if extraction succeeds on π∗ (i.e if σ∗← E2(crs, trap, (m∗, vk), π∗)
yields a valid witness for (m∗, vk) ∈ L)), then it must be that the extracted σ∗ is a valid signature on a
message g /∈M in the underlying functional signature scheme, so that we are in the event corresponding to
Extract3. That is, we show Forge1 − Extract2 is bounded above by the probability that extraction fails.

Since π∗ is a valid forgery in the functional signature scheme FS2, it must be that m∗ /∈ Range(g) for
all key queries Okey(g, i) made by A, and that m∗ 6= g(x) for all signing queries Osign(g, x, i) made by A.
Now, if the extracted tuple (f∗,m, σ∗) ← E2(crs, trap, (m∗, vk), π∗) is a valid witness for (m∗, vk) ∈ L, then
from the definition of the language L it means that m∗ = f∗(m) and that σ∗ is a valid signature on f∗ with
respect to the master signing key sk (i.e., Verify(vk, σ∗, f∗) = 1). Recall that the set M consists exactly of
the functions g for which A made a key query, and the collection of constant functions g′ ≡ g(x) for which
A make a signing query (g, x). But since m∗ ∈ Range(f∗) and m∗ /∈ Range(g) for all g ∈ M , it must be
that f∗ /∈M , as desired.

Therefore, with probability at least Forge2 − Extract3 = ε, it must hold that π∗ is a valid proof but that
the extraction algorithm fails to extract a valid witness from π∗. By the extraction property of the SNARK
system, it must be that ε is negligible.

Lemma 3.7. Extract2 < negl(k).

Proof. This holds by the unforgeability of the underlying functional signature scheme FS1, since Extract2
is precisely the probability that adversary AFS1 constructed above produces a successful forgery in the
unforgeability game for FS1.

20

471
Approved for Public Release; Distribution Unlimited.

Proof of function privacy
We show that any adversary Apriv who succeeds in the function privacy game with noticeable advantage
can be used to break the zero knowledge property of the ZK-SNARK scheme. Recall that in the adaptive
zero knowledge security game, the adversary is given a CRS (either honestly generated or simulated) and
access to an oracle who accepts statement-witness pairs (x,w) and responds with either honestly generated
or simulated proofs of the statement.

More specifically, consider the following two hybrid experiments:

Hybrid 0. The real function privacy challenge. In particular, the CRS for the ZK-SNARK system is
generated honestly as crs ← Π.Gen(1k). The challenge signature, on message mb for randomly cho-
sen b ← {0, 1} (with respect to key fb), is generated by first generating a signature on mb in the
underlying functional signature scheme σ ← Sig.Sign(skfb ,mb) and then honestly generating a proof
π ← Π.Prove((fb(mb),mvk), σ, crs).

Hybrid 1. Similar to Hybrid 0, except that the SNARK appearing in the challenge signature is replaced by a
simulated argument. Namely, the CRS is generated using the simulator algorithm (crs, trap)← Scrs(1k).
And the challenge signature is generated by sampling a random bit b← {0, 1} and ignoring it, instead
using the simulator π ← SProof(crs, trap, (m′,mvk)), where m′ = f0(m0) = f1(m1).

Denote by win0,win1 the advantage of the adversary Apriv in guessing the bit b in Hybrid 0 and 1,
respectively. Function privacy of FS2 follows from the following two claims.

Claim 3.8. win1 ≥ win0 − negl(k).

Proof. Follows directly from the adaptive zero knowledge property of the ZK-SNARK system. More explic-
itly, consider the following adversary AZK:

1. AZK receives a CRS value crs from the adaptive zero knowledge challenger (either honestly generated or
simulated). In addition, he generates a master key pair for the underlying functional signature scheme:
(msk,mvk) ← FS1.Setup(1k). AZK takes mvk′ = (mvk, crs) and sends the key pair (mvk′,msk) to the
function privacy adversary Apriv.

2. Apriv responds (adaptively) with function queries f0, f1 and a message pair m0,m1 with f0(m0) =
f1(m1). For each function query fb, AZK generates a corresponding key skfb ← FS1.KeyGen(msk, fb)
and sends skfb to Apriv.

3. AZK prepares the function privacy challenge signature as follows. First, he chooses a random bit
b ← {0, 1}, and uses (fb,mb, skfb) to generate a signature on fb(mb) in the underlying functional
signature scheme: σ ← FS1.Sign(skfb ,mb). He then submits the query ((fb(mb),mvk), σ) to the proof
oracle in his own ZK challenge. (Recall that σ is a valid witness for (fb(mb),mvk) ∈ L). Denote the
oracle response by π, which is either honestly generated or simulated.

4. AZK sends the signature π to Apriv, who responds with a guessed bit b′ in the function privacy game. If
b′ = b, then AZK outputs “real.” Otherwise, if b′ 6= b, then AZK outputs “simulated.”

Note that if AZK has access to the Real Proof experiment (Experiment ExpA(k) in Definition 2.9), then
AZK perfectly simulates Hybrid 0, whereas if he has access to the Simulated Proof experiment (Experiment
ExpSA(k) in Definition 2.9), then AZK perfectly simulates Hybrid 1. Thus, AZK’s advantage in the adaptive
zero knowledge challenge is equal to win0 −win1, which by the ZK security of the ZK-SNARK scheme must
hence be negligible.

Claim 3.9. win1 < negl(k).

Proof. Note that the view of Apriv in Hybrid 1 is in fact independent of the selected bit b. Indeed, the challenge
signature is generated with respect only to the value m′ = f0(m0) = f1(m1), and not any particular witness.
Thus, information theoretically, even a computationally unbounded adversary could not correctly guess the
bit b with noticeable advantage.

21

472
Approved for Public Release; Distribution Unlimited.

Succinctness
The succinctness of our signature scheme follows directly from the succinctness property of the SNARK
system. Namely, the size of a functional signature produced by FS2.Sign(f, skf ,m) is exactly the proof
length of a SNARK for the language L. There exists a polynomial q such that the runtime R of the
associated relation is bounded by q(|f(m)| + |mvk| + |σ|), where σ is a signature in the underlaying, non-
succinct functional signature scheme.
By Definition 2.7, there exists a polynomial p, such that the corresponding proof length is bounded by
p(k + polylog(|f(m)| + |mvk| + |σ|)). The size of the signature |σ| = poly(|f | + |m| + k). We may assume
that |f |, and |m| are bounded by 2k, and therefore the size of a signature in the SNARK-based construction
is polynomial in k, and independent of |f |, |m|, (and even |f(m)|).

3.2.3 NIZK-based construction

If one wishes to avoid SNARK-type assumptions, one can obtain a functional signature scheme satisfying
both unforgeability and function privacy (but not succinctness) under the more general assumption of stan-
dard non-interactive zero-knowledge arguments of knowledge (NIZKAoK). This can be done by essentially
replacing the ZK-SNARKs in the construction of the previous section with NIZKAoKs. We remark that our
construction hides the function f , but it reveals the size of a circuit computing f .3

Let (FS3.Setup, FS3.Keygen, FS3.Sign, FS3.Verify) be a functional signature scheme which is identical to
our previous construction FS2, except that we use a NIZKAoK Π′, instead of the zero-knowledge SNARK
system Π.

Theorem 3.10. If (Sig.Setup, Sig.Sign, Sig.Verify) is an existentially unforgeable signature scheme, and Π′

is a NIZKAoK, our new functional signature construction (FS3.Setup, FS3.Keygen, FS3.Sign, FS3.Verify)
satisfies both unforgeability and function privacy.

We can use the proof from the previous section, since a zero-knowledge SNARK and a NIZK satisfy the
same adaptive zero-kowledge and extractability properties that are used in the proof. The only difference
is that a SNARK has a more efficient verification algorithm, and shorter proofs, while a NIZK can be
constructed under more general assumptions.

4 Applications of Functional Signatures

In this section we discuss applications of functional signatures to other cryptographic problems, such as
constructing delegation schemes and succinct non-interactive arguments.

4.1 SNARGs from Functional Signatures

Recall that in a SNARG protocol for a language L, there is a verifier V , and a prover P who wishes to
convince the verifier that an input x is in L. To achieve succinctness, proofs produced by the prover must
be sublinear in the size of the input plus the size of the witness.

We show how to use a functional signature scheme supporting keys for functions f describable as
polynomial-size circuits, and which has short signatures (i.e of size r(k) · (|f(m)| + |m|)o(1) for a poly-
nomial r(·)) to construct a SNARG scheme with preprocessing for any language L ∈ NP with proof size
bounded by r(k) · (|w|+ |x|)o(1), where w is the witness and x is the instance. We note that this is the proof
size used in the lower bound of [GW11].

Let L be an NP complete language, and R the corresponding relation. The main idea in the construction
is for the verifier (or CRS setup) to give out a single signing key for a function whose range consists of
exactly those strings that are in L. Note that this can be efficiently described by use of the relation R (where
the function also takes as input a witness). Then, with skf for this appropriate function f , the prover will

3This is not a concern in the SNARK-base construction, since the size of the signature was independent of the function size.

22

473
Approved for Public Release; Distribution Unlimited.

be able to sign only those messages that are in the language L, and hence can use a signature on x as a
convincing proof that x ∈ L. The resulting proof is succinct and publicly verifiable.

More explicitly, let FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) be a succinct functional signature
scheme (as in Definition 3.1) supporting the class F of polynomial-size circuits. We construct the desired
SNARG system Π = (Π.Gen,Π.Prove,Π.Verify) for NP language L with relation R, as follows:

• Π.Gen(1k):

– run the setup for the functional signature scheme, and get (mvk,msk)← FS.Setup(1k)

– generate a signing key skf ← FS.KeyGen(msk, f) where f is the following function:

f(x|w) :=

{
x if R(x,w) = 1

⊥ otherwise
.

– output crs = (mvk, skf)

• Π.Prove(x,w, crs):

– output FS.Sign(f, skf , x|w)

• Π.Verify(crs, x, π):

– output FS.Verify(mvk, x, π)

Theorem 4.1. If FS is a functional signature scheme supporting the class F of polynomial-sized circuits,
then Π is a succinct non-interactive argument (SNARG) for NP language L.

Proof. We address the correctness, soundness, and succinctness of the scheme.

Correctness
The correctness property of the SNARG scheme follows immediately from correctness property of the func-
tional signature scheme. Namely, let R be the relation corresponding to the language L. Then
∀(x,w) ∈ R,∀crs = (mvk, skf), where (msk,mvk) ← FS.Setup(1k), and skf ← FS.KeyGen(msk, f), and
∀π = σ, where (x, σ)← FS.Sign(f, skf , (x,w)),

Π.Verify(crs, x, π) = FS.Verify(mvk, x, σ)→ 1.

Soundness
The soundness of the proof system follows from the unforgeability property of the signature scheme: since
the prover is not given keys for any function except f , he can only sign messages x that are in the range of
f , and therefore instances in the language L.
Suppose there exists a PPT adversary Adv for which Pr[crs ← Π.Gen(1k); (x, π) ← Adv(crs) : x /∈ L ∧
Π.Verify(crs, x, π) = 1] = ε(|x|), for a non-negligible function ε(·).
Then we can construct an adversary AFS who breaks the unforgeability of the underlying functional signature
scheme. AFS gives crs = (mvk, skf) to Adv, where mvk is his challenge verification key, and skf is the signing
key for the function f defined above, which he gets from his key generation oracle.
Adv outputs (x, π), and AFS uses them as his forgery in the functional signature game. If x /∈ L, x must
not be in the range of L, and therefore (x, π) is a valid forgery. So AFS wins the unforgeability game with
probability ε(|x|), which we have assumed is non-negligible.

Succinctness
The size of a proof is equal to the size of a signature in the functional signature scheme, which by assumption
is r(k) · (|f(m)|+ |m|)o(1) = r(k) · (|x|+ |w|)o(1) for a polynomial r(·).

23

474
Approved for Public Release; Distribution Unlimited.

Remark 4.2 (Functional PRFs as Functional MACs). Note that functional pseudorandom functions directly
imply a notion of functional message authentication codes (MACs), where the master PRF seed s serves
as the (shared) master secret MAC key, and a functional PRF subkey skf enables one to both MAC and
verify messages f(m). Using the transformation above with such a functional MAC in the place of functional
signatures yields a privately verifiable SNARG system.

Remark 4.3 (Lower bound of [GW11]). Gentry and Wichs showed in [GW11] that SNARG schemes for
NP with proof size r(k) · (|x|+ |w|)o(1) for polynomial r(·) cannot be obtained using black-box reductions to
falsifiable assumptions [Nao03]. Therefore, combined with Theorem 4.1, it follows that in order to obtain a
functional signature scheme with signature size r(k) · (|f(m)|+ |m|)o(1) we must either rely on non-falsifiable
assumptions (as in our SNARK-based construction) or make use of non black-box techniques.

4.2 Connection between functional signatures and delegation

Recall that a delegation scheme allows a client to outsource the evaluation of a function f to a server,
while allowing the client to verify the correctness of the computation. The verification process should be
more efficient than computing the function. See Definition 2.12 for the required correctness and security
properties.

Given a functional signature scheme with with signature size δ(k), and verification time t(k) (which we
assume is independent of the of the size of a function f used in the signing process), we can get a delegation
scheme in the preprocessing model with proof size δ(k) and verification time t(k). Here k is the security
parameter.

Let (FS.Setup,FS.Prove,FS.Sign,FS.Verify) be a functional signature scheme supporting the class F of
polynomial-sized circuits. We construct a delegation scheme (KeyGen,Encode,Compute,Verify) as follows:

• KeyGen(1k, f):

– run the setup for the functional signature scheme and generate (mvm,msk)← FS.Setup(1k).

– define the function f ′(x) := (x, f(x)), and generate a signing key for f ′: skf ′ ← FS.KeyGen(msk, f ′).

– output enc = ⊥, evk = skf , vk = mvk.

• Encode(enc, x) = x : no processing needs to be done on the input.

• Compute(evk, σx):

– let skf ′ = evk, x = σx
– generate a signature of (x, f(x)) using key skf ′ : i.e., σ ← FS.Sign(skf ′ , f

′, x)

– output (f(x), π = σ)

• Verify(vk, x, y, πy):

– output FS.Verify(vk, y, πy)

Theorem 4.4. If FS is a functional signature scheme supporting the class F of polynomial-sized circuits,
then (KeyGen,Encode, Compute,Verify) is a delegation scheme.

Correctness
The correctness of the delegation scheme follows from the correctness of the functional signature scheme.

Authenticity
By the unforgeability property of the functional signature scheme, any PPT server will only be able to
produce a signature of (x, y) that is in the range of f ′: that is, if y = f(x). Thus the server will not be able
to sign a pair (x, y) with non-negligible probability, unless y = f(x).

Efficiency
The runtime of the verification algorithm of the delegation scheme is the runtime of the verification algorithm
for the signature scheme, t(k). The poof size is equal to the size of a signature in the functional signature
scheme, δ(k).

24

475
Approved for Public Release; Distribution Unlimited.

5 Functional Pseudorandom Functions

In this section we present a formal definition of functional pseudorandom functions (F-PRF), pseudorandom
functions with selective access (PRF-SA), and hierarchical functional pseudorandom functions. We present
a construction of a functional pseudorandom function family supporting the class of prefix-fixing functions
based on one-way functions, making use of the Goldreich-Goldwasser-Micali (GGM) tree-based PRF con-
struction [GGM86]. Our construction directly yields a PRF with selective access, and additionally supports
hierarchical key generation.

5.1 Definition of Functional PRF

In a standard pseudorandom function family, the ability to evaluate the chosen function is all-or-nothing: a
party who holds the secret seed s can compute Fs(x) on all inputs x, whereas a party without knowledge
of s cannot distinguish evaluations Fs(x) on requested inputs x from random. We propose the notion of a
functional pseudorandom function (F-PRF) family, which partly fills this gap between evaluation powers.
The idea is that, in addition to a master secret key that can be used to evaluate the pseudorandom function
F on any point in the domain, there are additional secret keys per function f , which allow one to evaluate
F on y for any y for which there exists an x such that f(x) = y (i.e., y is in the range of f).

Definition 5.1 (Functional PRF). We say that a PRF family F = {Fs : D → R}s∈S is a functional
pseudorandom function (F-PRF) if there exist additional algorithms

KeyGen(s, f) : On input a seed s ∈ S and function description f : A → D from some domain A to D, the
algorithm KeyGen outputs a key skf .

Eval(skf , f, x) : On input key skf , function f : A → D, and input x ∈ A, then Eval outputs the PRF
evaluation Fs(f(x)).

which satisfy the following properties:

• Correctness: For every (efficiently computable) function f : A→ D, ∀x ∈ A, it holds that

∀s← S, ∀skf ← KeyGen(s, f), Eval(skf , f, x) = Fs(f(x)).

• Pseudorandomness: Given a set of keys skf1 . . . skfl for functions f1 . . . fl, the evaluation of Fs(y)
should remain pseudorandom on all inputs y that are not in the range of any of the functions f1 . . . fl.
That is, for any PPT adversary A, the advantage of A in distinguishing between the following two
experiments is negligible (for any polynomial l = l(k)):

Experiment Rand Experiment PRand
Key query Phase Key query Phase
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
f1 ← A(pp) f1 ← A(pp)
skf1 ← KeyGen(s, f1) skf1 ← KeyGen(s, f1)
...

...
fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1

) fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1
)

skfl ← KeyGen(s, fl) skfl ← KeyGen(s, fl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
{fi}
s,H (·)(f1, skf1 , . . . , fl, skfl) b← AFs(·)(f1, skf1 , . . . , fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s.t. fi(x) = y

H(y) otherwise
.

25

476
Approved for Public Release; Distribution Unlimited.

Note that, as defined, the oracle O{fi}s,H (y) need not be efficiently computable. This inefficiency stems
both from sampling a truly random function H, and from testing whether the adversary’s evaluation queries
y are contained within the range of one of his previously queried functions fi. However, within particular
applications, the system can be set up so that this oracle is efficiently simulatable: For example, evaluations
of a truly random function can be simulated by choosing each queried evaluation one at a time; Further, the
range of the relevant functions fi may be efficiently testable given trapdoor information (e.g., determining
the range of f : r 7→ Enc(pk, 0; r) for a public-key encryption scheme is infeasible given only pk but efficiently
testable given the secret key).

We also consider a weaker security definition, where the adversary has to reveal which functions he
will request keys for before seeing the public parameters or any of the keys. We refer to this as selective
pseudorandomness.

Definition 5.2 (Selectively Secure F-PRF). We say a PRF family is a selectively secure functional pseu-
dorandom function if the algorithms KeyGen,Eval satisfy the correctness property above, and the following
selective pseudorandomness property.

• Selective Pseudorandomness: For any PPT adversary A, the advantage of A in distinguishing
between the following two experiments is negligible:

Experiment Sel-Rand Experiment Sel-PRand
Key query Phase Key query Phase
f1, . . . , fl ← A f1, . . . , fl ← A
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
skf1 . . . skfl ← KeyGen(s, f1, . . . fl) skf1 . . . skfl ← KeyGen(s, f1, . . . fl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
{fi}
s,H (·)(f1, skf1 , . . . fl, skfl) b← AFs(·)(f1, skf1 , . . . fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s. t. fi(x) = y

H(y) otherwise
.

A special case of functional PRFs are when access control is to be determined by predicates. (Indeed,
fitting within the F-PRF framework, one can emulate predicate policies by considering the corresponding
functions fP (x) = x if P (x) = 1 and = ⊥ if P (x) = 0). For completeness, we now present the corresponding
formal definition, which we refer to as PRFs with selective access.

Definition 5.3 (PRF with Selective Access). We say that a PRF family F = {Fs : D → R}s∈S is a
pseudorandom function family with selective access (PRF-SA) for a class of predicates P on D if there exist
additional efficient algorithms

KeyGen(s, P) : On input a seed s ∈ S and predicate P ∈ P, KeyGen outputs a key skP .

Eval(skP , P, x) : On input key skP and input x ∈ D, if it holds that P (x) = 1 then Eval outputs the PRF
evaluation Fs(x).

which satisfy the following properties:

• Correctness: For each predicate P ∈ P, ∀x ∈ D s.t. P (x) = 1, it holds that

∀s← S, ∀skP ← KeyGen(s, P),Eval(skP , P, x) = Fs(x)

• Pseudorandomness: Given a set of keys skP1
. . . skPl for predicate P1 . . . Pl, the evaluation of Fs(x)

should remain pseudorandom on all inputs x for which P1(x) = 0∧· · ·∧Pl(x) = 0. That is, for any PPT
adversary A, the advantage of A in distinguishing between the following two experiments is negligible:

26

477
Approved for Public Release; Distribution Unlimited.

Experiment Rand Experiment PRand
Query Phase Query Phase
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
P1 ← A(pp) P1 ← A(pp)
skP1

← KeyGen(s, P1) skP1
← KeyGen(s, P1)

...
...

Pl ← A(pp, P1, skP1
. . . Pl−1, skPl−1

) Pl ← A(pp, P1, skP1
. . . Pl−1, skPl−1

)
skPl ← KeyGen(s, Pl) skPl ← KeyGen(s, Pl)
Challenge Phase Challenge Phase
H ← FD→R a random function

b← AO
P
s,H(·)(P1, skP1

, . . . Pl, skPl) b← AFs(·)(P1, skP1
, . . . Pl, skPl)

where OPs,H(x) :=

{
Fs(x) if ∃i ∈ [l], Pi(x) = 1

H(x) otherwise
.

Finally, we consider hierarchical F-PRFs, where a party holding key skf for function f : B → D can
generate a subsidiary key skf◦g for a second function g : A→ B.

Definition 5.4 (Hierarchical F-PRF). We say that an F-PRF family ({Fs}s,KeyGen,Eval) is hierarchical if
the algorithm KeyGen is replaced by a more general algorithm:

SubkeyGen(skf , g): On input a functional secret key skf for function f : B → C (where the master secret
key is considered to be sk1 for the identity function f(x) = x), and function description g : A→ B for
some domain A, SubkeyGen outputs a secret subkey skf◦g for the composition f ◦ g.

satisfying the following properties:

• Correctness: Any key skg generated via a sequence of SubkeyGen executions will correctly evaluate
Fs(f(x)) on each value y for which they know a preimage x with g(x) = y. Formally, for every sequence
of (efficiently computable) functions f1, . . . , f` with fi : Ai → Ai−1, ∀y ∈ A0 s.t. ∃x ∈ A` for which
f1 ◦ · · · ◦ f`(x) = y, it holds that

∀sk1 ← S, ∀skf1◦···◦fi ← SubkeyGen(skf1◦···◦fi−1
, fi) for i = 0, . . . , `,

Eval(skf1◦···◦f` , (f1 ◦ · · · ◦ f`), x) = Fsk1(y).

• Pseudorandomness: The pseudorandomness property of Definition 5.1 holds, with the slight modifi-
cation that the adversary may adaptively make queries of the following kind, corresponding to receiving
subkeys skg generated from unknown functional keys skf . The query phase begins with a master secret
key s ← S being sampled and assigned identity id = 1. Loosely, GenerateKey generates a new subkey
of an existing (possibly unknown) key indexed by id, and keeps the resulting key hidden. RevealKey
simply reveals the generated key indexed by id.

GenerateKey(id, g): If no key exists with identity id then output ⊥ and terminate; otherwise denote
this key by skf . The challenger generates a g-subkey from skf as skf◦g ← SubkeyGen(skf , g), and
assigns this key a unique identity id′. The new value id′ is output, and the resulting key skf◦g is
kept secret.

RevealKey(id): If no key exists with identity id then output ⊥ and terminate; otherwise output the
corresponding key skf .

In the challenge phase, the adversary’s evaluation queries are answered either (1) consistently pseudo-
random, or (2) pseudorandom for all inputs y for which the adversary was given a key skf in a RevealKey
query with y ∈ Range(f), and random for all other inputs.

27

478
Approved for Public Release; Distribution Unlimited.

5.2 Construction Based on OWF

We now construct a functional pseudorandom function family Fs : {0, 1}n → {0, 1}n supporting the
class of prefix-fixing functions, based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF construc-
tion [GGM86]. More precisely, our construction supports the function class

Fpre =
{
fz(x) : {0, 1}n → {0, 1}n

∣∣∣ z ∈ {0, 1}m for m ≤ n
}
,

where fz(x) :=

{
x if (x1 = z1) ∧ · · · ∧ (xm = zm)

⊥ otherwise
.

Recall that the GGM construction makes use of a length-doubling pseudorandom generator G : {0, 1}k →
{0, 1}2k (which can be constructed from any one-way function). Denoting the two halves of the output of G
as G(y) = G0(y)G1(y), the PRF with seed s is defined as Fs(y) = Gyk(· · ·Gy2(Gy1(s))).

We show that we can obtain a functional PRF for Fpre by adding the following two algorithms on top of
the GGM PRF construction. Intuitively, in these algorithms the functional secret key skfz corresponding to
a queried function fz ∈ Fpre will be the partial evaluation of the GGM prefix corresponding to prefix z: i.e.,
the label of the node corresponding to node z in the GGM evaluation tree. Given this partial evaluation, a
party will be able to compute the completion for any input x which has z as a prefix. However, as we will
argue, the evaluation on all other inputs will remain pseudorandom.

KeyGen(s, fz) : output Gzm(· · ·Gz2(Gz1(s))), where m = |z|

Eval(skfz , y) : output

{
Gyn(· · ·Gym+2

(Gym+1
(skfz))) if y1 = z1 ∧ · · · ∧ ym = zm

⊥ otherwise

We first prove that this construction yields an F-PRF with selective security (i.e., when the adversary’s
key queries are specified a priori). We then present a sequence of corollaries for achieving full security,
PRFs with selective access, and hierarchical F-PRFs. We also focus on the specific application of punctured
PRFs [SW13].

Theorem 5.5. Based on the existence of one-way functions, the GGM pseudorandom function family to-
gether with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the class
of functions Fpre, as per Definition 5.2.

Proof. We will reduce the pseudorandom property of our functional PRF scheme to the security of the
underlying PRG. Recall that (as per Definition 5.2), the functional PRF requires indistinguishability of ex-
periments Sel-PRand and Sel-Rand, in which the adversary makes key queries (which are answered honestly),
and then makes evaluation queries, which are either answered consistently (PRand) or randomly (Rand). At
a high level, we will show that both Experiment Sel-Rand and Experiment Sel-PRand are indistinguishable
from a third experiment where, in the query phase, the adversary’s queries are answered randomly (except
when one query is a prefix of another, in which case we need to ensure consistency), and in the challenge
phase the adversary’s queries are answered randomly. Both claims will be proved using a hybrid argument
similar to the proof of the original GGM construction.

Let f1, . . . fl ∈ Fpre be the functions queried by the adversary. Let P1, . . . Pl be the corresponding prefixes.
We consider the following experiments:

Exp 1. Experiment Sel-PRand. In the key query phase, the key for each function fi corresponding to
prefix Pi is obtained (honestly) by following the corresponding path in the GGM tree. In the challenge
phase, the adversary’s evaluation queries are answered (honestly) with the corresponding pseudorandom
values. We denote the probability that an adversary Adv outputs 1 in this experiment by outputAdvExp1.

Exp 2. Keys for the queried functions f1, . . . , fl ∈ Fpre corresponding to prefixes Pi are computed randomly,
up to consistency among queried sub-prefixes. This takes place as follows (recall that all queries are
made up front):

28

479
Approved for Public Release; Distribution Unlimited.

• for each fi, if no prefix of Pi is also queried by the adversary in his keygen queries, then skfi is
assigned a random value.

• otherwise, let Pj be the shortest such prefix that is also queried (so that skfj has already been
defined by the previous case). Then skfi is computed by honestly applying to skfj the sequence of
PRG’s determined by the bits of Pi following Pj .

In the challenge phase, the adversary’s evaluation queries are answered with random values. If a query
is repeated, we answer consistently. We denote the probability that an adversary Adv outputs 1 in this
experiment by outputAdvExp2.

Exp 3 Experiment Sel-Rand. In the key query phase, the key for each function fi corresponding to prefix
Pi is obtained (honestly) by following the corresponding path in GGM tree, and. In the challenge
phase, the adversary’s evaluation queries (to values not computable by himself already) are answered
with random values. If a query is repeated, we answer consistently. We denote the probability that an
adversary Adv outputs 1 in this experiment by outputAdvExp3.

Note that that experiment described in Exp 1 is Experiment Sel-PRand in the Functional PRF definition,
and the experiment described in Exp 3 is Experiment Sel-Rand.

Lemma 5.6. For any PPT adversary Adv

|outputAdvExp1 − outputAdvExp2| = negl(n).

Proof. Suppose there exists an adversary Adv, such that |outputAdvExp1 − outputAdvExp2| = ε(n) for some non-

negligible ε(n). Wlog, assume that outputAdvExp2 − outputAdvExp1 = ε(n) > 0. We claim that we can use Adv to
construct an adversary APRG that breaks the security of the underlying pseudorandom generator. Recall
in the PRG challenge, APRG receives a polynomial-sized set of values, which are either random or random
outputs of the PRG.

We use a hybrid argument, and define Expi for i ∈ [n]. The value i corresponds to the level of the tree
where APRG will place his challenge values when interacting with Adv.

In Expi, in the key query phase, the key for each function fj corresponding to prefix Pj of length |Pj | = m
is computed as follows:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set the label of Pj ’s ancestor on the ith level to
a randomly sampled n-bit string, and then apply the pseudorandom generators to it as in the GGM
construction according to the remaining bits of Pj until the mth level, and return the resulting string
of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the GGM
construction according to the remaining bits of Pj , up to the mth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries x are computed as follows:

• let x(i) denote the i-bit prefix of the queried input x. If the node corresponding to x(i) in the tree
has not yet been labeled, then a random value is chosen and set as this label. The response to the
adversary’s query is then computed by applying the PRGs to the label, as determined by the (i+ 1) to
n bits of the queried input x.

Since outputAdvExp2 − outputAdvExp1 = ε(n), there must exist an i such that:

Pr[Adv→ 1 in Expi]− Pr[Adv→ 1 in Expi+1] ≥ ε(n)

n
.

Our constructed PRG adversary APRG plays the role of the challenger in the game with Adv, chooses a
random i ∈ [n] and places his PRG challenges there. That is, in the key query phase, APRG computes the
keys for functions fi corresponding to prefix Pj , of length |Pj | = m as follows:

29

480
Approved for Public Release; Distribution Unlimited.

• if no other queried prefix is a prefix of Pj and m < i, return a a random string of size n.

• if no other queried prefix is a prefix of Pj and m = i, return one of APRG’s challenge values.

• if no other queried prefix is a prefix of Pj and m > i, set a challenge string as the ancestor of Pj on the
ith level, and then apply the pseudorandom generators to it as in the GGM construction until the mth

level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix, Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the
GGM construction, up to the mth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries x are computed as follows:

• let x(i) denote the i-bit prefix of the queried input x. If the node corresponding to x(i) in the tree has
not yet been labeled, then one of APRG’s challenge values is chosen and set as the label. The response
to the adversary’s query is then computed by applying the PRGs to the label, as determined by the
(i+ 1) to n bits of the queried input x.

Comparing the experiment above to Expi and Expi+1, we can see that, if the inputs to APRG are random,
APRG behaves as the challenger in Expi, and if they are the output of a PRG, he behaves as the challenger
in Expi+1.

At the end APRG outputs the same answer as Adv in its own security game.

Pr[APRG guesses correctly]

=
1

2
Pr[APRG → 1|challenge values random] +

1

2
Pr[APRG → 0|challenge values are output of a PRG]

=
1

2
Pr[Adv outputs 1 in Expi] +

1

2
Pr[Adv outputs 0 in Expi+1]

=
1

2
Pr[Adv outputs 1 in Expi] +

1

2
(1− Pr[Adv outputs 1 in Expi+1])

=
1

2
+

1

2
(Pr[Adv outputs 1 in Expi]− Pr[Adv outputs 1 in Expi+1])

≥ 1

2
+
ε(n)

2n

If ε(n) is non-negligible, APRG can distinguish between random values and outputs of a pseudorandom
generator with non-negligible advantage, which would break the security of the underlaying pseudorandom
generator. This completes the proof of the lemma.

Lemma 5.7. For any PPT adversary Adv

|outputAdvExp2 − outputAdvExp3| = negl(n).

Proof. We use a similar hybrid argument: In Expi, in the key query phase, the key for the functions
corresponding to prefix Pj , of length |Pj | = m is computed as before:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set a random string as the parent of Pj on the
ith level, and then apply the pseudorandom generators to it as in the GGM construction until the mth

level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest queried
prefix of Pj , Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the GGM
construction, up to the mth level of the tree.

30

481
Approved for Public Release; Distribution Unlimited.

In the challenge phase, the adversary’s queries are answered with random values, unless he has already
received a key that allows him to compute the PRF on his queried value, in which case the query is answered
consistently.
The first hybrid, Exp0, is Exp 3, and the last hybrid, Expn is Exp 2.

From the previous lemmas, we can conclude that, for any PPT adversary Adv

|outputAdvExp1 − outputAdvExp3| = negl(n).

This is equivalent to saying that no PPT adversary can distinguish between Experiment Sel-PRand and
Experiment Sel-Rand in the Functional PRF definition. That is, the construction is a secure F-PRF.

Remark 5.8. We remark that one can directly obtain a fully secure F-PRF for Fpre (as in Definition 5.1) from
our selectively secure construction, with a loss of 1

2n in security for each functional secret key skfz queried by
the adversary. This is achieved simply by guessing the adversary’s query fz ∈ Fpre. For appropriate choices
of input size n and security parameter k, this can still provide meaningful security.

As an immediate corollary of Theorem 5.5, we obtain a (selectively secure) PRF with selective access for
the class of equivalent prefix-matching predicates Ppre = {Pz : {0, 1}n → {0, 1}|z ∈ {0, 1}m for m ≤ n},
where Pz(x) := 1 if (x1 = z1) ∧ · · · ∧ (xm = zm) and 0 otherwise.

Corollary 5.9. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the
class of predicates Ppre.

Our F-PRF construction has the additional benefit of being hierarchical. That is, given a secret key
skfz for a prefix z ∈ {0, 1}m, a party can generate subordinate secret keys skfz′ for any z′ ∈ {0, 1}m′ ,
m′ > m agreeing with z on the first m bits. This secondary key generation process is accomplished simply
by applying the PRGs to skfz , traversing the GGM tree according to the additional bits of z′. We thus
achieve the following corollary.

Corollary 5.10. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a (selectively secure) hierarchical functional
PRF for the class of predicates Ppre.

The pseudorandomness property can be proved using the same techniques as in the proof of Theorem 5.5.

5.2.1 Punctured Pseudorandom Functions

Punctured PRFs, formalized by [SW13], are a special case of functional PRFs where one can generate keys for
the function family F = {fx(y) = y if y 6= x, and ⊥ otherwise}. Such PRFs have recently been shown to have
important applications, including use as a primary technique in proving security of various cryptographic
primitives based on the existence of indistinguishability obfuscation (see, e.g., [SW13, HSW13]).

The existence of a functional PRF for the prefix-fixing function family gives a construction of punctured
PRFs. Namely, a punctured key skx allowing one to compute the PRF on all inputs except x = x1 . . . xn con-
sists of n functional keys for the prefix-fixing function family for prefixes: (x̄1), (x1x̄2), (x1x2x̄3), . . . , (x1x2 . . . xn−1x̄n).

Our GGM-based construction in the previous section thus directly yields a selectively secure punctured
PRF based on OWFs.

Corollary 5.11 (Selectively-Secure Punctured PRFs). Assuming the existence of OWF, there exists a se-
lectively secure punctured PRF for any desired poly-size input length.

31

482
Approved for Public Release; Distribution Unlimited.

When considering full security, this may seem an inhibiting limitation, as näıve complexity leveraging
over each of the n released keys would incur a tremendous loss in security. However, for a punctured PRF,
these n keys are not independently chosen: rather, there is a one-to-one correspondence between the input
x that is punctured, and corresponding set of n prefix-fixing keys we give out. This means there are only
2n possible sets of key queries made by a punctured PRF adversary (as opposed to 2n

2

possible choices of
n independent prefix queries), and thus, in the full-to-selective security reduction, we lose only a factor of
2−n in the security (as the reduction needs only to guess which of these 2n query sets will be made by the
adversary). Given a desired level of security k and input size n = n(k), and assuming an underlying OWF
secure against all adversaries that run in time 2K

ε

when implemented with security parameter K for some
constant 0 < ε < 1, then by setting K = n1/ε, we obtain a fully secure puncturable PRF.

Corollary 5.12. Assuming the existence of 2K
ε

-hard OWF for security parameter K and some constant
0 < ε, there exists a (fully) secure punctured PRF for any desired poly-size input length.

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In CRYPTO, 2013.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In STOC, pages 111–120, 2013.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In
EUROCRYPT, pages 149–168, 2011.

[BF13] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413, 2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC, pages 103–112, 1988.

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message authen-
tication based on non-interative zero knowledge proofs. In CRYPTO, pages 194–211, 1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BMS13] Michael Backes, Sebastian Meiser, and Dominique Schrder. Delegatable functional signatures.
Cryptology ePrint Archive, Report 2013/408, 2013.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In TCC, pages 253–273, 2011.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
Cryptology ePrint Archive, Report 2013/352, 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In FOCS, pages 308–317, 1990.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

32

483
Approved for Public Release; Distribution Unlimited.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

[GKP+12] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nicko-
lai Zeldovich. Succinct functional encryption and applications: Reusable garbled circuits and
beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Overcoming the worst-case curse for cryptographic constructions. In CRYPTO, 2013.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377, 1982.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In CRYPTO, pages 171–185,
1986.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In STOC, pages 99–108, 2011.

[GW12] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. IACR Cryp-
tology ePrint Archive, 2012:290, 2012.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/509, 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. Cryptology ePrint Archive, Report 2013/379,
2013.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh separa-
tion. In CRYPTO, pages 597–612, 2002.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109, 2003.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computa-
tion. In TCC, pages 222–242, 2013.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394, 1990.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. Cryptology ePrint Archive, Report 2013/454, 2013.

33

484
Approved for Public Release; Distribution Unlimited.

Aggregate Pseudorandom Functions

and Connections to Learning

Aloni Cohen∗ Shafi Goldwasser† Vinod Vaikuntanathan‡

Abstract

In the first part of this work, we introduce a new type of pseudo-random function for which
“aggregate queries” over exponential-sized sets can be efficiently answered. We show how to
use algebraic properties of underlying classical pseudo random functions, to construct such “ag-
gregate pseudo-random functions” for a number of classes of aggregation queries under crypto-
graphic hardness assumptions. For example, one aggregate query we achieve is the product of all
function values accepted by a polynomial-sized read-once boolean formula. On the flip side, we
show that certain aggregate queries are impossible to support. Aggregate pseudo-random func-
tions fall within the framework of the work of Goldreich, Goldwasser, and Nussboim [GGN10] on
the “Implementation of Huge Random Objects,” providing truthful implementations of pseudo-
random functions for which aggregate queries can be answered.

In the second part of this work, we show how various extensions of pseudo-random functions
considered recently in the cryptographic literature, yield impossibility results for various exten-
sions of machine learning models, continuing a line of investigation originated by Valiant and
Kearns in the 1980s. The extended pseudo-random functions we address include constrained
pseudo random functions, aggregatable pseudo random functions, and pseudo random functions
secure under related-key attacks.1

∗MIT.
†MIT and the Weizmann Institute of Science.
‡MIT.
1 c©IACR 2015. This article is a minor revision of the version published by Springer-Verlag.

485
Approved for Public Release; Distribution Unlimited.

Contents

1 Introduction 1
1.1 Our Results: Aggregate Pseudo Random Functions 2

1.1.1 Related Work to Aggregate PRFs . 6
1.2 Our Results: Augmented PRFs and Computational Learning 6

1.2.1 Constrained PRFs and limits on Restriction Access learnability 7
1.2.2 New Learning Models Inspired by the Study of PRFs 8

2 Aggregate PRF 11
2.1 A General Security Theorem for Aggregate PRFs . 12
2.2 Impossibility of Aggregate PRF for General Sets . 14

3 Constructions of aggregate PRF 14
3.1 Generic Construction for Interval Sets . 15
3.2 Bit-Fixing Aggregate PRF from DDH . 16

3.2.1 Construction . 16
3.3 Decision Trees . 17
3.4 Read-once formulas . 18

3.4.1 Construction . 18

4 Connection to Learning 20
4.1 Preliminaries . 20
4.2 Membership queries with restriction access . 22

4.2.1 MQRAlearning . 22
4.2.2 Constrained PRFs . 23
4.2.3 Hardness of restriction access Learning . 24

4.3 Learning with related concepts . 26
4.3.1 RKA PRFs . 27
4.3.2 Hardness of related concept learning . 27

4.4 Learning with Aggregate Queries . 29
4.4.1 Hardness of aggregate query learning . 29
4.4.2 Acknowledgements . 30

A Simple Positive Results 33
A.1 Related-concept . 33
A.2 Aggregate queries . 35

2

486
Approved for Public Release; Distribution Unlimited.

1 Introduction

Pseudo-random functions (PRF), introduced by Goldreich, Goldwasser and Micali [GGM86], are
a family of indexed functions for which there exists a polynomial-time algorithm that, given an
index (which can be viewed as a secret key) for a function, can evaluate it, but no probabilistic
polynomial-time algorithm without the secret key can distinguish the function from a truly random
function – even if allowed oracle query access to the function. Pseudo-random functions have been
shown over the years to be useful for numerous cryptographic applications. Interestingly, aside from
their cryptographic applications, PRFs have also been used to show impossibility of computational
learning in the membership queries model [Val84], and served as the underpinning of the proof of
Razborov and Rudich [RR97] that natural proofs would not suffice for unrestricted circuit lower
bounds.

Since their inception in the mid eighties, various augmented pseudo random functions with
extra properties have been proposed, enabling more sophisticated forms of access to PRFs and
more structured forms of PRFs. This was first done in the work of Goldreich, Goldwasser, and
Nussboim [GGN10] on how to efficiently construct “huge objects” (e.g. a large graph implicitly
described by access to its adjacency matrix) which maintain combinatorial properties expected of a
random “huge object.” Furthermore, they show several implementations of varying quality of such
objects for which complex global properties can be computed, such as computing cliques in a random
graph, computing random function inverses from a point in the range, and computing the parity
of a random function’s values over huge sets. More recently, further augmentations of PRFs have
been proposed, including: the works on constrained PRFs2 [KPTZ13a, BGI14a, BW13a] which can
release auxiliary secret keys whose knowledge enables computing the PRF in a restricted number of
locations without compromising pseudo-randomness elsewhere; key-homomorphic PRFs [BLMR13]
which are homomorphic with respect to the keys; and related-key secure PRFs [BC10, ABPP14].
These constructions yield fundamental objects with often surprising applications to cryptography
and elsewhere. A case in point is the truly surprising use of constrained PRFs [SW14], to show
that indistinguishability obfuscation can be used to resolve a long-standing problem of deniable
encryption, among many others.

In the first part of this paper, we introduce a new type of augmented PRF which we call
aggregate pseudo random functions (AGG-PRF). An AGG-PRF is a family of indexed functions each
associated with a secret key, such that given the secret key, one can compute aggregates of the values
of the function over super-polynomially large sets in polynomial time; and yet without the secret
key, access to such aggregated values cannot enable a polynomial time adversary (distinguisher)
to distinguish the function from random, even when the adversary can make aggregate queries.
Note that the distinguisher can request and receive an aggregate of the function values over sets
(of possibly super-polynomial size) that she can specify. Examples of aggregate queries can be the
sum/product of all function values belonging to an exponential-sized interval, or more generally, the
sum/product of all function values on points for which some polynomial time predicate holds. Since
the sets over which our function values are aggregated are super-polynomial in size, they cannot
be directly computed by simply querying the function on individual points. AGG-PRFs cast in
the framework of [GGN10] are (truthful, pseudo) implementations of random functions supporting
aggregates as their “complex queries.” Indeed, our first example of an AGG-PRF for computing
parities over exponential-sized intervals follows directly from [GGN10] under the assumption that

2Constrained PRFs are also known as Functional PRFs and as Delegatable PRFs.

1

487
Approved for Public Release; Distribution Unlimited.

one-way functions exist.
We show AGG-PRFs under various cryptographic hardness assumptions (one-way functions and

DDH) for a number of types of aggregation operators such as sums and products and for a number of
set systems including intervals, hypercubes, and (the supports of) restricted computational models
such as decision trees and read-once Boolean formulas. We also show negative results: there are no
AGG-PRFs for more expressive set systems such as (the supports of) CNF formulas. For a detailed
description of our results, see Section 1.1.

In the second part of this paper, we embark on a study of the connection between the new
augmented PRF constructions of recent years (constrained, related-key, aggregate) and the theory
of computational learning. We recall at the outset that the fields of cryptography and machine
learning share a curious historical relationship. The goals are in complete opposition and at the
same time the aesthetics of the models, definitions and techniques bear a striking similarity. For
example, a cryptanalyst can attack a cryptosystem using a range of powers from only seeing cipher-
text examples to requesting to see decryptions of ciphertexts of her choice. Analogously, machine
learning allows different powers to the learner such as random examples versus membership queries
and shows that certain powers allow learners to learn concepts in polynomial time whereas others
will fail. Even more directly, problems which pose challenges for machine learning such as Learning
Parity with Noise (LPN) have been used as the underpinning for building secure cryptosystems,
and as mentioned above [Val84] observes that the existence of PRFs in a complexity class C implies
the existence of concept classes in C which can not be learned under membership queries, and
[KV94] extends this direction to some public key constructions.

In the decades since the introduction of PAC learning, new computational learning models have
been proposed, such as the recent “restriction access” model [DRWY12] which allows the learner to
interact with the target concept by asking membership queries, but also to obtain an entire circuit
that computes the concept on a random subset of the inputs. For example, in one shot, the learner
can obtain a circuit that computes the concept class on all n-bit inputs that start with n/2 zeros.
At the same time, the cryptographic research landscape has been swiftly moving in the direction of
augmenting traditional PRFs and other cryptographic primitives to include higher functionalities.
This brings to mind natural questions:

• Can one leverage augmented pseudo-random function constructions to establish limits on what
can and cannot be learned in augmented machine learning models?

• Going even further afield, can augmented cryptographic constructs suggest interesting learning
models?

We address these questions in the second part of this paper. For a detailed description of our
findings, see Section 1.2.

1.1 Our Results: Aggregate Pseudo Random Functions

Aggregate Pseudo Random Functions (AGG-PRF) are indexed families of pseudo-random functions
for which a distinguisher (who runs in time polynomial in the security parameter) can request and
receive the value of an aggregate (for example, the sum or the product) of the function values over
certain large sets and yet cannot distinguish oracle access to the function from oracle access to a
truly random function. At the same time, given the function index (in other words, the secret key),
one can compute such aggregates over potentially super-polynomial size sets in polynomial time.

2

488
Approved for Public Release; Distribution Unlimited.

Such an efficent aggregation algorithm cannot possibly exist for random functions. Thus, this is
a PRF family that is very unlike random functions (in the sense of being able to efficiently ag-
gregate over superpolynomial size sets), and yet is computationally indistinguishable from random
functions.

To make this notion precise, we need two ingredients. Let F = {Fλ}λ>0 where each Fλ = {fK :
Dλ → Rλ}K∈Kλ is a collection of functions on a domain Dλ to a range Rλ, computable in time
poly(λ).3 The first ingredient is a collection of sets (also called a set system) S = {S ⊆ D} over
which the aggregates can be efficiently computed given the index K of the function. The second
ingredient is an aggregation function Γ : R∗ → {0, 1}∗ which takes as input a tuple of function
values {f(x) : x ∈ S} for some set S ∈ S and outputs the aggregate Γ(f(x1), . . . , f(x|S|)).

The sets are typically super-polynomially large, but are efficiently recognizable. That is, for each
set S, there is a corresponding poly(λ)-size circuit CS that takes as input an x ∈ D and outputs 1 if
and only if x ∈ S. 4 Throughout this paper, we will consider relatively simple aggregate functions,
namely we will treat the range of the functions as an Abelian group, and will let Γ denote the
group operation on its inputs. Note that the input to Γ is super-polynomially large (in the security
parameter λ), making the aggregate computation non-trivial.

This family of functions, equipped with a set system S and an aggregation function Γ is called
an aggregate PRF family (AGG-PRF) if the following two requirements hold:

1. Aggregatability: There exists a polynomial (in the security parameter λ) time algorithm that
given an index K to the PRF fK ∈ F and a circuit CS that recognizes a set S ∈ S, can
compute Γ over the PRF values fK(x) for all x ∈ S. That is, it can compute

AGGK,Γ(S) := Γx∈S fK(x)

2. Pseudorandomness: No polynomial-time distinguisher which can specify a set S ∈ S as a
query and can receive as an answer either AGGK,Γ(S) for a random function fK ∈ F or
AGGh,Γ(S) for a truly random functions h, can distinguish between the two cases.

We show a number of constructions of AGG-PRF for various set systems under different cryp-
tographic assumptions. We describe our constructions below, starting from the least expressive set
system.

Interval Sets. We first present AGG-PRFs over interval set systems with respect to aggregation
functions that compute any group operation. The construction can be based on any (standard)
PRF family.

Theorem 1.1 (Group summation over intervals, from one-way functions [GGN10]). 5 Assume
one-way functions exist. Then, there exists an AGG-PRF family that maps Zp to a group G, with
respect to a collection of sets defined by intervals [a, b] ⊆ Zp and the aggregation function computing
the group operation on G.

3In this informal exposition, for the sake of brevity, we will sometimes omit the security parameter and refrain
from referring to ensembles.

4All the sets we consider are efficiently recognizable, and we use the corresponding circuit as the representation
of the set. We occasionally abuse notation and use S and CS interchangeably.

5Observed even earlier by Reingold and Naor and appeared in [GGI+02] in the context of small space streaming
algorithms

3

489
Approved for Public Release; Distribution Unlimited.

The construction works as follows. Let F : {0, 1}n × {0, 1}n → {0, 1} be a (standard) pseudo-
random function family based on the existence of one-way functions [GGM86, HILL99]. Construct
an AGG-PRF family G supporting efficient computation of group aggregation functions. Define

G(k, x) = F (k, x)− F (k, x− 1)

To aggregate G, set ∑
x∈[a,b]

G(k, x) = F (k, b)− F (k, a− 1)

Given k, this can be efficiently evaluated.
Another construction from [GGN10] achieves summation over the integers for PRFs whose

range is {0, 1}. We omit the details of the construction, but state the theorem for completeness.

Theorem 1.2 (Integer summation over intervals, from one-way functions [GGN10]). Assume one-
way functions exist. Then, there exists an AGG-PRF family that maps Z2λ to {0, 1}, with respect
to a collection of sets defined by intervals [a, b] ⊆ Z2λ and the aggregation function computing the
summation over Z.

Hypercubes. We next construct AGG-PRFs over hypercube set systems. This partially ad-
dresses Open Problem 5.4 posed in [GGN10], whether one can efficiently implement a random
function with range {0, 1} with complex queries that compute parities over the function values on
hypercubes. Under subexponential DDH hardness, Theorem 1.3 answers the question for products
rather than parities for a function whose range is a DDH group.

Throughout this section, we take Dλ = {0, 1}` for some polynomial ` = `(λ). A hypercube Sy
is defined by a vector y ∈ {0, 1, ?}` as

Sy = {x ∈ {0, 1}` : ∀i, yi = ? or xi = yi}

We present a construction under the sub-exponential DDH assumption.

Theorem 1.3 (Hypercubes from DDH). Let HC = {HC`(λ)}λ>0 where HC` = {0, 1, ?}` be the set

of hypercubes on {0, 1}`. Then, there is a construction of AGG-PRF supporting the set system HC
with the product aggregation function, assuming the subexponential DDH assumption.

We sketch the construction from DDH below. Our DDH construction is the Naor-Reingold
PRF [NR04]. Namely, the function is parametrized by an `-tuple ~k = (k1, . . . , k`) and is defined as

F (~k, x) = g
∏
i:xi=1 ki

Let us illustrate aggregation over the hypercube y = (1, 0, ?, ?, . . . , ?). To aggregate the function
F , observe that ∏

{x: x1=1,x2=0}

F (~k, x) =
∏

{x: x1=1,x2=0}

g
∏
i:xi=1 ki

= g
∑
{x:x1=1,x2=0}

∏
i:xi=1 ki

= g(k1)(1)(k2+1)(k3+1)···(k`+1)

which can be efficiently computed given ~k.

4

490
Approved for Public Release; Distribution Unlimited.

Decision Trees. A decision tree T on ` variables is a binary tree where each internal node is
labeled by a variable xi, the leaves are labeled by either 0 or 1, one of the two outgoing edges of
an internal node is labeled 0, and the other is labeled 1. Computation of a decision tree on an
input (x1, . . . , x`) starts from the root, and at each internal node n, proceeds by taking either the
0-outgoing edge or 1-outgoing edge depending on whether xn = 0 or xn = 1, respectively. Finally,
the output of the computation is the label of the leaf reached through this process. The size of a
decision tree is the number of nodes in the tree.

A decision tree T defines a set S = ST = {x ∈ {0, 1}` : T (x) = 1}. We show how to compute
product aggregates over sets defined by polynomial size decision trees, under the subexponential
DDH assumption.

The construction is simply a result of the observation that the set S = ST can be written as a
disjoint union of polynomially many hypercubes. Computing aggregates over each hypercube and
multiplying the results together gives us the decision tree aggregate.

Theorem 1.4 (Decision Trees from DDH). Assuming the sub-exponential hardness of the decisional
Diffie-Hellman assumption, there is an AGG-PRF that supports aggregation over sets recognized by
polynomial-size decision trees.

Read-Once Boolean Formulas. Finally, we show a construction of AGG-PRF over read-once
Boolean formulas, the most expressive of our set systems, under the subexponential DDH assump-
tion. A read-once Boolean formula a Boolean circuit composed of AND, OR and NOT gates with
fan-out 1, namely each input literal feeds into at most one gate, and each gate output feeds into at
most one other gate. Thus, a read-once formula can be written as a binary tree where each internal
node is labeled with an AND or OR gate, and each literal (variable or its negation) appears in at
most one leaf.

Theorem 1.5 (Read-Once Boolean Formulas from DDH). Under the subexponential decisional
Diffie-Hellman assumption, there is an AGG-PRF that supports aggregation over sets recognized by
read-once Boolean formulas.

Our aggregate PRF is, once again, the Naor-Reingold PRF. The index of the PRF consists of
a (`+ 1)-tuple of integers in Zp, namely ~K = (K0, . . . ,K`) ∈ Z`+1

p . The function is defined as

f ~K(x) = gK0
∏
i∈[`]K

xi
i

We compute aggregates by recursion on the levels of the formula. We start by noting that it is
enough to compute

A(C, 1) :=
∑

x:C(x)=1

∏
i∈[1...`]

Kxi
i

because once this is done, it is easy to compute∏
x:C(x)=1

f~k(x) = gK0·A(C,1)

For the purposes of this informal exposition, assume that ` is a power of two. Let C be the
formula, with either C = CL ∧ CR or C = CL ∨ CR for subformula CL and CR. We show how to
recursively compute A(C, 1) for these sub-circuits and thus for C.

5

491
Approved for Public Release; Distribution Unlimited.

Limits of Aggregation. A natural question to ask is whether one can support aggregation over
sets defined by general circuits. It is however easy to see that you cannot support any class of circuits
for which deciding satisfiability is hard (for example, AC0), or even ones for which counting the
number of SAT assignments is hard (DNFs, for example) as follows. Suppose C is a circuit which is
either unsatisfiable or has a unique SAT assignment. Solving satisfiability for such circuits is known
to be sufficient to solve SAT in general [VV86]. The algorithm for SAT simply runs the aggregator
with a random PRF key K, and outputs YES if and only if the aggregator returns a non-zero value.
Note that if the formula is unsatisfiable, we will always get 0 from the aggregator. Otherwise, we get
fk(x), where x is the (unique) satisfying assignment. Now, this might end up being 0 accidentally,
but cannot be 0 always since otherwise, we will turn it into a PRF distinguisher. The distinguisher
has the satisfying assignment hardcoded into it non-uniformly, and it simply checks if PRFK(x) is
0.

Theorem 1.6 (Impossibility for General Set Systems). Suppose there is an efficient algorithm
which on an index for f ∈ F , a set system defined by {x : C(x) = 1} for a polynomial size
Boolean circuit C, and an aggregation function Γ, outputs the Γx:C(x)=1f(x). Then, there is efficient
algorithm that takes circuits C as input and w.h.p. over its coins, decides satisfiability for C.

1.1.1 Related Work to Aggregate PRFs

As described above, the work of [GGN10] studies the general question of how one can efficiently
construct random, “close-to” random, and “pseudo-random” large objects, such as functions or
graphs, which “truthfully” obey global combinatorial properties rather simply appearing to do so
to a polynomial time observer.

Formally, using the [GGN10] terminology, a PRF is a pseudo-implementation of a random
function, and an AGG-PRF is a pseudo-implementation of a ”random function that also answers
aggregate queries” (as we defined them). Furthermore, the aggregatability property of AGG-PRF
implies it is a truthful pseudo-implementation of such a function. Whereas in this work, we restrict
our attention to aggregate queries, [GGN10] considers additional “complex-queries,” such as in
the case of a uniformly selected N node graph, providing a clique of size log2N that contains the
queried vertex in addition to answering adjacency queries.

Our notion of aggregate PRFs bears resemblance to the notion of “algebraic PRFs” defined
in the work of Benabbas, Gennaro and Vahlis [BGV11]. There are two main differences. First,
algebraic PRFs support efficient aggregation over very specific subsets, whereas our constructions
of aggregate PRFs support expressive subset classes, such as subsets recognized by hypercubes,
decision trees and read-once Boolean formulas. Secondly, in the security notion for aggregate
PRFs, the adversary obtains access to an oracle that computes the function as well as one that
computes the aggregate values over super-polynomial size sets, whereas in algebraic PRFs, the
adversary is restricted to accessing the function oracle alone. Our constructions from DDH use an
algebraic property of the Naor-Reingold PRF in a similar manner as in [BGV11].

1.2 Our Results: Augmented PRFs and Computational Learning

As discussed above, connections between PRFs and learning theory date back to the 80’s in the
pioneering work of [Val84] showing that PRF in a complexity class C implies the existence of
concept classes in C which can not be learned with membership queries. In the second part
of this work, we study the implications of the slew of augmented PRF constructions of recent

6

492
Approved for Public Release; Distribution Unlimited.

years [BW13a, BGI14a, KPTZ13b, BC10, ABPP14] and our new aggregate PRF to computational
learning.

1.2.1 Constrained PRFs and limits on Restriction Access learnability

Recently, Dvir, Rao, Wigderson, and Yehudayoff [DRWY12] introduced a new learning model
where the learner is allowed non-black-box information on the computational device (such as cir-
cuits, DNF,formulas) that decides the concept; their learner receives a simplified device resulting
from partial assignments to input variables (i.e. restrictions). These partial restrictions lie some-
where in between function evaluation (full restrictions) which correspond to learning with mem-
bership queries and the full description of the original device (the empty restriction). The work of
[DRWY12] studies a PAC version of restriction access, called PACRA, where the learner receives
the circuit restricted with respect to random partial assignments. They show that both decision
trees and DNF formulas can be learned efficiently in this model. Indeed, the PACRA model seems
like quite a powerful generalization, if not too unrealistic, of the traditional PAC learning model,
as it returns to the learner a computational description of the simplified concept.

Yet, in this section we will show limitations of this computational model under cryptographic
assumptions. We show that the constrained pseudo-random function families introduced recently
in [BW13b, BGI14b, KPTZ13a] naturally define a concept class which is not learnable by an even
stronger variant of the restriction access learning model which we define. In the stronger variant,
which we name membership queries with restriction access (MQRA) the learner can adaptively spec-
ify any restriction of the circuit from a specified class of restrictions S and receive the simplified
device computing the concept on this restricted domain in return. As this setting requires sub-
stantial notation, we define this new model very informally, and defer the formal definitions and
theorems to the full version.

Definition 1.1 (Membership queries with restriction access (MQRA)). Let C : X → {0, 1} be a
concept class, and S = {S ⊆ X} be a collection of subsets of the domain. S is the set of allowable
restrictions for concepts f ∈ C. Let Simp be “simplification rule” which, for a concept f and
restriction S outputs a “simplification” of f restricted to S.

An algorithm A is an (ε, δ, α)-MQRAlearning algorithm for representation class C with respect
to a restrictions in S and simplification rule Simp if, for every f ∈ C, Pr[ASimp(f,·) = h] ≥ 1 − δ
where h is an ε-approximation to f – and furthermore, A only requests restrictions for an α-fraction
of the whole domain X.

Informally, constrained PRFs are PRFs with two additional properties: 1) for any subset S
of the domain in a specified collection S, a constrained key KS can be computed, knowledge of
which enables efficient evaluation of the PRF on S; and 2) even with knowledge of constrained keys
KS1 , . . . ,KSm for the corresponding subsets, the function retains pseudo-randomness on all points
not covered by any of these sets. Connecting this to restriction access, the constrained keys will
allow for generation of restriction access examples (restricted implementations with fixed partial
assignments) and the second property implies that those examples do not aid in the learning of the
function.

Theorem 1.7 (Informal). Suppose F is a family of constrained PRFs which can be constrained
to sets in S. If F is computable in circuit complexity class C, then C is hard to MQRA-learn with
restrictions in S.

7

493
Approved for Public Release; Distribution Unlimited.

Corollary 1.8 (Informal). Existing constructions of constrained PRFs [BW13a] yield the following
corollaries:

• If one-way functions exist, then poly-sized circuits can not be learned with restrictions on
sub-intervals of the input-domain; and

• Assuming the sub-exponential hardness of the multi-linear Diffie-Hellman problem, NC1 can-
not be learned with restriction on hypercubes.

1.2.2 New Learning Models Inspired by the Study of PRFs

We proceed to define two new learning models inspired by recent directions in cryptography. The
first model is the related concept model inspired by work into related-key attacks in cryptography.
While we have cryptography and lower bounds in mind, we argue that this model is in some ways
natural. The second model, learning with aggregate queries, is directly inspired by our development
of aggregate pseudo-random functions in this work; rather than being a natural model in its own
right, this model further illustrates how cryptography and learning are duals in many senses.

The Related Concept Learning Model The idea that some functions or concepts are related
to one another is quite natural. For a DNF formula, for instance, related concepts may include
formulas where a clause has been added or formulas where the roles of two variables are swapped.
For a decision tree, we could consider removing some accepting leaves and examining the resulting
behavior. For a circuit, a related circuit might alter internal gates or fix the values on some wires.
A similar phenomena occurs in cryptography, where secret keys corresponding to different instances
of the same cryptographic primitive or even secret keys of different cryptographic primitives are
related (if, for example, they were generated by a pseudo random process on the same seed).

We propose a new computational learning model where the learner is explicitly allowed to specify
membership queries not only for the concept to be learned, but also for “related” concepts, given by
a class of allowed transformations on the concept. We will show both a separation from membership
queries, and a general negative result in the new model. Based on recent constructions of related-
key secure PRFs by Bellare and Cash [BC10] and Abdalla et al [ABPP14], we demonstrate concept
classes for which access to these related concepts is of no help.

To formalize the related concept learning model, we will consider keyed concept classes – classes
indexed by a set of keys. This will enable the study of related concepts by instead considering
concepts whose keys are related in some way. Most generally, we think of a key as a succinct
representation of the computational device which decides the concept. This is a general framework;
for example, we may consider the bit representation of a particular log-depth circuit as a key for
a concept in the concept class NC1. For a concept fk in concept class C, we allow the learner to
query a membership oracle for fk and also for ‘related’ concepts fφ(k) ∈ CK for φ in a specified class

of allowable functions Φ. For example: let K = {0, 1}λ and let Φ⊕ = {φ∆ : k 7→ k ⊕∆}∆∈{0,1}λ .
Informally:

Definition 1.2 (Φ-Related-Concept Learning Model (Φ-RC)). For CK a keyed concept class, let
Φ = {φ : K → K} be a set of functions on K that contains the identity function id. A related-
concept oracle RCk, on query (φ, x), responds with fφ(k)(x), for all φ ∈ Φ and x ∈ X.

8

494
Approved for Public Release; Distribution Unlimited.

An algorithm A is an (ε, δ)-Φ-RK learning algorithm for a Ck if, for every k ∈ K, when given
access to the oracle RKk(·), the algorithm A outputs with probability at least 1 − δ a function
h : {0, 1}n → {0, 1} that ε-approximates fk.

Yet again, we are able to demonstrate the limitations of this model using the power of a
strong type of pseudo-random function. We show that related-key secure PRF families (RKA-
PRF) defined and instantiated in [BC10] and [ABPP14] give a natural concept class which is not
learnable with related key queries. RKA-PRFs are defined with respect to a set Φ of functions on
the set of PRF keys. Informally, the security notion guarantees that for a randomly selected key
k, no efficient adversary can distinguish oracle access to fk and fφ(k) (for many adaptively chosen
functions φ ∈ Φ) from an oracle that returns completely random values. We leverage this strong
pseudo-randomness property to show hard-to-learn concepts in the related concept model.

Theorem 1.9 (Informal). Suppose F is a family of RKA-PRFs with respect to related-key functions
Φ. If F is computable in circuit complexity class C, then C is hard to learn in the Φ′-RC model for
some Φ′.

Existing constructions of RKA-PRFs [ABPP14] yield the following corollary:

Corollary 1.10 (Informal). Assuming the hardness of the DDH problem, and collision-resistant
hash functions, NC1 is hard to Φ-RC-learn for an class of affine functions Φ.

The Aggregate Learning Model The other learning model we propose is inspired by our
aggregate PRFs. Here, we consider a new extension to the power of the learning algorithm. Whereas
membership queries are of the form “What is the label of an example x?”, we grant the learner the
power to request the evaluation of simple functions on tuples of examples (x1, ..., xn) such as “How
many of x1, . . . , xn are in C?” or “Compute the product of the labels of x1, ..., xn?”. Clearly, if
n is polynomial then this will result only a polynomial gain in the query complexity of a learning
algorithm in the best case. Instead, we propose to study cases when n may be super-polynomial,
but the description of the tuples is succinct. For example, the learning algorithm might query the
number of x’s in a large interval that are positive examples in the concept.

As with the restriction access and related concept models – and the aggregate PRFs we define
in this work – the Aggregate Queries (AQ) learning model will be considered with restrictions to
both the types of aggregate functions Γ the learner can query, and the sets S over which the learner
may request these functions to be evaluated on. We now present the AQ learning model informally:

Definition 1.3 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C : X → {0, 1} be a concept class,
and let S be a collection of subsets of X. Let Γ : {0, 1}∗ → V be an aggregation function. For
f ∈ C, let AGGf be an “aggregation” oracle, which for S ∈ S, returns Γx∈Sf(x). Let MEMf be the
membership oracle, which for input x returns f(x).

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if for every f ∈ C,

Pr[AMEMf (·),AGGf (·) = h] ≥ 1− δ

where h is an ε-approximation to f .

Initially, AQ learning is reminiscent of learning with statistical queries (SQ). In fact, this ap-
parent connection inspired this portion of our work. But the AQ setting is in fact incomparable to

9

495
Approved for Public Release; Distribution Unlimited.

SQ learning, or even the weaker “statistical queries that are independent of the target” as defined
in [BF02]. On the one hand, AQ queries provide a sort of noiseless variant of SQ, giving more
power to the AQ learner; on the other hand, the AQ learner is restricted to aggregating over sets
in S, whereas the SQ learner is not restricted in this way, thereby limiting the power of the AQ
learner. The AQ setting where S contains every subset of the domain is indeed a noiseless version
of “statistical queries independent of the target,” but even this model is a restricted version of SQ.
This does raise the natural question of a noiseless version of SQ and its variants; hardness results
in such models would be interesting in that they would suggest that the hardness comes not from
the noise but from an inherent loss of information in statistics/aggregates.

We will show both a simple separation from learning with membership queries (in the full
version), and under cryptographic assumptions, a general lower bound on the power of learning
with aggregate queries. The negative examples will use the results in Section 1.1.

Theorem 1.11. Let F be a boolean-valued aggregate PRF with respect to set system S and aggre-
gation function Γ. If F is computable in complexity class C, then C is hard to (Γ,S)-AQ learn.

Corollary 1.12. Using the results from Section 3, we get the following corollaries:

• The existence of one way functions implies that P/poly is hard to (
∑
,S[a,b])-AQ learn, with

S[a,b] the set of sub-intervals of the domain as defined in Section 3.

• The DDH assumption implies that NC1 is hard to (
∑
,S[a,b])-AQ learn, with S[a,b] being the

set of sub-intervals of the domain as defined in Section 3.

• The subexponential DDH Assumption implies that NC1 is hard to (
∏
,R)-AQ learn, with R

the set of read-once boolean formulas defined in Section 3.

Open Questions. As discussed in the introduction, augmented pseudo-random functions often
have powerful and surprising applications, perhaps the most recent example being constrained
PRFs [BW13a, KPTZ13a, BGI14a]. Perhaps the most obvious open question that emerges from
this work is to find applications for aggregate PRFs. We remark that a primitive similar to aggregate
PRFs was used in [BGV11] to construct delegation protocols.

Perhaps a more immediate concern is that all our aggregate PRF constructions (except for
intervals) requires sub-exponential hardness assumptions. We view it as an important open question
to base these constructions on polynomial assumptions.

In this work we restricted our attention to particular types of aggregation functions and subsets
over which the aggregation takes place, although our definition captures more general scenarios.
We looked at aggregation functions that compute group operations over Abelian groups. Can we
support more general aggregation functions that are not restricted to group operations, for example
the majority aggregation function, or even non-symmetric aggregation functions? We show positive
results for intervals, hypercubes, and sets recognized by read-once formulas and decision trees. On
the other hand, we show that it is unlikely that we can support general sets, for example sets
recognized by CNF formulas. This almost closes the gap between what is possible and what is
hard. A concrete open question in this direction is to construct an aggregate PRF computing
summation over an Abelian group for sets recognized by DNFs, or provide evidence that this
cannot be done.

10

496
Approved for Public Release; Distribution Unlimited.

Organization. This paper is organized into two parts that can be read essentially independently
of each other. In the first part (Sections 2 and 3), we present the definition and constructions of
aggregate pseudo-random functions. In the second part (Section 4), we show connections between
various notions of augmented PRFs and their applications to augmented learning models.

2 Aggregate PRF

We will let λ denote the security parameter throughout this paper.
Let F = {Fλ}λ>0 be a function family where each function f ∈ Fλ maps a domain Dλ to a

range Rλ. An aggregate function family is associated with two objects:

1. an ensemble of sets S = {Sλ}λ>0 where each Sλ is a collection of subsets of the domain
S ⊆ Dλ; and

2. an “aggregation function” Γλ : (Rλ)∗ → Vλ that takes a tuple of values from the range Rλ of
the function family and “aggregates” them to produce a value in an output set Vλ.

Let us now make this notion formal. To do so, we will impose restrictions on the set ensembles
and the aggregation function. First, we require set ensemble Sλ to be efficiently recognizable. That
is, there is a polynomial-size Boolean circuit family C = {Cλ}λ>0 such that for any set S ∈ Sλ
there is a circuit C = CS ∈ Cλ such that x ∈ S if and only if C(x) = 1. Second, we require our
aggregation functions Γ to be efficient in the length of its inputs, and symmetric; namely the output
of the function does not depend on the order in which the inputs are fed into it. Summation over an
Abelian group is an example of a possible aggregation function. Third and finally, elements in our
sets Dλ, Rλ, and Vλ are all representable in poly(λ) bits, and the functions f ∈ Fλ are computable
in poly(λ) time.

Define the aggregate function AGG = AGGλf,Sλ,Γλ that is indexed by a function f ∈ Fλ, takes as
input a set S ∈ Sλ and “aggregates” the values of f(x) for all x ∈ Sλ. That is, AGG(S) outputs

Γ
(
f(x1), f(x2), . . . , f(x|S|)

)
where S = {x1, . . . , x|S|}. More precisely, we have

AGGλf,Sλ,Γλ :Sλ → Vλ
S 7→ Γxi∈S

(
f(x1), . . . , f(x|S|)

)
We will furthermore require that the AGG can be computed in poly(λ) time. We require this

in spite of the fact that the sets over which the aggregation is done can be exponentially large!
Clearly, such a thing is impossible for a random function f but yet, we will show how to construct
pseudo-random function families that support efficient aggregate evaluation. We will call such a
pseudo-random function (PRF) family an aggregate PRF family. In other words, our objective is
two fold:

1. Allow anyone who knows the (polynomial size) function description to efficiently compute the
aggregate function values over exponentially large sets; but at the same time,

2. Ensure that the function family is indistinguishable from a truly random function, even given
an oracle that computes aggregate values.

11

497
Approved for Public Release; Distribution Unlimited.

A simple example of aggregates is that of computing the summation of function values over
sub-intervals of the domain. That is, let domain and range be Zp for some p = p(λ), let the
family of subsets be Sλ = {[a, b] ⊆ Zp : a, b ∈ Zp; a ≤ b}, and the aggregation function be

Γλ(y1, . . . , yk) =
∑k

i=1 yi (mod p). In this case, we are interested in computing

AGGλf,Sλ,sum([a, b]) =
∑
a≤x≤b

f(x)

We will, in due course, show both constructions and impossibility results for aggregate PRFs, but
first let us start with the formal definition.

Definition 2.1 (Aggregate PRF). Let F = {Fλ}λ>0 be a function family where each function
f ∈ Fλ maps a domain Dλ to a range Rλ, S be an efficiently recognizable ensemble of sets {Sλ}λ>0,
and Γλ : (Rλ)∗ → Vλ be an aggregation function. We say that F is an (S,Γ)-aggregate pseu-
dorandom function family (also denoted (S,Γ)-AGG-PRF) if there exists an efficient algorithm
Aggregatek,S,Γ(S): On input a subset S ∈ S of the domain, outputs v ∈ V, such that

• Efficient aggregation: For every S ∈ S, Aggregatek,S,Γ(S) = AGGk,S,Γ(S) where AGGk,S,Γ(S) :=
Γx∈S Fk(x).67

• Pseudorandomness: For all probabilistic polynomial-time (in security parameter λ) algo-
rithms A, and for randomly selected key k ∈ K:

| Pr
f←Fλ

[Afk,AGGfk,S,Γ(1λ)]− Pr
h←Hλ

[Ah,AGGh,S,Γ(1λ)]| ≤ negl(λ)

where Hλ is the set of all functions Dλ → Rλ.

Remark. In this work, we restrict our attention to aggregation functions that treat the range
Vλ = Rλ as an Abelian group and compute the group sum (or product) of its inputs. We denote
this setting by Γ =

∑
(or

∏
, respectively). Supporting other types of aggregation functions (ex:

max, a hash) is a direction for future work.

2.1 A General Security Theorem for Aggregate PRFs

How does the security of a function family in the AGG-PRF game relate to security in the normal
PRF game (in which A uses only the oracle f and not AGGf)?

In this section, we show a general security theorem for aggregate pseudo-random functions.
Namely, we show that any “sufficiently secure” PRF is also aggregation-secure (for any collection of
efficiently recognizable sets and any group-aggregation operation), in the sense of Definition 2.1, by
way of an inefficient reduction (with overhead polynomial in the size of the domain). In Section 3,
we will use this to construct AGG-PRFs from a subexponential-time hardness assumption on the
DDH problem. We also show that no such general reduction can be efficient, by demonstrating
a PRF family that is not aggregation-secure. As a general security theorem cannot be shown
without the use of complexity leveraging, this suggests a natural direction for future study: to
devise constructions for similarly expressive aggregate PRFs from polynomial assumptions.

6We omit subscripts on AGG and Aggregate when clear from context.
7AGG is defined to be the correct aggregate value, while Aggregate is the algorithm by which we compute the value

AGG. We make this distinction because while a random function cannot be efficiently aggregated, the aggregate value
is still well-defined.

12

498
Approved for Public Release; Distribution Unlimited.

Lemma 2.1. Let F = {Fλ}λ>0 be a pseudo-random function family where each function f ∈ Fλ
maps a domain Dλ to a range Rλ. Suppose there is an adversary A that runs in time tA = tA(λ)
and achieves an advantage of εA = εA(λ) in the aggregate PRF security game for the family F
with an efficiently recognizable set system Sλ and an aggregation function Γλ that is computable
in time polynomial in its input length. Then, there is an adversary B that runs in time tB =
tA + poly(λ, |Dλ|) and achieves an advantage of εB = εA in the standard PRF game for the family
F .

Proof. Let fK ← Fλ be a random function from the family Fλ. We construct the adversary B which
is given access to an oracle O which is either fK or a uniformly random function h : Dλ → Rλ.

B works as follows: It queries the PRF on all inputs x ∈ Dλ, builds the function table TK of
fK and runs the adversary A, responding to its queries as follows:

1. Respond to its PRF query x ∈ Dλ by returning TK [x]; and

2. Respond to its aggregate query (Γ, S) by (a) going through the table to look up all x such
that x ∈ S; and (b) applying the aggregation function honestly to these values.

Finally, when A halts and returns a bit b, B outputs the bit b and halts.
B takes O(|Dλ|) time to build the truth table of the oracle. For each aggregate query (Γ, S), B
first checks for each x ∈ Dλ whether x ∈ S. This takes |Dλ| · poly(λ) time, since S is efficiently
recognizable. It then computes the aggregation function Γ over f(x) such that x ∈ S, taking
poly(|Dλ|) time, since Γ is computable in time polynomial in its input length. The total time,
therefore, is

tB = tA + poly(λ, |Dλ|)

Clearly, when O is the pseudo-random function fK , B simulates an aggregatable PRF oracle
to A, and when O is a random function, B simulates an aggregate random oracle to A. Thus, B
has the same advantage in the PRF game as A does in the aggregate PRF game.

The above gives an inefficient reduction from the PRF security of a function family F to the
AGG-PRF security of the same family running in time polynomial in the size of the domain. Can
this reduction be made efficient; that is, can we replace tB = tA + poly(λ) into the Lemma 2.1?

This is not possible. Such a reduction would imply that every PRF family that supports
efficient aggregate functionality AGG is AGG-PRF secure; this is clearly false. Take for example a
pseudorandom function family F0 = {f : Z2p → Zp} such that for all f , there is no x with f(x) = 0.
It is possible to construct such a pseudorandom function family F0 (under the standard definition).
While 0 is not in the image of any f ∈ F0, a random function with the same domain and range will,
with high probability, have 0 in the image. For an aggregation oracle AGGf computing products
over Zp: AGGf (Z2p) 6= 0 if f ∈ F0, while AGGf (Z2p) = 0 with high probability for random f .

Thus, access to aggregates for products over Zp8 would allow an adversary to trivially distinguish
f ∈ F0 from a truly random map.

8Taken with respect to a set ensemble S containing, as an element, the whole domain Z2p. While this is not
necessary (a sufficiently large subset would suffice), it is the case for the ensembles S we consider in this work.

13

499
Approved for Public Release; Distribution Unlimited.

2.2 Impossibility of Aggregate PRF for General Sets

It is natural to ask whether whether an aggregate PRF might be constructed for more general sets
than we present in Section 3. There we constructed aggregate PRF for the sets of all satisfying
assignments for read-once boolean formula and decision trees. As we show in the following, it is
impossible to extend this to support the set of satisfying assignmnets for more general circuits.

Theorem 2.2. Suppose there is an algorithm that has a PRF description K, a circuit C, and a
fixed aggregation rule (sum over a finite field, say), and outputs the aggregate value∑

x:C(x)=1

fK(x)

Then, there is an algorithm that takes circuits C as input and w.h.p. over it coins, decides the
satisfiability of C.

Proof. The algorithm for SAT simply runs the aggregator with a randomly chosen K, and outputs
YES if and only if the aggregator returns 1. The rationale is that if the formula is unsatisfiable,
you will always get 0 from the aggregator.9 Otherwise, you will get fK(x), where x is the satisfying
assignment. (More generally,

∑
x:C(x)=1 fK(x)). Now, this might end up being 0 accidentally, but

cannot be 0 always since otherwise, you will get a PRF distinguisher. The distinguisher has the
satisfying assignment hardcoded into it non-uniformly,10 and it simply checks if fK(x) = 0.

This impossibility result can be generalized for efficient aggregation of functions that are not
pseudo-random. For instance, if f(x) ≡ 1 was the constant function 1, the same computing the
aggregate over f satisfying inputs to C would not only reveal the satisfiability of C, but even the
number of satisfying assignments! In the PRF setting though, it seems that aggregates only reveal
the (un)satisfiability of a circuit C, but not the number of satisfying assignments. Further studying
the relationship between the (not necessarily pseudo-random) function f , the circuit representation
of C, and the tractability of computing aggregates is an interesting direction. A negative result for a
class for which satisfiability (or even counting assignments) is tractable would be very interesting.

3 Constructions of aggregate PRF

In this section, we show several constructions of aggregate PRFs. In Section 3.1, we show as a
warm-up a generic construction of aggregate PRFs for intervals (where the aggregation is any group
operation). This construction is black-box: given any PRF with the appropriate domain and range,
we construct a related family of aggregate PRFs and with no loss in security. In Section 3.2, we
show a construction of aggregate PRFs for products over bit-fixing sets (hypercubes), from a strong
decisional Diffie-Hellman assumption. We then generalize the DDH construction: in Section 3.3, to
the class of sets recognized by polynomial-size decision trees; and in Section 3.4, to sets recognized
by read-once Boolean formulas. In these last three constructions, we make use of Lemma 2.1 to
argue security.

9This proof may be extended to the case when the algorithm’s output is not restricted to be 0 when the input
circuit C is unsatisfiable, and even arbitrary outputs for sufficiently expressive classes of circuits.

10As pointed out by one reviewer, for sufficiently expressive classes of circuits C, this argument can be made
uniform. Specifically, we use distinguish the challenge y from a pseudo-random generator from random by choosing
C := Cy that is satisfiable if and only if y is in the PRG image, and modify the remainder of the argument accordingly.

14

500
Approved for Public Release; Distribution Unlimited.

3.1 Generic Construction for Interval Sets

Our first construction is from [GGN10]11. The construction is entirely black-box: from any appro-
priate PRF family G, we construct a related AGG-PRF family F . Unlike the proofs in the sequel,
this reduction exactly preserves the security of the starting PRF.

Let Gλ = {gK : Zn(λ) → Rλ}K∈Kλ be a PRF family, with R = Rλ being a group where
the group operation is denoted by ⊕12. We construct an aggregatable PRF Fλ = {fK}K∈Kλ
for which we can efficiently compute summation of fK(x) for all x in an interval [a, b], for any
a ≤ b ∈ Zn. Let S[a,b] = {[a, b] ⊆ Zn : a, b ∈ Zn; a ≤ b} be the set of all interval subsets of Zn,
[a, b] = {x ∈ Zn : a ≤ x ≤ b}. Define F = {fK : Zn → R}K∈K as follows:

fK(x) =

{
gK(0) : x = 0
gK(x)	 gK(x− 1) : x 6= 0

Lemma 3.1. Assuming that G is a pseudo-random function family, F is a (S[a,b],⊕)-aggregate
pseudo-random function family.

Proof. It follows immediately from the definition of fK that one can compute the summation of
fK(x) over any interval [a, b]. Indeed, rearranging the definition yields∑

x∈[0,b]

fK(x) = gK(b) and
∑
x∈[a,b]

fK(x) = gK(b)⊕−gK(a− 1)

We reduce the pseudo-randomness of F to that of G. The key observation is that each query
to the fK oracle as well as the aggregation oracle for fK can be answered using at most two black-
box calls to the underlying function gK . By assumption on G, replacing the oracle for gK with
a uniformly random function h : Zn → R is computationally indistinguishable. Furthermore, the
function f defined by replacing g by h, namely

f ′(x) =

{
h(0) : x = 0
h(x)	 h(x− 1) : x 6= 0

is a truly random function. Thus, the simulated oracle with gK replaced by h implements a
uniformly random function that supports aggregate queries. Security according to Definition 2.1
follows immediately.

Another construction from the same work achieves summation over the integers for PRFs whose
range is {0, 1}. We omit the details of the construction, but state the theorem for completeness.

Theorem 3.2 (Integer summation over intervals, from one-way functions [GGN10]). Assume one-
way functions exist. Then, there exists an (S[a,b],

∑
)-AGG-PRF family that maps Z2λ to {0, 1},

where
∑

denotes summation over Z.

11See Example 3.1 and Footnote 18
12The only structure of Zn we us is the total order. Our construction directly applies to any finite, totally-ordered

domain D by first mapping D to Zn, preserving order.

15

501
Approved for Public Release; Distribution Unlimited.

3.2 Bit-Fixing Aggregate PRF from DDH

We now construct an aggregate PRF computing products for bit-fixing sets. Informally, our PRF
will have domain {0, 1}poly(λ), and support aggregation over sets like {x : x1 = 0∧x2 = 1∧x7 = 0}.
We will naturally represent such sets by a string in {0, 1, ?}poly(λ) with 0 and 1 indicating a fixed
bit location, and ? indicating a free bit location. We call each such set a ‘hypercube.’ The PRF
will have a multiplicative group G as its range, and the aggregate functionality will compute group
products.

Our PRF is exactly the Naor-Reingold PRF [NR04], for which we demonstrate efficient aggre-
gation and security. We begin by stating the decisional Diffie-Hellman assumption.

Let G = {Gλ}λ>0 be a family of groups of order p = p(λ). The decisional Diffie-Hellman
assumption for G says that the following two ensembles are computationally indistinguishable:{

(Gλ, g, ga, gb, gab) : G← Gλ; g ← G; a, b← Zp
}
λ>0

≈c
{

(G, g, ga, gb, gc) : G← Gλ; g ← G; a, b, c← Zp
}
λ>0

We say that the (t(λ), ε(λ))-DDH assumption holds if for every adversary running in time t(λ), the
advantage in distinguishing between the two distributions above is at most ε(λ).

3.2.1 Construction

Let G = {Gλ}λ>0 be a family of groups of order p = p(λ), each with a canonical generator g,
for which the decisional Diffie Hellman (DDH) problem is hard. Let ` = `(λ) be a polynomial
function. We will construct a PRF family F` = {F`,λ}λ>0 where each function f ∈ F`,λ maps
{0, 1}`(λ) to Gλ. Our PRF family is exactly the Naor-Reingold PRF [NR04]. Namely, each function
f is parametrized by `+ 1 numbers ~K := (K0,K1, . . . ,K`), where each Ki ∈ Zp.

f ~K(x1, . . . , x`) = gK0
∏`
i=1K

xi
i = g

K0
∏
i:xi=1Ki ∈ Gλ

The aggregation algorithm Aggregate for bit-fixing functions gets as input the PRF key ~K and a
bit-fixing string y ∈ {0, 1, ?}` and does the following:

• Define the strings K ′i as follows:

K ′i =

1 if yi = 0
Ki if yi = 1
1 +Ki otherwise

• Output gK0
∏`
i=1K

′
i as the answer to the aggregate query.

Letting HC = {HC`(λ)}λ>0 where HC` = {0, 1, ?}` is the set of hypercubes on {0, 1}`, we now prove
the following:

Theorem 3.3. Let ε > 0 be a constant, choose the security parameter λ = Ω(`1/ε), and assume the
(2λ

ε
, 2−λ

ε
)-hardness of DDH over the group G. Then, the collection of functions F defined above is

a secure aggregate PRF with respect to the subsets HC and the product aggregation function over
G.

16

502
Approved for Public Release; Distribution Unlimited.

Correctness. We show that the answer we computed for an aggregate query y ∈ {0, 1, ?}λ is
correct. Define the sets

Match(y) := {x ∈ {0, 1}λ : ∀i, yi = ? or xi = yi} and Fixed(y) := {i ∈ [λ] : yi ∈ {0, 1}}

Thus, Match(y) is the set of all 0-1 strings x that match all the fixed locations of y, but can take
any value on the wildcard locations of y. Fixed(y) is the set of all locations i where the bit yi is
fixed. Note that:

AGG(~K, y) =
∏
x∈Match(y) f ~K(x) (by definition of AGG)

=
∏
x∈Match(y) g

K0
∏`
i=1K

xi
i (by definition of f ~K)

= gK0
∑
x∈Match(y)

∏`
i=1K

xi
i

= gK0

(∏
i∈Fixed(y)K

yi
i

)
·
(∏

i∈[`]\Fixed(y)(1+Ki)
)

(inverting sums and products)

= gK0
∏`
i=1K

′
i (by definition of K ′i)

= Aggregate(~K, y) (by definition of Aggregate)

Security. We will rely on the following theorem from [NR04].

Theorem 3.4 (Theorem 4.1, [NR04]). Suppose there is an adversary A that runs in time t(λ) and
has an advantage of γ(λ) in the (regular) PRF game. Then, there is an adversary B that runs in
time poly(λ) · t(λ) and breaks the DDH assumption with advantage γ(λ)/λ.

The aggregate PRF security proof proceeds as follows. First, we choose the security parameter
λ = Ω(`1/ε) as in the theorem statement. We use Lemma 2.1 to conclude that if there is an
adversary distinguisher D breaking the aggregate PRF security of F in poly(λ) time with 1/poly(λ)
advantage, then there is an adversary A that breaks the regular PRF security of F in poly(λ)·2O(`) =
poly(λ) · 2λε = 2O(λε) time with 1/poly(λ) advantage. Using Theorem 3.4 now tells us that there is
an adversary B that wins the DDH distinguishing game in 2O(λε) time with 1/poly(λ) advantage,
breaking the subexponential DDH assumption. This establishes the aggregate security of the PRF
and thus Theorem 3.3.

Obtaining a security proof based on polynomial assumptions is an interesting open question.

3.3 Decision Trees

We generalize the previous construction from DDH to support sets specified by polynomial-sized
decision trees by observing that such decision trees can be written as disjoint unions of hypercubes.

A decision tree family Tλ of size p(λ) over `(λ) variables consists of binary trees with at most
p(λ) nodes, where each internal node is labeled with a variable xi for i ∈ [`], the two outgoing
edges of an internal node are labeled 0 and 1, and the leaves are labeled with 0 or 1. On input
an x ∈ {0, 1}`, the computation of the decision tree starts from the root, and upon reaching an
internal node n labeled by a variable xi, takes either the 0-outgoing edge or the 1-outgoing edge
out of the node n, depending on whether xi is 0 or 1, respectively.

We now show how to construct a PRF family F` = {F`,λ}λ>0 where each F`,λ consists of
functions that map Dλ := {0, 1}` to a group Gλ, that supports aggregation over sets recognized by
decision trees. That is, let Sλ = {S ⊆ {0, 1}` : ∃ a decision tree TS ∈ Tλ that recognizes S}.

Our construction uses a hypercube-aggregate PRF family F ′` as a sub-routine. First, we need
the following simple lemma.

17

503
Approved for Public Release; Distribution Unlimited.

Lemma 3.5 (Decision Trees as Disjoint Unions of Hypercubes). Let S ⊆ {0, 1}` be recognized by a
decision tree TS of size p = p(λ). Then, S is a disjoint union of at most p hybercubes Hy1 , . . . ,Hyp,
where each yi ∈ {0, 1, ?}` and Hyi = Match(yi). Furthermore, given TS, one can in polynomial time
compute these hypercubes.

Given the lemma, Aggregate is simple: on input a set S represented by a decision tree TS , com-
pute the disjoint hypercubes Hy1 , . . . ,Hyp . Run the hypercube aggregation algorithm to compute

gi ← AggregateF (K, yi)

and outputs g :=
∏p
i=1 gi.

Basing the construction on the hypercube-aggregate PRF scheme from Section 3.2, we get a
decision tree-aggregate PRF based on the sub-exponential DDH assumption. The security of this
PRF follows from Lemma 2.1 by an argument identical to the one in Section 3.2.

3.4 Read-once formulas

Read-once boolean formula provide a different generalization of hypercubes and they too admit an
efficient aggregation algorithm for the Naor-Reingold PRF, with a similar security guarantee.

A boolean formula on ` variables is a circuit on x = (x1, . . . , x`) ∈ {0, 1}` composed of only
AND, OR, and NOT gates. A read-once boolean formula is a boolean formula with fan-out 1,
namely each input literal feeds into at most one gate, and each gate output feeds into at most one
other gate.13 Let Rλ be the family of all read-once boolean formulas over `(λ) variables. Without
loss of generality, we restrict these circuits to be in a standard form: namely, composed of fan-in 2
and fan-out 1 AND and OR gates, and any NOT gates occurring at the inputs.

In this form, the circuit for any read-once boolean formula can be identified with a labelled
binary tree; we identify a formula by the label of its root Cφ. Nodes with zero children are
variables or their negation, labelled by xi or x̄i, while all other nodes have 2 children and represent
gates with fan-in 2. For such a node with label C, its children have labels CL and CR. Note that
each child is itself a read-once boolean formula on fewer inputs, and their inputs are disjoint Let
the gate type of a node C be type(C) ∈ {AND,OR}.

We describe a recursive aggregation algorithm for computing products of PRF values over all
accepting inputs for a given read-once boolean formula Cφ. Looking forward, we require the formula
to be read-once in order for the recursion to be correct. The algorithm described reduces to that
of Section 3.2 in the case where φ describes a hypercube.

3.4.1 Construction

The aggregation algorithm for read-once Boolean formulas takes as input the PRF key ~K =
(K0, . . . ,K`) and a formula Cφ ∈ Rλ where Cφ only reads the variables x1, . . . , xm for some m ≤ `.
We abuse notation and interpret Cφ to be a formula on both {0, 1}` and {0, 1}m in the natural way.

13We allow a formula to ignore some inputs variables; this enables the model to express hypercubes directly.

18

504
Approved for Public Release; Distribution Unlimited.

AGGk,
∏(Cφ) =

∏
x:Cφ(x)=1

gK0
∏
i∈[`] K

xi
i (1)

= g
K0

∑
x:Cφ(x)=1

∏
i∈[`] K

xi
i (2)

= gK0·A(Cφ,1)·
∏
m<j≤`(1+Ki) (3)

where we define A(C, 1) :=
∑
{x∈{0,1}m:C(x)=1}

∏
i∈[m]K

xi
i . If A(C, 1) is efficiently computable, then

Aggregate will simply compute it and return (3). To this end, we provide a recursive procedure for
computing A(C, 1).

Generalizing the definition for any sub-formula C with variables named x1 to xm, define the
values A(C, 0) and A(C, 1):

A(C, b) :=
∑

{x∈{0,1}m: C(x)=b}

∏
i∈[m]

Kxi
i .

Recursively compute A(C, b) as follows:

• If C is a literal for variable xi, then by definition:

A(C, b) =

{
Ki if C = xi
1 if C = x̄i

• Else, if type(C) = AND: Let CL and CR be the children of C. By hypothesis, we can
recursively compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute A(C, b) as:

A(C, 1) = A(CL, 1) ·A(CR, 1)

A(C, 0) = A(CL, 0) ·A(CR, 0) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

• Else, type(C) = OR: Let CL and CR be the children of C. By hypothesis, we can recursively
compute A(CL, b) and A(CR, b) for b ∈ {0, 1}. Compute A(C, b) as:

A(C, 1) = A(CL, 1) ·A(CR, 1) +A(CL, 1) ·A(CR, 0) +A(CL, 0) ·A(CR, 1)

A(C, 0) = A(CL, 0) ·A(CR, 0))

Lemma 3.6. A(C, b) as computed above is equal to
∑
{x∈{0,1}m: C(x)=b}

∏
i∈[m]K

xi
i

Proof. For C a literal, the correctness is immediate. We must check the recursion for each type(C) ∈
{AND,OR} and b ∈ {0, 1}. We only show the case for b = 1 when C is an OR gate; the other
three cases can be shown similarly.

Let SbL,bR = {x = (xL, xR) : (CL(xL), CR(xR) = (bL, bR)} be the set of inputs (xL, xR) to C
such that CL(xL) = bL and CR(xR) = bR. The set {x : C(x) = 1} can be decomposed into the
disjoint union S0,1 t S1,0 t S1,1. Furthermore,

A(C, 1) =
∑
x∈S0,1

∏
i∈[m]

Kxi
i +

∑
x∈S1,0

∏
i∈[m]

Kxi
i +

∑
x∈S1,1

∏
i∈[m]

Kxi
i

Because C is read-once, the sets of inputs on which CL and CR depend are disjoint; this implies
that A(CL, bL) ·A(CR, bR) =

∑
x∈SbL,bR

∏
i∈[m]K

xi
i , yielding the desired recursion.

19

505
Approved for Public Release; Distribution Unlimited.

Theorem 3.7. Let ε > 0 be a constant, choose the security parameter λ = Ω(`1/ε), and assume
(2λ

ε
, 2−λ

ε
)-hardness of the DDH assumption. Then, the collection of functions Fλ defined above is

a secure aggregate PRF with respect to the subsets Rλ and the product aggregation function over
the group G.

Proof. Correctness is immediate from Lemma 3.6, and Equation (3). Security follows from the
decisional Diffie-Hellman assumption in much the same way it did in the case of bit-fixing functions.

4 Connection to Learning

4.1 Preliminaries

Notation: For a probability distribution D over a set X, we denote by x ← D to mean that x is
sampled according to D, and x← X to denote uniform sampling form X. For an algorithm A and
a function O, we denote that A has oracle access to O by AO(·).

We recall the definition of a “concept class”. In this section, we will often need to explicitly
reason about the representations of the concept classes discussed. Therefore we make use of the
notion of a “representation class” as defined by [KV94] alongside that of concept classes. This
unified formalization enables us to discuss both these traditional learning models (namely, PAC
and learning with membership queries) as well as the new models we present below. Our definitions
are parametrized by λ ∈ N.14

Definition 4.1 (Representation class [KV94]). Let K = {Kλ}λ∈N be a family of sets, where each
k ∈ Kλ has description in {0, 1}sk(λ) for some polynomial sk(·). Let X = {Xλ}λ∈N be a set, where
each Xλ is called a domain and each x ∈ Xλ has description in {0, 1}sx(λ) for some polynomial
sx(·). With each λ and each k ∈ Kλ, we associate a Boolean function fk : Xλ → {0, 1}.15 We
call each such function fk a concept, and k its index or its description. For each λ, we define the
concept class Cλ = {fk : k ∈ Kλ} to be the set of all concepts with index in Kλ. We define the
representation class C = {Cλ} to be the union of all concept classes Cλ.

This formalization allows us to easily associate complexity classes with concepts in learning
theory. For example, to capture the set of all DNF formulas on λ inputs with size at most p(λ) for

a polynomial p, we will let Xλ = {0, 1}λ, and K
p(λ)
λ be the set of descriptions of all DNF formulas

on λ variables with size at most p(λ) under some reasonable representation. Then a concept fk(x)

evaluates the formula k on input x. Finally, DNF
p(λ)
λ = {fk : k ∈ Kp(λ)

λ } is the concept class, and

DNFp(λ) = {DNF p(λ)
λ }λ∈N. DNF p(λ) is the representation class that computes all DNF formulas

on λ variables with description of size at most p(λ) in the given representation.
As a final observation, note that a Boolean-valued PRF family F = {Fλ} where Fλ = {fk :

Xλ → {0, 1}} with keyspace K = {Kλ} and domain X = {Xλ} satisfies the syntax of a represen-
tation class as defined above. This formalization is useful precisely because it captures both PRF
families and complexity classes, enabling lower bounds in various learning models.

In proving lower bounds for learning representation classes, it will be convenient to have a
notion of containment for two representation classes.

14When clear from the context, we will omit the subscript λ.
15This association is an efficient procedure for evaluating fk. Concretely, we might consider that there is a universal

circuit Fλ such that for each λ, fk(·) = Fλ(k, ·).

20

506
Approved for Public Release; Distribution Unlimited.

Definition 4.2 (⊆). For two representation classes F = {Fλ} and G = {Gλ} on the same domain
X = {Xλ}, and with indexing sets I = {Iλ} and K = {Kλ} respectively, we say F ⊆ G if for all
sufficiently large λ, for all i ∈ Iλ, there exists k ∈ Kλ such that gk ≡ fi.

Informally, if a representation class contains a PRF family, then this class is hard to MQ-learn
(as in [Val84]). We apply similar reasoning to more powerful learning models. For example, if G is
the representation class DNF p(λ) as defined above, then F ⊆ DNF p(λ) is equivalent to saying that
for all sufficiently large λ, the concept class Fλ can be decided by a DNF on λ inputs of p(λ) size.

We now recall some standard definitions.

Definition 4.3 (ε-approximation). Let f, h : X → {0, 1} be arbitrary functions. We say h ε-
approximates f if Prx←X [h(x) 6= f(x)] ≤ ε.

In general, ε-approximation is considered under a general distribution on X, but we will consider
only the uniform distribution in this work.

Definition 4.4 (PAC learning). For a concept f : Xλ → {0, 1}, and a probability distribution
Dλ over Xλ, the example oracle EX(f,Dλ) takes no input and returns (x, f(x)) for x ← Dλ. An
algorithm A is an (ε, δ)-PAC learning algorithm for representation class C if for all sufficiently large
λ, ε = ε(λ) > 0, δ = δ(λ) > 0 and f ∈ Cλ,

Pr[AEX(f,Dλ) = h : h is an ε-approximation to f] ≥ 1− δ

Definition 4.5 (MQ learning). For a concept f : Xλ → {0, 1}, the membership oracle MEM(f)
takes as input a point x ∈ Xλ and returns f(x). An algorithm A is an (ε, δ)-MQ learning algorithm
for representation class C if for all sufficiently large λ, ε = ε(λ) > 0, δ = δ(λ) > 0, and f ∈ Cλ,

Pr[AMEM(f) = h : h is an ε-approximation to f] ≥ 1− δ

We consider only PAC learning with uniform examples, where Dλ is the uniform distribution
over Xλ. In this case, MQ is strictly stronger than PAC: everything that is PAC learnable is MQ
learnable.

Observe that for any f : Xλ → {0, 1}, either h(x) = 0 or h(x) = 1 will 1
2 -approximate f .

Furthermore, if A is inefficient, f may be learned exactly. For a learning algorithm to be non-
trivial, we require that it is efficient in λ, and that it at least weakly learns C.

Definition 4.6 (Efficient- and weak- learning). .

• A is said to be efficient if the time complexity of A and h are polynomial in 1/ε, 1/δ, and λ.

• A is said to weakly learn C if there exist some polynomials pε(λ), pδ(λ) for which ε ≤ 1
2−

1
pε(λ)

and δ ≤ 1− 1
pδ(λ) .

• We say a representation class is learnable if it is both efficiently and weakly learnable. Oth-
erwise, it is hard to learn.

Lastly, we recall the efficiently recognizable ensembles of sets as defined in Section 2. We
occasionally call such ensembles indexed, or succinct. Throughout this section, we require this
property of our set ensembles S. Both the MQRA and AQ learning models that we present are
defined with respect to S = {Sλ}, an efficiently recognizable ensemble of subsets of the domain Xλ.

21

507
Approved for Public Release; Distribution Unlimited.

4.2 Membership queries with restriction access

In the PAC-with-Restriction Access model of learning of Dvir, et al [DRWY12], a powerful gener-
alization of PAC learning is studied: rather than receiving random examples of the form (x, f(x))
for the concept f , the learning algorithm receives a random ”restriction” of f - an implementation
of the concept for a subset of the domain. Given this implementation of the restricted concept, the
learning algorithm can both evaluate f on many related inputs, and study the properties of the
restricted implementation itself. We consider an even stronger setting: instead of receiving random
restrictions, the learner can adaptively request any restriction from a specified class S. We call this
model membership queries with restriction access (MQRA).

As a concrete example to help motivate and understand the definitions, we consider DNF
formulas. For a DNF formula φ, a natural restriction might set the values of some of the variables.
Consequently, some literals and clauses may have their values determined, yielding a simpler DNF
formula φ′ which agrees with φ on this restricted domain. This is the ‘restricted concept’ that the
learner receives.

This model is quite powerful; indeed, decision trees and DNFs are efficiently learnable in the
PAC-with-restriction-access learning model whereas neither is known to be learnable in plain PAC
model [DRWY12]. Might this access model be too powerful or are there concepts that cannot be
learned?

Looking forward, we will show that constrained PRFs correspond to hard-to-learn concepts in
the MQRAlearning model. In the remainder, we will formally define the learning model, define
constrained PRFs, and prove the main lower bound of this section.

4.2.1 MQRAlearning

While the original restriction access model only discusses restrictions fixing individual input bits
for a circuit, we consider more general notions of restrictions.

Definition 4.7 (Restriction). For a concept f : Xλ → {0, 1}, a restriction S ⊆ Xλ is a subset of
the domain. The restricted concept f |S : S → {0, 1} is equal to f on S.

While general restrictions can be studied, we consider the setting in which all restrictions S are
in a specified set of restrictions S. For a DNF formula φ, a restriction might be S = {x : x1 =
1 ∧ x4 = 0}. This restriction is contained in the set of ‘bit-fixing’ restrictions in which individual
input bits are fixed. In fact, this class of restrictions is all that is considered in [DRWY12]; we
generalize their model by allowing more general classes of restrictions.

In the previous example, a restricted DNF can be naturally represented as another DNF. More
generally, we allow a learning algorithm to receive representations of restricted concepts. These
representations are computed according to a Simplification Rule.16

Definition 4.8 (Simplification Rule). For each λ, let Cλ = {fk : Xλ → {0, 1}}k∈Kλ be a concept
class, Sλ an efficiently recognizable ensemble of subsets of Xλ, and S ∈ Sλ be a restriction. A
simplification of fk ∈ Cλ according to S is the description kS ∈ Kλ of a concept fKS such that
fkS = fk|S. A simplification rule for C = {Cλ} and S = {Sλ} is a mapping Simpλ : (k, S) 7→ kS for
all k ∈ Kλ, S ∈ Sλ.

16 Whereas a DNF with some fixed input bits is naturally represented by a smaller DNF, wehen considering general
representation classes and general restrictions, this is not always the case. Indeed, the simplification of f according
to S may be in fact more complex. We use the term “Simplification Rule” for compatibility with [DRWY12].

22

508
Approved for Public Release; Distribution Unlimited.

In the PAC-learning with restriction access (PACRA) learning model considered in [DRWY12],
the learner only receives random restrictions. Instead, we consider the setting where the learner can
adaptively request any restriction from a specified class S. This model – which we call membership
queries learning with restriction access (MQRA) – is a strict generalization of PACRA for efficiently
samplable distributions over restrictions (including all the positive results in [DRWY12]). Further
observe that this strictly generalizes the membership oracle of MQ learning if S is such that for
each x, it is easy to find a restriction S covering x.

In traditional learning models (PAC, MQ) it is trivial to output a hypothesis that 1
2 -approximates

any concept f ; a successful learning algorithm is required to learn substantially more than half of
the concept. With restriction queries, the learning algorithm is explicitly given the power to com-
pute on some fraction α of the domain. Consequently, outputting an ε ≥ (1−α

2)-approximation to
f is trivial; we require a successful learning algorithm to do substantially better. This reasoning is
reflected in the definition of weak MQRAlearning below.

Definition 4.9 (Membership queries with restriction access (MQRA)). In a given execution of
an oracle algorithm A with access to a restriction oracle Simp, let XS ⊆ Xλ be the union of all
restrictions S ∈ Sλ queried by A. S is an efficiently recognizable ensemble of subsets of the domain
Xλ.

An algorithm A is an (ε, δ, α)-MQRAlearning algorithm for representation class C with respect
to a restrictions in S and simplification rule Simp if, for all sufficiently large λ, for every fk ∈ Cλ,
Pr[ASimp(k,·) = h] ≥ 1− δ where h is an ε-approximation to f , – and furthermore – |XS | ≤ α|Xλ|.
A is said to weakly MQRA-learn if α ≤ 1− 1

pα(λ) , ε ≤ (1−α)(1
2 −

1
pε(λ)), δ ≤ 1− 1

pδ(λ) for some
polynomials pα, pε, pδ.

4.2.2 Constrained PRFs

We look to constrained pseudorandom functions for hard-to-learn concepts in the restriction access
model. To support the extra power of the restriction access model, our PRFs will need to allow
efficient evaluation on restrictions of the domain while maintaining some hardness on the remainder.
Constrained PRFs [KPTZ13a, BGI14a, BW13a] provide just this power. For showing hardness of
restriction access learning, the constrained keys will correspond to restricted concepts; the strong
pseudorandomness property will give the hardness result.

Definition: Syntax A family of functions F = {Fλ : Kλ×Xλ → Yλ} is said to be constrained
with respect to a set system S, if it supports the additional efficient algorithms:

• Constrainλ(k, S): A randomized algorithm, on input (k, S) ∈ Kλ×Sλ, outputs a constrained
key kS . We K̃λ , Support(Constrain(k, S)) the set of all constrained keys.

• Evalλ(kS , x): A deterministic algorithms taking input (kS , x) ∈ K̃λ ×Xλ, and satisfying the
following correctness guarantee:

Eval(Constrain(k, S), x) =

{
F (k, x) if x ∈ S
⊥ 6∈ Y otherwise.

Definition: Security Game

• C picks a random key k ∈ Kλ and initializes two empty subsets of the domain: C, V = ∅. C
and V are subsets of Xλ which must satisfy the invariant that C ∩ V = ∅. C will keep track

23

509
Approved for Public Release; Distribution Unlimited.

the inputs x ∈ Xλ to the Challenge oracle, and V will be the union of all sets S queries to
Constrain plus all points x ∈ Xλ to the Eval oracle.

• C picks b ∈ {0, 1} to run EXP(b), and exposes the following three oracles to A :

Eval(x): On input x ∈ Xλ, outputs F (k, x). V ← V ∪ {x}.
Constrain(S): On input S ∈ Sλ, outputs kS . V ←W ∪ S.

Challenge(x): On input x ∈ Xλ, outputs:

F (k, x) in EXP(0)
y ← Yλ in EXP(1)

.

In EXP(1), the responses to Challenge are selected uniformly at random from the range, with
the requirement that the responses be consistent for identical inputs x.

• The adversary queries the oracles with the requirement that C ∩ V = ∅, and outputs a bit
b′ ∈ {0, 1}.

Definition 4.10. The advantage is defined as ADV cPRF
λ (A) := Pr[b′ = b] in the above

security game.

Definition 4.11 (Constrained PRF (cPRF)). A family of functions F = {Fλ : Kλ × Xλ →
Yλ} constrained with respect to S is a constrained PRF if for all probabilistic polynomial-time
adversaries A and for all sufficiently large λ and all polynomials p(n):

ADV cPRF
λ (A) <

1

2
+

1

p(n)
,

over the randomness of C and A.

4.2.3 Hardness of restriction access Learning

We will now prove that if a constrained PRF F with respect to set system S is computable in
representation class C, then C hard to MQRA-learn with respect to S and some simplification rule.

Theorem 4.1. Let F = {Fλ} be a Boolean-valued constrained PRF (also interpreted as a represen-
tation class) with respect to sets S and key-space K. Let EV AL = {EV ALλ} be a representation
class where each EV ALλ is defined as:

EV ALλ =
{
gkS (·) : gkS (x) = PRF.Eval(kS , x)

}
.

Namely, each concept in the class EV ALλ is indexed by kS ∈ K̃λ and has Xλ as its domain. For
any representation class C = {Cλ} such that F ⊆ C and EV AL ⊆ C, there exists a simplification
rule Simp such that C is hard to MQRA-learn with respect to the set of restrictions S and the
simplification rule Simp.

Existing constructions of constrained PRFs [BW13a] yield the following corollaries:

24

510
Approved for Public Release; Distribution Unlimited.

Corollary 4.2. Let n = n(λ) be a polynomial, and assume that for the n + 1-MDDH problem,
every adversary time poly(λ) the advantage is at most ε(λ)/2n. Then there is a simplification rule
such that NC1 is hard to MQRA-learn with respect to restrictions in HC17.

Corollary 4.3. Assuming the existence of one-way functions, there is a simplification rule such
that P/poly is hard to MQRA-learn with respect to restrictions in S[a,b]

18.

Remarks: The Simplification Rule here is really the crux of the issue. In our theorem, there
exists a simplification rule under which we get a hardness result. This may seem somewhat artificial.
On the other hand, this implies that the restriction-access learnability (whether PAC- or MQ-RA)
of a concept class crucially depends on the simplification rule, as the trivial simplification rule of
Simp(k, S) = k admits a trivial learning-algorithm in either setting. This work reinforces that the
choice simplification rule can affect the learnability of a given representation class. Positive results
for restriction access learning that were independent of the representation would be interesting.

Proof of Theorem 4.1. We interpret F = {Fλ} as a representation class. For each λ, the concepts
fk ∈ Fλ are indexed by Kλ and have domain Xλ. Let EV AL = {EV ALλ} be a representation class
defined as in the theorem statement. The indexing set for EV ALλ is K̃λ, the set of constrained
keys kS for k ∈ Kλ, S ∈ Sλ.

Let C = {Cλ} be a representation class, with domain Xλ and indexing set Iλ. For i ∈ Iλ, ci is a
concept in Cλ.

By hypothesis, F ⊆ C: for sufficiently large λ, for all k ∈ Kλ there exists i ∈ Iλ such that
ci ≡ fk. Similarly, for all kS ∈ K̃λ there exists i ∈ Iλ such that ci ≡ Evalλ(kS , ·). For concreteness,
let Mλ be this map from Kλ ∪ K̃λ to Iλ.19

We can now specify the simplification rule Simpλ : Iλ × Sλ → Iλ. Letting Mλ(Kλ) ⊆ Iλ be the
image of Kλ under Mλ:

Simpλ(i, S) =

{
Mλ(Constrainλ(M−1

λ (i), S)) if i ∈Mλ(Kλ)
i otherwise.

For example, i may be a circuit computing the PRF fk for some k = M−1(i). The simplifica-
tion computes the circuit corresponding to a constrained PRF key, if the starting circuit already
computes a member of the PRF family Fλ.20

Reduction: Suppose, for contradiction, that there exists an such an efficient learning algorithm
A for C as in the statement of the theorem. We construct algorithm B breaking the constrained
PRF security. In the PRF security game, B is presented with the oracles fk(·), Constrainλ(k, ·),
and Challengeλ(·), for some k ← Kλ. Run A, and answer queries S ∈ Sλ to the restriction oracle
by querying Constrainλ(k, S), receiving kS , and returning Mλ(kS). Once A terminates, it outputs
hypothesis h. By assumption on A, with probability at least 1− δ > 1

pδ(λ) , the hypothesis h is an

ε-approximation of cM(k) ≡ fk with ε ≤ 1−α
2 and α < 1− 1

pα(λ) .

After receiving hypothesis h, B estimates the probability Prx←X\XS [h(x) = Challengeλ(x)]. In
EXP(0), this probability is at least 1−ε with probability at least 1−δ; in EXP(1), it is exactly 1/2.

17as defined in Section 3.
18as defined in Section 3.
19 This is a non-uniform reduction.
20Note that while the inverse map M−1

λ may be inefficient, in our reduction, the concept in question is represented
by a PRF key k. Thus B must only compute the forward map Mλ.

25

511
Approved for Public Release; Distribution Unlimited.

To sample uniform x ∈ X \XS , we simply take a uniform x ∈ X: with probability 1−α ≥ 1/pα(n),
x ∈ X \XS . Thus, B runs in expected polynomial time. If the estimate is close to ε, guess EXP(0);
otherwise, flip an fair coin b′ ∈ {0, 1} and guess EXP(b′). The advantage ADV cPRF

λ of B in the
PRF security game is at least 1

3pδ(λ) for all sufficiently large λ (see Analysis for details), directly
violating the security of F .

Analysis: Let pb , Prx∈X\XS [h(x) 6= Challengeλ(x)|EXP (b)] be the probability taken with
respect to experiment EXP(b). In EXP(1), Challengeλ is a uniformly random function. Thus,
p1 = 1

2 . With high probability, B will output a random bit b′ ∈ {0, 1}, guessing correctly with
probability 1/2.

In EXP(0), h is an ε-approximation to fk, and thus to Challengeλ, with probability at least
1 − δ. In this case, p0 ≥ 1 − ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high

probability by estimating p using only polynomial in λ, pε(λ) samples. On the other hand, if h is
not an ε-approximation, B will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is: Pr[b = b′|b = 0] ≥ (1 − δ)(1 − negl(λ)) + δ

2 which, for
1 − δ ≥ 1

pδ(λ) is at least 1
3pδ(λ)

+ 1
2 for sufficiently large λ. Thus B a non-negligible advantage of

1/3pδ(λ) in the constrained PRF security game.

4.3 Learning with related concepts

The idea that some functions or concepts are related to one another is very natural. For a DNF
formula, for instance, related concepts may include formulas where a clause has been added or
formulas where the roles of two variables are swapped. For a decision tree, we could consider
removing some accepting leaves and examining the resulting behavior. We might consider a circuit;
related circuits might alter internal gates or fix the values of specific input or internal wires.

Formally, we consider indexed representation classes. As discussed in the preliminaries, general
classes of functions are easily represented as a indexed family. For example, we may consider the bit
representation of a function (say, a log-depth circuit) as an index into a whole class (NC1). This
formalism enables the study of related concepts by instead considering concepts whose keys are
related in some way. The related concept setting shares an important property with the restriction
access setting: different representations of the same functions might have very different properties.
Exploring the properties of different representations – and perhaps their RC learnability as defined
below – is a direction for future work.

In our model of learning with related concepts, we allow the learner to query a membership
oracle for the concept fk ∈ Cλ and also for some ‘related’ concepts fφ(k) ∈ Cλ for some functions φ.
The related-concept deriving (RCD) function φ is restricted to be from a specified class, Φλ. For
each φ ∈ Φλ, a learner can access the membership oracle for fφ(k). For example: let Kλ = {0, 1}λ
and let

Φ⊕λ = {φ∆ : k 7→ k ⊕∆}∆∈{0,1}λ (4)

Definition 4.12 (Φ-Related-Concept Learning Model). For C a representation class indexed by
{Kλ}, let Φ = {Φλ}, with each Φλ = {φ : Kλ → Kλ} a set of functions on Kλ containing the
identity function idλ. The related-concept oracle RCk, on query (φ, x), responds with fφ(k)(x), for
all φ ∈ Φλ and x ∈ Xλ.

An algorithm A is an (ε, δ)-Φ-RC learning algorithm for a C if, for all sufficiently large λ, for
every k ∈ Kλ, Pr[ARKk(·,·) = h] ≥ 1− δ where h is an ε-approximation fk.

26

512
Approved for Public Release; Distribution Unlimited.

Studying the related-concept learnability of standard representation classes (ex: DNFs and
decision trees) under different RCD classes Φ is an interesting direction for future study.

4.3.1 RKA PRFs

Again we look to pseudorandom functions for hard-to-learn concepts. To support the extra power of
the related concept model, our PRFs will need to maintain their pseudorandomness even when the
PRF adversary has access to the function computed with related keys. Related-key secure PRFs
[BC10, ABPP14] provide just this guarantee. As in the definition of RC learning, the security of
related-key PRFs is given with respect to a class Φ of related-key deriving functions. As we describe
in the remainder of the section, related-key secure PRFs prove hard to weakly Φ-RC learn.

Definition: Security Game
Let Φλ ⊆ Fun(Kλ,Kλ) be a subset of functions on Kλ. The set Φ = {Φλ} is called the

Related-Key Deriving (RKD) class and each function φ ∈ Φλ is an RKD function.

• C picks a random key k ∈ Kλ, a bit b ∈ {0, 1}, and exposes the oracle according to EXP(b):

RKFnλ(φ, x): On input (φ, x) ∈ Φλ ×Xλ, outputs:

F (φ(k), x) in EXP(0)
y ← Yλ in EXP(1)

.

In EXP(1), the responses to RKFnλ are selected uniformly at random from the range, with
the requirement that the responses be consistent for identical inputs (φ, x).

• The adversary interacts with the oracle, and outputs a bit b′ ∈ {0, 1}.

Definition 4.13. The advantage is defined as ADV Φ-RKA
λ (A) := Pr[b′ = b] in the above

security game.

Definition 4.14 (Φ Related-key attack PRF (Φ-RKA-PRF)). Let F = {Fλ : Kλ ×Xλ → Yλ} be
family of functions and let Φ = {Φλ} with each Φλ ⊆ Fun(Kλ,Kλ) be a set of functions on Kλ. F
is a Φ related-key attack PRF family if for all probabilistic polynomial-time adversaries A and for
all sufficiently large λ and all polynomials p(n):

ADV Φ-RKA
λ (A) <

1

2
+

1

p(n)
,

over the randomness of C and A.

4.3.2 Hardness of related concept learning

In the Appendix C, we present a concept that can be RC-learned under Φ⊕ (Equation 4), but is
hard to weakly learn with access to membership queries. We construct the concept F from a PRF
G and a PRP P . Informally, the construction works by hardcoding the the PRF key in the function
values on a related PRF. With the appropriate related-concept access, a learner can learn the PRF
key.

We now present a general theorem relating RKA-PRFs to hardness of RC learning. This
connection yields hardness for a class C with respect to restricted classes of relation functions Φ.
More general hardness results will require new techniques.

27

513
Approved for Public Release; Distribution Unlimited.

Theorem 4.4. Let F be a boolean-valued Φ-RKA-PRF with respect to related-key deriving class
Φ and keyspace K. For a representation class C, if F ⊆ C, then there exists an related-concept
deriving class Ψ such that C is hard to Ψ-RC.

As a corollary, we get a lower bound coming from the RKA-PRF literature. For a group (G,+),
and K = Gm, define the the element-wise addition RKD functions as

Φm
+ = {φ∆ : k[1], . . . , k[m] 7→ k[1] + ∆[1], . . . , k[m] + ∆[m]}∆∈Gm (5)

Notice that Φm
+ directly generalizes Φ⊕ with G = Z2. For this natural RKD function family, we

are able to provide a strong lower bound based on the hardness of DDH and the existence of
collision-resistant hash functions using the RKA-PRF constructions from [ABPP14].

Corollary 4.5 (Negative Result from RKA-PRF). If the DDH assumption holds and collision-
resistant hash functions exist NC1 is hard to Φm

+ -RKA-learn.

Proof of Theorem 4.4. We interpret F = {Fλ} as a representation class. For each λ, the concepts
fk ∈ Fλ are indexed by Kλ and have domain Xλ. Let C = {Cλ} be a representation class, with
domain Xλ and indexing set Iλ. For i ∈ Iλ, ci is a concept in Cλ.

By hypothesis, F ⊆ C: for sufficiently large λ, for all k ∈ Kλ there exists i ∈ Iλ such that
ci ≡ fk. For concreteness, let Mλ be this map from Kλ to Iλ.21

We can now specify the RCD class Ψλ : Iλ → Iλ. Let Mλ(Kλ) ⊆ Iλ be the image of Kλ under
Mλ. We define Ψλ = {ψφ : φ ∈ Φλ}:

ψφ(i) =

{
Mλ ◦ φ ◦M−1

λ (i) if i ∈Mλ(Kλ)
i otherwise.

Reduction: Suppose, for contradiction, that there exists an efficient Ψ-RC learning algorithm A
for C as in the statement of the theorem. We construct algorithm B breaking the Φ-RKA-PRF
security of F . In the PRF security game, B is presented with the oracle RKFn(·, ·); A is presented
with the oracle RC(·, ·). Run A, and answer queries (ψφ, x) ∈ Ψλ ×Xλ to RC by querying RKFn
on (φ, x) and passing the response along to A. Let XA = {x ∈ Xλ : A queried (ψ, x) for some ψ}.
Once A terminates, it outputs hypothesis h. In EXP(0), RKFn() responds according to fk for
some k ∈ Kλ; in this case, B simulates the RC oracle for the concept cM(k).

After receiving hypothesis h, B estimates the probability Prx←X\XA [h(x) = RKFnλ(x)]. In
EXP(0), this probability is at least 1 − ε with probability at least 1 − δ; in EXP(1), it is exactly
1/2. To sample uniform x ∈ X \ XA, we simply take a uniform x ∈ X: with high probability
x ∈ X \XA. If the estimate is close to ε, guess EXP(0); otherwise, flip an fair coin b′ ∈ {0, 1} and
guess EXP(b′). The advantage ADV Φ-RKA

λ of B in the PRF security game is at least 1
3pδ(n) (see

Analysis for details) for all sufficiently large λ, directly violating the security of F .
Analysis: Let pb , Prx∈X\XA [h(x) 6= RKFn(idλ, x)|EXP (b)] be the probability taken with

respect to experiment EXP(b). In EXP(1), RKFn is a uniformly random function. Thus, p1 = 1
2 .

With high probability, B will output a random bit b′ ∈ {0, 1}, guessing correctly with probability
1/2.

In EXP(0), h is an ε-approximation to RKFn(id, ·) with probability at least 1− δ. In this case,
p0 ≥ 1−ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high probability by estimating

21 This is a non-uniform reduction in general, but in most cases, the map M is known. That is, Mλ is the map
that takes a key and outputs a circuit computing the function.

28

514
Approved for Public Release; Distribution Unlimited.

p using only polynomial in λ, pε(λ) samples. On the other hand, if h is not an ε-approximation, B
will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is: Pr[b = b′|b = 0] ≥ (1 − δ)(1 − negl(λ)) + δ

2 which, for
1 − δ ≥ 1

pδ(λ) is at least 1
3pδ(λ)

+ 1
2 for sufficiently large λ. Thus B a non-negligible advantage of

1/3pδ(λ) in the Φ-RKA-PRF security game.

Proof. For n ∈ N let G = 〈g〉 be a group of prime order p = p(n), Xn = {0, 1}m(n) \ {0n},
Kn = Zmp (n), and define Fk(x) as in Theorem 4.5 of [Abdalla] (). Let φm+ be as above over K.

4.4 Learning with Aggregate Queries

This computational learning model is inspired by our aggregate PRFs. Rather than being a natural
model in its own right, this model further illustrates how cryptography and learning are in some
senses duals. Here, we consider a new extension to the power of the learning algorithm. Whereas
membership queries are of the form “What is the label of an example x?”, we grant the learner the
power to request the evaluation of simple functions on tuples of examples (x1, ..., xk) such as “How
many of (x1...xk) are in C?” or “Compute the product of the labels of (x1, ..., xk)?”. Clearly, if
k is polynomial then this will result only a polynomial gain in the query complexity of a learning
algorithm in the best case. Instead, we propose to study cases when k may be super polynomial,
but the description of the tuples is succinct. For example, the learning algorithm might query the
number of x’s in a large interval that are positive examples in the concept.

As with the restriction access and related concept models – and the aggregate PRFs we define
in this work – the Aggregate Queries (AQ) learning model will be considered with restrictions to
both the types of aggregate functions Γ the learner can query, and the sets S over which the learner
may request these functions to be evaluated on. We now present the AQ learning model informally:

Definition 4.15 ((Γ,S)-Aggregate Queries (AQ) Learning). Let C be a representation class with
domains X = {Xλ}, and S = {Sλ} where each Sλ is a collection of efficiently recognizeable subsets
of the Xλ. Γ : {0, 1}∗ → Vλ be an aggregation function [as in def:]. Let AGGλk , AGGλfk,Sλ,Γλ be the
aggregation oracle for fk ∈ Cλ, for S ∈ Sλ and Γλ.

An algorithm A is an (ε, δ)-(Γ,S)-AQ learning algorithm for C if, for all sufficiently large λ,

for every fk ∈ Cλ, Pr[AMEMfk
(·),AGGλfk (·)

= h] ≥ 1− δ where h is an ε-approximation to fk.

4.4.1 Hardness of aggregate query learning

Theorem 4.6. Let F be a boolean-valued aggregate PRF with respect to set system S = {Sλ}
and accumulation function Γ = {Γλ}. For a representation class C, if F ⊆ C, then C is hard to
(Γ,S)-AQ learn.

Looking back to our constructions of aggregate pseudorandom function families from the pre-
quel, we have the following corollaries.

Corollary 4.7. The existence of one-way functions implies that P/poly is hard to (
∑
,S[a,b])-AQ

learn, with S[a,b] the set of sub-intervals of the domain as defined in Section 3.

Corollary 4.8. The DDH Assumption implies that NC1 is hard to (
∑
,S[a,b])-AQ learn, with S[a,b]

the set of sub-intervals of the domain as defined in Section 3.

29

515
Approved for Public Release; Distribution Unlimited.

Corollary 4.9. The subexponential DDH Assumption implies that NC1 is hard to (
∏
,R)-AQ

learn, with R the set of read-once boolean formulas defined in Section 3.

Proof of Theorem 4.6. Interpreting F itself as a concept class, we will show an efficient reduction
from violating the pseudorandomness property of F to weakly (Γ,S)-AQ learning F . By assump-
tion, F ⊆ C, implying that C is hard to learn as well.

Reduction: Suppose for contradiction that there exists an efficient weak learning algorithm A for
F . We define algorithm B violating the aggregate PRF security of F . In the PRF security game,
B is presented with two oracles: F (·) and AGGλF for a function F chosen according to the secret
bit b ∈ {0, 1}. In EXP(0), F = fk for random k ∈ Kλ; by assumption fk ∈ Cλ. In EXP(1), F is a
uniformly random function from X to {0, 1}. The learning algorithm A is presented with precisely
the same oracles. B runs A, simulating its oracles by passing queries and responses to its own
oracles. XA = {x ∈ Xλ : A queried (ψ, x) for some ψ}. Once A terminates, it outputs hypothesis
h.

After receiving hypothesis h, B estimates the probability

p = Pr
x←X\XA

[h(x) = F (x)]

(using polynomial in λ, pε(λ) samples). In EXP(0), this probability is at least 1−ε with probability
at least 1 − δ; in EXP(1), it is exactly 1/2. To sample uniform x ∈ X \ XA, we simply take a
uniform x ∈ X: with high probability x ∈ X \ XA. If the estimate is close to ε, guess EXP(0);
otherwise, flip an fair coin b′ ∈ {0, 1} and guess EXP(b′). The advantage ADV APRF

λ of B in the
PRF security game is at least 1

3pδ(n) for all sufficiently large λ (as shown below), directly violating
the security of F .

Let
pb , Pr

x∈X\XA
[h(x) 6= F (x)|EXP (b)]

be the probability taken with respect to experiment EXP(b). In EXP(1), F is a uniformly random
function. Thus, p1 = 1

2 . With high probability, B will output a random bit b′ ∈ {0, 1}, guessing
correctly with probability 1/2.

In EXP(0), h is an ε-approximation to F with probability at least 1 − δ. In this case, p0 ≥
1 − ε ≥ 1

2 + 1
pε(λ) . By a Hoeffding bound, B will guess b′ = 0 with high probability by estimating

p using only polynomial in λ, pε(λ) samples. On the other hand, if h is not an ε-approximation, B
will b′ = 0 with probability at least 1/2.

Let negl(λ) be the error probability from the Hoeffding bound, which can be made exponentially
small in λ. The success probability is:

Pr[b = b′|b = 0] ≥ (1− δ)(1− negl(λ)) +
δ

2

which, for 1 − δ ≥ 1
pδ(λ) is at least 1

3pδ(λ)
+ 1

2 for sufficiently large λ. Thus B a non-negligible

advantage of 1/3pδ(λ) in the (Γ,S)-aggregate-PRF security game.

4.4.2 Acknowledgements

Aloni Cohen’s research was supported in part by NSF Graduate Student Fellowship and NSF grants
CNS1347364, CNS1413920 and FA875011-20225.

30

516
Approved for Public Release; Distribution Unlimited.

Shafi Goldwasser’s research was supported in part by NSF Grants CNS1347364, CNS1413920 and
FA875011-20225.

Vinod Vaikuntanathan’s research was supported by DARPA Grant number FA8750-11-2-0225, an
Alfred P. Sloan Research Fellowship, an NSF CAREER Award CNS-1350619, NSF Frontier Grant
CNS-1414119, a Microsoft Faculty Fellowship, and a Steven and Renee Finn Career Development
Chair from MIT.

References

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson.
Related-key security for pseudorandom functions beyond the linear barrier. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I, volume 8616 of Lecture Notes in Computer Science, pages 77–94.
Springer, 2014.

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. In Tal Rabin, editor, Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August
15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages
666–684. Springer, 2010.

[BF02] Nader H Bshouty and Vitaly Feldman. On using extended statistical queries to avoid
membership queries. The Journal of Machine Learning Research, 2:359–395, 2002.

[BGI14a] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Krawczyk [Kra14], pages 501–519.

[BGI14b] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Krawczyk [Kra14], pages 501–519.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Phillip Rogaway, editor, Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science,
pages 111–131. Springer, 2011.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
Rka-prps, rka-prfs, and applications. In Advances in CryptologyEUROCRYPT 2003,
pages 491–506. Springer, 2003.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic prfs and their applications. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 410–428. Springer, 2013.

31

517
Approved for Public Release; Distribution Unlimited.

[BW04] Andrej Bogdanov and Hoeteck Wee. A stateful implementation of a random function
supporting parity queries over hypercubes. In Approximation, Randomization, and
Combinatorial Optimization, Algorithms and Techniques, 7th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems, APPROX
2004, and 8th International Workshop on Randomization and Computation, RANDOM
2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings, pages 298–309, 2004.

[BW13a] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Sako and Sarkar [SS13], pages 280–300.

[BW13b] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Sako and Sarkar [SS13], pages 280–300.

[DRWY12] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir Yehudayoff. Restriction access. In
Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012, pages 19–33. ACM, 2012.

[GGI+02] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and
Martin Strauss. Fast, small-space algorithms for approximate histogram maintenance.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21,
2002, Montréal, Québec, Canada, pages 389–398, 2002.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986. Extended abstract in FOCS 84.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of
huge random objects. SIAM J. Comput., 39(7):2761–2822, 2010.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[KPTZ13a] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Sadeghi et al. [SGY13], pages
669–684.

[KPTZ13b] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Sadeghi et al. [SGY13], pages
669–684.

[Kra14] Hugo Krawczyk, editor. Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer
Science. Springer, 2014.

[KV94] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004.

32

518
Approved for Public Release; Distribution Unlimited.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[SGY13] Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013. ACM, 2013.

[SS13] Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASIACRYPT 2013 -
19th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, volume
8270 of Lecture Notes in Computer Science. Springer, 2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comput. Sci., 47(3):85–93, 1986.

A Simple Positive Results

In the following, we present examples of concept classes separating the Related Concept and Ag-
gregate Query learning models from learning with Membership Queries. We emphasize that the
learnability of many traditional concept classes in these models has not been studied, and more
general positive results may exist. In order to exhibit separations, we present generic, contrived
constructions from simple cryptographic primitives to exhibit our separations. In each case, a MQ
learner cannot succeed better than a trivial algorithm, while the stronger model manages to exactly,
and properly learn the function.

A.1 Related-concept

While some existing pseudorandom functions are known to suffer from related-key attacks [BK03],
these vulnerabilities do not seem directly useful for a proper learning algorithm. Instead we con-
struct a family of PRFs for which the secret key can be recovered under related-key attacks.

We demonstrate a concept that can be RC-learned under additive Φ (defined below), but is
hard to weakly learn with access to membership queries. We construct the concept F from a PRF
G and a PRP P . Informally, the construction works by hardcoding the the PRF key in the function
values under a related PRF key. With the appropriate related-key access, a learner can learn the
PRF key.

Let G = {Gk : Z2λ → {0, 1}}k∈K be a PRF with keyspace K = {0, 1}λ and let P = {π : K → K}
be a pseudorandom permutation family on K. For each gk ∈ GK and π ∈ P , we define the following

33

519
Approved for Public Release; Distribution Unlimited.

function:

Fk,π =

xth bit of (π(k)⊕ k) if x ∈ [0, λ− 1]

(x− λ)th bit of π−1(k) if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Let F = {Fk,π : k ∈ K,π ∈ P}. We interpret F as a keyed concept with elements indexed by a
pairs (k, π).

We need to choose a RKD class Φ that will enable recovery of the PRF key k by accessing the
PRF for key π(k)⊕ k. We choose Φ = Φ⊕ from Section 4.3.1:

Φ⊕ = {φ∆ : k 7→ k ⊕∆}∆∈K
Note that in that section, we prove a negative result for a strictly stronger RC adversary, but with
a different concept class.

Theorem A.1 (Separating RC and MQ). The keyed concept F defined above can be (efficiently)
exactly Φ⊕-RC-learned, but is hard to even weakly MQ learn efficiently.

Proof. Let Fk,π ∈ Fn.
Φ⊕-RC Learning: Let RCk,π be the related-concept oracle, taking queries (φ, x) ∈ Φ⊕ × Z2λ

and returning Fφ(k),π(x). Define ∆ ∈ K such that ∆[i] = Fk,x(i) for all i ∈ [λ − 1]; compute the

ith bit by querying the oracle at (id, i), where id = 0λ is the identity function. By construction,
k⊕∆ = π(k). Let k′ ∈ K such that k′[i] = Fπ(k),i+λ for all i ∈ [λ− 1]; we find bit k′[i] by querying
(φ∆, i+ λ). By construction, k′ = π−1(π(k)) = k. Given the PRF key k, we may compute Fk,π on
all inputs in X \ [2λ− 1]; simply querying those remaining points yields an exact characterization
of Fk,π.

MQ Learning: (Informally) Given a weakly-MQ learning algorithm A for F , an algorithm B
violating the security of the pseudorandom function can be constructed. By assumption, A is an
(ε, δ)-MQ learning algorithm with ε and 1 − δ both non-negligible in n. First, observe that A is
an (ε′, δ′)-MQ-learning algorithm for the following concept class, indexed by k ∈ K and uniformly
random r1 ∈ {0, 1}λ, with ε′ ≥ ε− negl(λ) and δ′ ≥ δ − negl(λ):

F 1
k,r1 =

xth bit of r1 if x ∈ [0, λ− 1]

(x− λ)th bit of π−1(k) if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Otherwise, the quality of the hypothesis output by A would be noticeably different for random
functions Fk,π and Fk,r1 . By the security of the pseudorandom permutation, π(k) ⊕ k should be
indistinguishable from uniformly random r1; this difference could be used to violate the security of
the pseudorandom permutation π.

A similar argument will show that A is an (ε′′, δ′′)-MQ-learning algorithm for the following
concept class, indexed by k ∈ K and r1, r2 ∈ {0, 1}λ, with ε′′ ≥ ε′ − negl(λ) and δ′′ ≥ δ′ − negl(λ):

F 2
k,r1 =

xth bit of r1 if x ∈ [0, λ− 1]

(x− λ)th bit of r2 if x ∈ [λ, 2λ− 1]
gk(x) otherwise

Furthermore, weak learning of this concept requires weak learning of this concept even when re-
stricting the domain to require x 6∈ [0, 2λ− 1].

This last oracle can be simulated by B with only oracle access to a random PRF gk ∈ Gλ. That
this concept is weakly learnable violates the security of the PRF G in the usual way.

34

520
Approved for Public Release; Distribution Unlimited.

A.2 Aggregate queries

We turn to a positive result for learning in the AQ model. Our starting point is the intuition that
with aggregate queries, it is easy to distinguish a point function from an everywhere-zero function.

Formally, consider the case when D = Z2λ , R = {0, 1}, Γ =
∑

is summation modulo 2, and
S[a,b] = {[a, b] : a, b ∈ Z2λ ; a ≤ b} the set of intervals on Zλ. By AQ-learning with respect to
summation over intervals, we mean (

∑
,S[a,b])-AQ learning. Let the concept class Dλ of point

functions be defined:
Dλ := {δy : y ∈ Z2λ}

where each δy is nonzero only at y.

Lemma A.2 (Point functions). The concept class of point functions Dλ is efficiently, exactly, and
properly (

∑
,S[a,b])-AQ-learnable.

Proof. Observe that for δy ∈ Dλ and interval [a, b] ⊆ Z2λ : AGG∑
,δy([a, b]) = 1 ⇐⇒ y ∈ [a, b].

This allows us to perform binary search over the domain and find y with at most λ queries to the
AGG∑

,δy(·) oracle.

But if we don’t require exact-learning, point functions are trivially learnable with no queries
at all; indeed, the hypothesis h(x) = 0 agrees with δy(x) at all but a single point! But Dλ is not
exactly MQ-learnable. More importantly, for two uniformly selected concepts δy, δw ← Dλ, MQ
cannot distinguish membership oracle access to δy and δw. We will leverage this to construct a
much stronger separation.

Let Gλ = {gk : {0, 1}λ−1 → {0, 1}}k∈{0,1}λ−1 be a pseudorandom function family with (λ−1)-bit
keys k and inputs x.

Functions in our concept class fk ∈ Fλ will be indexed by an (λ − 1)-bit key, but take inputs
from {0, 1}λ. On half the domain, fk behaves as the PRF gk, while on the other half it behaves as
the point function δk. Letting x[2 : λ] = (x[2], . . . , x[λ]):

fk(x) =

{
δk(x[2 : λ]) if x[0] = 0
Gk(x[2 : λ]) if x[1] = 1

Theorem A.3 (Separating AQ from MQ). The concept class F is exactly and (properly) AQ-
learnable with respect to summation over intervals. For any polynomials pε(λ), pδ(λ), this concept
class is hard to (ε, δ)-MQ learn for ε ≤ 1

4 −
1

pε(λ) and 1− δ ≥ 1
pδ(λ) .

Note that it while it easy to (1/4, 1/4)-MQ learn C (for example, outputting the constant 0
function), the theorem above claims that we cannot do appreciably better in ε with non-negligible
probability 1− δ. This has the flavor of a ‘hardness of weakly learning’ theorem.

Proof. For λ ∈ N, let fk ∈ Fλ. The first part of the theorem follows as a corollary to the previous
lemma. After exactly learning δk by binary search, the function fk is uniquely specified by k.

For the second part, we reduce to the hardness of MQ learning the pseudorandom function,
gk. Suppose for contradiction that there exists an algorithm A that, when given access to an
oracle O = gk(·), with probability at least 1

pδ(λ) , outputs hypothesis h : {0, 1}λ → {0, 1} with

Prx←{0,1}λ [h(x) = fk(x)] ≥ 3
4 + 1

pε
. We describe B – a weak MQ-learning algorithm for the concept

G = {gk}k∈K . Given access to oracles Oδ = δk(·) and OG = gk(·), B can exactly simulate oracle
access to O and thus output hypothesis h with the same distribution. But with only t(λ)-many

35

521
Approved for Public Release; Distribution Unlimited.

queries for any t, the probability (over the random choice of k) of querying a non-zero point in Oδ
is at most t(λ)/2λ−1; thus, with high probability, all queries to Oδ will be zero. Therefore it is
computationally infeasible to distinguish between the pair of oracles (Oδ,OG) and (O0,OG), where
O0 is the constant zero oracle.

If B answers A’s oracle queries with (O0,OG) instead of (Oδk ,OG), A will successfully output
h which ε′ approximates fk with probability 1 − δ′. By the indistinguishability argument, ε′ ≥
ε− negl(λ) ≥ ε/2 and 1− δ′ ≥ 1− δ − negl(λ) ≥ 1− δ/2.

Let h|b be the restriction of h to the set {x : x[1] = b} for b ∈ {0, 1}.

Pr
x

[h(x) 6= fk(x)] =
1

2
(Pr
x

[h|0(x) = 0] + Pr
x

[h|1(x) = gk(x[2 : n])]) ≥ 3

4
+

1

2pε

=⇒ Pr
x

[h|1(x) = gk(x[2 : n])] ≥ 1

2
+

1

pε(n)
.

Outputting h|1, B manages to weakly MQ learn the concept Gλ. That this concept is weakly
learnable violates the security of the PRF G in the usual way.

36

522
Approved for Public Release; Distribution Unlimited.

Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions
Or: How to Secretly Embed a Circuit in Your PRF

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto 14) constructed pseudorandom
functions (PRFs) from the Learning with Errors (LWE) assumption by embedding combinatorial
objects, a path and a tree respectively, in instances of the LWE problem. In this work, we show
how to generalize this approach to embed circuits, inspired by recent progress in the study of
Attribute Based Encryption.

Embedding a universal circuit for some class of functions allows us to produce constrained
keys for functions in this class, which gives us the first standard-lattice-assumption-based con-
strained PRF (CPRF) for general bounded-description bounded-depth functions, for arbitrary
polynomial bounds on the description size and the depth. (A constrained key w.r.t a circuit C
enables one to evaluate the PRF on all x for which C(x) = 1, but reveals nothing on the PRF
values at other points.) We rely on the LWE assumption and on the one-dimensional SIS (Short
Integer Solution) assumption, which are both related to the worst case hardness of general lattice
problems. Previous constructions for similar function classes relied on such exotic assumptions
as the existence of multilinear maps or secure program obfuscation. The main drawback of our
construction is that it does not allow collusion (i.e. to provide more than a single constrained
key to an adversary). Similarly to the aforementioned previous works, our PRF family is also
key homomorphic.

Interestingly, our constrained keys are very short. Their length does not depend directly
either on the size of the constraint circuit or on the input length. We are not aware of any prior
construction achieving this property, even relying on strong assumptions such as indistinguisha-
bility obfuscation.

1 Introduction

A pseudorandom function family (PRF) [GGM86] is a finite set of functions {Fs : D → R}s,
indexed by a seed (or key) s, such that for a random s, Fs is efficiently computable given s, and is
computationally indistinguishable from a random function from D to R, given oracle access. Since
the introduction of this concept, PRFs have been one of the most fundamental building blocks in
cryptography. Many variants of PRFs with additional properties have been introduced and have
found a plethora of applications in cryptography. In this work, we will focus on Constrained PRFs
and Key-Homomorphic PRFs.

∗Weizmann Institute of Science, Rehovot, Israel. Email: zvika.brakerski@weizmann.ac.il. Supported by ISF
grant 468/14, and by an Alon Young Faculty Fellowship.
†MIT, Cambridge, MA, USA. Email: vinodv@csail.mit.edu. Research supported by DARPA Grant number

FA8750-11-2-0225, Alfred P. Sloan Research Fellowship, NSF CAREER Award CNS-1350619, NSF Frontier Grant
CNS-1414119, Microsoft Faculty Fellowship, and a Steven and Renee Finn Career Development Chair from MIT.

1

523
Approved for Public Release; Distribution Unlimited.

Constrained PRFs. Constrained PRFs (CPRFs) have been introduced simultaneously by Boneh
and Waters [BW13], Kiayias et al. [KPTZ13] (as “Delegatable PRFs”) and by Boyle, Goldwasser
and Ivan [BGI14] (as “Functional PRFs”). Here an adversary is allowed to ask for a constrained
key which should allow it to evaluate the PRF on a subset of the inputs, while revealing nothing
about the values at other inputs. It has been shown [BW13, KPTZ13, BGI14] how to construct
CPRFs for function classes of the form x ∈ [i, j] (where the input is interpreted as an integer) based
on any one-way function. This in particular allows for the “puncturing” technique of Sahai and
Waters [SW14] that found many uses in the obfuscation literature. Further, [BW13] showed how to
achieve more complicated function classes such as bit fixing functions and even arbitrary circuits,
but those require use of cryptographic multilinear maps. They also introduce a number of appli-
cations for such CPRFs, including broadcast encryption schemes and identity based key exchange.
Hofheinz et al. [HKKW14] show how to achieve adaptively secure CPRFs from indistinguishability
obfuscation using a random oracle.

The original definition of CPRFs requires resilience to arbitrary collusion. Namely, a constrained
key for C1, C2 should give no more information than a constrained key for C1 ∨ C2 and must
not reveal anything about values where C1(x) = C2(x) = false. Many of the applications of
CPRFs (e.g. for broadcast encryption and identity based key exchange) rely on collusion resilience.
Unfortunately, our construction in this work will not allow collusions, and therefore will not be
useful for these applications. We hope that future works will be able to leverage our ideas into
collusion resilient CPRFs.

Key-Homomorphic PRFs. In key-homomorphic PRFs, there is a group structure associated
with the set of keys, and it is required that for any input x and keys s, t, Fs(x) + Ft(x) = Fs+t(x).
A construction in the random oracle model was given by Naor, Pinkas and Reingold [NPR99],
and the first construction in the standard model was given by Boneh et al. [BLMR13] based on
the Learning with Errors assumption (LWE), building on a (non key homomorphic) lattice-based
PRF of Banerjee, Peikert and Rosen [BPR12]. This was followed by an improved construction
by Banerjee and Peikert [BP14] based on quantitatively better lattice assumptions. The LWE
based constructions achieved a slightly weaker notion, namely “almost” key-homomorphism, in
which ‖(Fs(x) + Ft(x))− Fs+t(x)‖ is small, for an appropriately defined norm. This notion is
sufficient for the known applications. Applications of key-homomorphic PRFs include distributed
key-distribution, symmetric proxy re-encryption, updatable encryption and PRFs secure against
related-key attacks [NPR99, BLMR13, LMR14].

Our Results. We view the main contribution of this work as showing how to impose hidden
semantics into the evaluation process of LWE-based PRFs. Namely, we allow multiple computation
paths for computing Fs(x), such that we can selectively block some of these paths based on logic
described by a circuit. This is done by extending ideas from the ABE literature, and in particular
the ABE scheme of Boneh et al. [BGG+14] (see more about this connection below).

It is particularly interesting that previous constructions of PRFs [BLMR13, BP14] can be
viewed as a special case of our framework, but ones that only allow a single computational path.
Our work therefore highlights that the techniques used for constructing PRFs and for constructing
ABE are special cases of the same grand schema. This could hopefully lead to new insights and
constructions.

We employ our methods towards presenting a family of (single key secure) constrained key-

2

524
Approved for Public Release; Distribution Unlimited.

homomorphic PRFs based on worst-case general lattice assumptions. This is a first step in solving
the open problem posed in [BW13] of achieving (collusion resilient) CPRFs from standard assump-
tions.

Our construction is selectively secure in the constraint query, namely the adversary needs to
decide on the constraint before seeing the public parameters, but is adaptive with regards to PRF
oracle queries. We achieve the latter without “complexity leveraging”, contrary to [BW13], and
thus we do not require sub-exponential hardness assumptions as they do. This is done by employing
our technique of embedding semantics into the evaluation process again. In particular, we embed
the semantics of an admissible hash function, introduced by Boneh and Boyen [BB04] into the PRF,
which allows us to handle adaptive queries.

Our proofs rely on two closely related hardness assumptions: The Learning with Errors (LWE)
assumption, and the one-dimensional Short Integer Solution (1D-SIS) assumption. Both assump-
tions can be tied to the worst case hardness of general lattice problems such as GapSVP and SIVP,
with similar parameters. LWE is sufficient for proving pseudorandomness in the absence of a con-
strained key. However, once the adversary is given a constrained key, the situation becomes more
delicate. In particular, even showing correctness in this setting is not straightforward. (Correctness
refers to the property that evaluation using the constrained key and using the actual seed result in
the same output.) One can show unconditionally that the value computed using the constrained
key is close (in norm) to the real value of the function but not that they are always equal. A similar
issue comes up in the security proof (since the reduction “fabricates” oracle answers in a similar way
to the constrained evaluation). Our solution is to use computational arguments. Namely to show
that it is computationally intractable, under the 1D-SIS assumption, to come up with an input
for which the constrained evaluation errs. Therefore even the correctness of our scheme relies on
computational assumptions. We note that similar techniques can be used to strengthen the almost
key-homomorphism property into computational key-homomorphism where it is computationally
hard to find an input for which key homomorphism does not hold.

The following theorem presents the simplest application of our method, we explain how it can
be extended below.

Theorem 1.1. Let C`,d be the class of size-` depth-d circuits. Then for all polynomials `, d, there
exists a C`,d-constrained (almost) key-homomorphic family of PRFs without collusion, based on the
(appropriately parameterized) LWE and 1D-SIS assumptions (and hence on the worst-case hardness
of appropriately parameterized GapSVP and SIVP problems).

Interestingly, we can go beyond bounded size circuits. In fact, we can support any function
family with bounded length description, so long as there is a universal evaluator of depth d that
takes a function description and an input, and executes the function on the input. Namely, consider
a sequence of universal circuits {Uk}k∈N, where Uk : {0, 1}`×{0, 1}k → {0, 1}. This sequence defines
a class of functions {0, 1}∗ → {0, 1}, where each function F in the class is represented by a string
f ∈ {0, 1}`, and for x ∈ {0, 1}k, it holds that F (x) = Uk(f, x). We call such a function class
`-uniform. We are only able to support Uk whose depth is bounded by some a-priori polynomial
in the security parameter d, however in some cases this is sufficient to support all k’s that are
polynomial in the security parameter. The following theorem states our result with regards to such
families.

Theorem 1.2. Let C`,d be a class of `-uniform functions with depth-d evaluator. Then for all
polynomials `, d, there exists a C`,d-constrained (almost) key-homomorphic family of PRFs without

3

525
Approved for Public Release; Distribution Unlimited.

collusion, based on the (appropriately parameterized) LWE and 1D-SIS assumptions (and hence on
the worst case hardness of appropriately parameterized GapSVP, SIVP).

Lastly, we show that the bit-length of the constrained keys in our scheme can be reduced to
poly(λ) for some fixed polynomial. Namely, completely independent of all of the parameters of the
scheme. This is done by using an ABE scheme with short secret keys as a black box. In particular
we resort to the same scheme, namely the ABE scheme of Boneh et al. [BGG+14], which inspired
our constrained PRF construction. This is done by encrypting all of the “components” of the
constrained key, and providing them in the public parameters of the construction. Then, the actual
constrained key is an ABE secret key which only allows to decrypt the relevant components. We
note that this short representation for constrained keys is not homomorphic (however the scheme
is still almost key homomorphic with respect to the seed). A theorem statement follows.

Theorem 1.3. There exists a constrained PRF scheme with the same properties as in Theorem 1.2,
and under the same hardness assumptions, where the constrained keys are of asymptotic bit-length
poly(λ), for an a-priori fixed polynomial.

See Section 2 for an extended overview of the construction.

Relation to the ABE Construction of Boneh et al. [BGG+14]. Our techniques are greatly
influenced by the aforementioned LWE-based ABE construction of Boneh et al. [BGG+14]. Recall
that in ABE, messages are encrypted relative to attributes and decryption keys are drawn relative to
functions. Decryption is possible only if the function f of the decryption key accepts the attribute
x of the ciphertext. In order to decrypt a ciphertext, [BGG+14] first applies a public procedure
that depends on f, x on the ciphertext and then applies the decryption key on the resulting value.
Their construction makes sure that for any f , encryptions with regards to all accepting x’s will
derive a decryptable ciphertext (and all non-accepting x’s cannot be decrypted).

Our constrained key for a circuit C is almost identical to an encryption of 0 with attribute C
in [BGG+14]. The randomness in the encryption roughly corresponds to the seed of the PRF. An
application of the PRF on the constrained key includes applying the public procedure of the ABE
on the ciphertext, with respect to the function f = U , the universal circuit for the function class
to which C belongs. However, there is the question of how to represent the input: We need to
be able to evaluate C on any possible input while preserving security. One of our main technical
ideas is in showing that this is possible, and in fact can be achieved regardless of the input length.
Combined with the framework from [BGG+14], we can guarantees that for all x, regardless which
C was used to generate the “ciphertext”, the output of the public procedure will only depend on x
and not on C. The basic idea is therefore to use this value as the PRF value. This does not work
as is (for example, it does not imply pseudorandomness for non-accepting x’s) and additional ideas
are required.

As mentioned above, the PRFs of [BLMR13, BP14] that seem to stem from different ideas and
have quite different proofs than [BGG+14] can be shown to be special cases of the above paradigm,
except f is taken to be an arbitrary formula (a multiplication tree). For details see Section 2.

The novelty in our approach is to show the extra power that is obtained from generalizing these
two approaches. We use the universal circuit as a way to embed an undisclosed computation into
an LWE instance, and show how to achieve pseudorandomness using tools such as admissible hash
functions (which are also embedded into an LWE instance).

4

526
Approved for Public Release; Distribution Unlimited.

Relation with the Constrained PRF of Hofheinz et al. [HKKW14]. The work of [HKKW14]
constructs adaptively secure collusion-resistant CPRFs, namely ones where the challenge x∗ needs
not be provided ahead of time. Their building blocks are “universal parameters” and adaptively
secure ABE, which are used as black-box. Note that we achieve adaptive security w.r.t the chal-
lenge (but not with respect to the constraint) while relying on techniques which are only known
to imply selectively secure ABE. Further, whereas [HKKW14] use ABE only to implement access
control and therefore need to rely on strong assumptions to implement the PRF so as to interface
with the ABE, we use ABE techniques to achieve both pseudorandomness and access control. On
the flip side, our construction is not collusion resistant, contrary to [HKKW14].

Open Problems. The main drawback of our CPRF is its vulnerability to collusion, which
severely limits its applicability as a building block. It is an open problem to achieve bounded
collusion resilience, even for two constrained keys instead of one and even at the cost of increasing
the parameters. Any improvement on this front should be very interesting. Another avenue for
research is trying to extend the construction so that there is no restriction on the constraint circuit
size, similarly to the multilinear map based construction of [BW13]. Finally, it would also be inter-
esting to apply this methodology of imposing semantics on a cryptographic computation to other
primitives in order to allow more fine-grained access control.

2 Overview of Our Construction

We recall that the LWE assumption asserts that for a uniform vector s and a matrix A of appropriate
dimensions (over Zq for an appropriate q), it holds that (A, sTA + eT), is indistinguishable from
uniform, where e is taken from an appropriate distribution over low norm vectors and referred to
as the noise vector. In this outline we will ignore the generation of eT and its evolution during
computation process, and just denote it by noise (but of course care will need to be taken in the
formal arguments).

The PRF of Banerjee and Peikert [BP14]. A high-level methodology for constructing PRFs,
taken by [BLMR13, BP14] and also in this work, is to take s as the seed, and to generate for each
PRF input x, an LWE matrix Ax such that the values sTAx + noise for the different inputs x are
jointly indistinguishable from uniform. Note that almost key homomorphism follows naturally for
any implementation of this template, up to the accumulation of noise. The noise issue is handled
by taking the PRF value to be a properly scaled down and rounded version of the above, so that
the effect of the noise is minimal (and its norm can be bounded below 1). This property is also
inherited by our scheme.

As a starting point for deriving our construction, let us revisit the key-homomorphic PRF
construction of [BP14]. Their PRF family was associated with a combinatorial object – a binary
tree. Each node v of the tree was associated with an LWE matrix Av, where the PRF input
x determined the matrices for the leaves, and matrices for internal nodes are derived as follows.
Given a node v whose children are associated with Al,Ar, they define Av = Al · G−1(Ar). In
this notation, G−1(·) is the binary decomposition operator, which breaks each entry in the matrix
into the bit vector of length log(q) of its binary representation. Note that G−1(·) will always have
small norm, and that the inverse operator G, representing binary composition, is linear so it can
be represented by a matrix. Thus for all A it holds that G ·G−1(A) = A.

5

527
Approved for Public Release; Distribution Unlimited.

Going back to the PRF of [BP14], the derivation procedure described above allows to associate
a matrix with the root of the tree, which depends only on the input x (and on the topology of the
tree which is fixed). We will use the root’s matrix as our Ax. The proof hinges on the invariant that
LWE instances will be multiplied on the right only by low-norm matrices (of the form G−1(·)), and
therefore sTAlG

−1(Ar) + noise ≈ (sTAl + noise)G−1(Ar), which allows to replace (sTAl + noise)
with a new uniform vector and propagate to the right.

From Embedded Trees to Embedded Circuits. We show that the operation Av = Al ·
G−1(Ar) is in fact a special case of a more general operation, inspired by the recent Attribute
Based Encryption (ABE) construction of Boneh et al. [BGG+14]. We will associate a matrix Av

as well as a binary value xv with each node, and pay special attention to the matrix (Av − xvG).
In particular, considering a node v with children l, r, it holds that

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl = AlG
−1(Ar)− xrxlG .

This generalization associates the semantics of the multiplication operation with the syntactic
definition Av = AlG

−1(Ar), and it also maintains the invariant that the matrices (Al − xlG) and
(Ar − xrG) are only multiplied on the right by low norm elements, so that

sT
(

(Al − xlG) ·G−1(Ar) + (Ar − xrG) · xl
)

+ noise ≈(
sT (Al − xlG) + noise

)
·G−1(Ar) +

(
sT (Ar − xrG) + noise

)
· xl ,

which will play an important role in the security proof. Put explicitly, if the evaluator holds
sT (Al−xlG) +noise and sT (Al−xlG) +noise, then it can compute sT (Av−xl ·xrG) +noise (and
we will obviously define xv = xl · xr).

This semantic relation can be extended beyond multiplication gates, and in particular NAND
gates can be supported in a fairly similar manner. Furthermore, there is no need to stick to tree
structure and one can support arbitrary DAGs, which naturally correspond to circuits. Extending
the above postulate, if our DAG corresponds to a circuit C, then having sT (Ai − xiG) + noise, for
all leaves (= inputs), allows to compute sT (Ax − C(x)G) + noise. Recalling that the value of the
PRF on input x is sTAx + noise, the aforementioned information allows us to evaluate the PRF at
points where C(x) = 0. It can also be shown that it is computationally hard to compute the value
at points where C(x) = 1. We note that this process is practically identical to the public part of
the decryption procedure in the [BGG+14] ABE (as we explained in Section 1). We also note that
since [BP14] were trying to minimize the complexity of evaluating their PRF, it made no sense
in their construction to consider DAGs which only increase the complexity. However, as we show
here, there are benefits to embedding a computational process in the PRF evaluation.

Utilizing the Universal Circuit. The tools we describe so far indeed seem to get us closer to
our goal of producing constrained keys, but we are still not quite there. What we showed is that
for any circuit C, we can devise a PRF with a constrained key for C. Note that we use the negated
definition to the one we used before, and allow to evaluate when C(x) = 0 and not when C(x) = 1.
This will be our convention throughout this overview.

In order to reverse the order of quantifiers, we take C to be the universal circuit U(F, x), and the
constrained keys will be of the form sT (Ai−fiG)+noise, where the fi is the ith bit of the description

6

528
Approved for Public Release; Distribution Unlimited.

of the constraint F , as well as values for the x wires, which will be of the form sT (Âb− bG)+noise,
for both b ∈ {0, 1}. These values will allow us to execute F on any input x. Note that we can
use the same matrices Â0, Â1 for all input wires, hence we don’t need to commit to the input size
when we provide the constrained key.1 From this description it is obvious why our construction is
not collusion resistant: Given two constrained keys for two non identical functions, there exists an
i such that the adversary gets both sTA + noise and sT (Ai−G) + noise. Recovering sT from these
values is straightforward and hence all security is lost. Note that for the input values, unlike the
function description, we use two different matrices for 0 and 1: Â0, Â1, so a similar problem does
not occur.

The Problem with Correctness, and a Computational Solution. We introduced two ways
to compute the value of the PRF at x: One is to compute Ax and use the seed sT to compute
sTAx + noise, and the other is to use the constrained key to obtain sT (Ax−F (x)G) + noise, which
for F (x) = 0 gives sTAx + noise. The problem is that the noise value in these two methods could
differ. It is possible to make the difference small by scaling down and rounding, but this is not going
to suffice for our purposes (mostly because a similar problem comes up in the security proof). We
solve this issue using the 1D-SIS assumption as follows. We first note that the evaluation using the
constrained key is essentially evaluation of a linear function with small coefficients on the vectors
constituting the constrained key (essentially they get multiplied by bits and by low norm matrices
G−1(·)). Secondly, the only way for the two computation paths to not agree is if the value sTAx

is very close to an integer multiple of a number p (which is part of the PRF description). Finally,
we notice that by LWE, the vectors in the constrained key are indistinguishable from uniform and
independent. Thus, if we encounter such x for which correctness does not work, we can also find a
short linear combination of random elements whose scaled down rounded value is close to an integer.
In other words, given a uniform vector v in Zq, we can find z such that b〈v, z〉/pc is “close” to an
integer. This is similar to solving a one-dimensional instance of the SIS problem, i.e. 〈v, z〉 = 0
(mod p). Indeed, one can show that the 1D-SIS problem is as hard as standard worst-case hard
lattice problems via a reduction from [Reg04].

Pseudorandomness and Adaptive Security. Given a constrained key for F , one can compute
sT (Ax − F (x)G) + noise, and indeed if F (x) = 1 it is hard to compute PRFs(x) = sTAx + noise.
However, we want to argue that this value is pseudorandom and furthermore that it remains
pseudorandom after adaptive queries to the PRF. Namely, after the adversary sees as many values
of the form PRFs(x) = sTAx + noise as it wishes.

To achieve these goals, we add another feature to the PRF. We consider a new independent
LWE matrix D, and define PRFs(x) = sTAx · G−1(D) + noise. First of all, we note that given
the constrained key, we can still compute the PRF for values where C(x) = 0, by first computing
(sTAx + noise) as before, and then multiplying by G−1(D), which has low norm. However, in
general we have

PRFs(x) ≈
(
sT (Ax − F (x)G) + noise

)
·G−1(D) + F (x)

(
sTD + noise

)
,

and it can be shown that for F (x) = 1, the second term randomizes the expression, by the LWE
assumption.

1Recall that in [BLMR13, BP14] there are only two matrices altogether. This is sufficient here for the input wires
for the same reason, but we need additional matrices to encode the constraint description.

7

529
Approved for Public Release; Distribution Unlimited.

This handles pseudorandomness for a single query, but not for the case of adaptive queries
(since we can only use the pseudorandomness of (sTD + noise) once). To handle adaptive queries
we embed semantics into the matrix D itself. Namely, D = Dx will be derived by an application of
the universal circuit to the input x and an admissible hash function h. Admissible hash functions,
introduced by Boneh and Boyen [BB04], allow (at a very high level) to partition the input space such
that with noticeable probability all of the adaptive queries have value h(x) = 0, but the challenge
query will have h(x) = 1. This means that in the proof of security, we can hold a constrained
key for h, which will allow us to compute (sTDx + noise), for all the queries of the adversary, but
leave the challenge query unpredictable (to make it pseudorandom, we will multiply in the end by
another final D′). This concludes the security argument for adaptive queries.

Key-Homomorphism. As we mention above, key-homomorphism follows since we use the tem-
plate PRFs(x) = sTAx + noise. We note that the existence of noise means that homomorphism
may not be accurate and with some low probability (PRFs(x) + PRFs′(x)) will only be close to
PRFs+s′(x) and not identical. However this property is sufficient for many applications.

We point out that our constrained keys are a collection elements of the form (sTAi + noise),
and therefore the scheme is also homomorphic with respect to constrained keys, i.e. constrained
keys for the same F w.r.t different keys s, s′ can be added to obtain a constrained key w.r.t s + s′.

Reducing the Constrained Key Size. From the above, it follows that the constrained key
contains `+2 vectors, where ` is the bit length of a description of F relative to the universal circuit
for the function class. Note that this does not depend directly on the input size to the function.
However, indirectly the depth of the universal circuit affects the modulus q that needs to be used.

We show that we can remove the dependence on ` altogether using an ABE scheme with short
secret keys, such as that of [BGG+14]. To do this, we notice that for each constraint function
F , the adversary gets either sTAi + noise or sT (Ai − G) + noise, according to the value of the
bit fi. We can prepare for both options by encrypting both vectors using the ABE, each with its
own attribute (i, 0) and (i, 1) respectively. All of these encryptions, for all i, will be placed in the
public parameters. Then in order to provide a constrained key, we will provide an ABE secret key
for the function that takes (i, b) and returns 0 if and only if fi = b. Given this key, the user can
decrypt exactly those vectors that constitute its constrained key. Note that this function can be
computed by a depth O(log(`)) = O(log(λ)) circuit, and thus the size of the secret key can be made
asymptotically independent of all parameters except λ, e.g. by setting the parameters to support
depth log2(λ) circuits.

3 Preliminaries

We first recall some background. For an integer modulus q, let Zq = Z/qZ denote the ring of
integers modulo q. For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. We denote the elements of the
standard basis by u1,u2, . . ., where the dimension will be clear from the context.

We denote distributions (or random variables) that are computationally indistinguishable by

X
c
≈ Y . This refers to the standard notion of negligible distinguishing gap for any polynomial

8

530
Approved for Public Release; Distribution Unlimited.

time distinguisher. Our reductions preserve the uniformity of the adversary so by assuming the
hardness of our assumption for uniform adversary we get security for our construction against
uniform adversaries, and likewise for non-uniform assumptions and adversaries.

The Gadget Matrix. Let ` = dlog qe and define the “gadget matrix” G = g⊗In ∈ Zn×n`q where

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q

We will also refer to this gadget matrix as the “powers-of-two” matrix. We define the inverse
function G−1 : Zn×mq → {0, 1}n`×m which expands each entry a ∈ Zq of the input matrix into a
column of size ` consisting of the bit decomposition of a. We have the property that for any matrix
A ∈ Zn×mq ,

G ·G−1(A) = A

Norms for Vectors and Matrices. We will always use the infinity norm for vectors and matri-
ces. Namely for a vector x, the norm ‖s‖ is the maximal absolute value of an element in x. Similarly,
for a matrix A, ‖A‖ is the maximal absolute value of any of its entries. If x is n-dimensional and
A is n ×m, then

∥∥xTA
∥∥ ≤ n · ‖x‖ · ‖A‖. We remark that L1 or L2 norms can also be used and

even achieve somewhat tighter parameters, but the proofs become more complicated.

3.1 Constrained Pseudorandom Function: Definition

In a constrained PRF family [BW13, BGI14, KPTZ13], one can compute a constrained PRF key
KC corresponding to any Boolean circuit C. Given KC , anyone can compute the PRF on inputs
x such that C(x) = 0. Furthermore, KC does not reveal any information about the PRF values at
the other locations. Below we recall their definition, as given by [BW13].

Syntax A constrained pseudo-random function (PRF) family is defined by a tuple of algorithms
(KeyGen,Eval,Constrain,ConstrainEval) where:

• Key Generation KeyGen(1λ, 1kin , 1kout) is a ppt algorithm that takes as input the security
parameter λ, an input length kin and an output length kout, and outputs a PRF key K;

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K, a string
x ∈ {0, 1}kin and outputs y ∈ {0, 1}kout ;

• Constrained Key Generation Constrain(K,C) is a ppt algorithm that takes as input a
PRF key K, a circuit C : {0, 1}kin → {0, 1} and outputs a constrained key KC ;

• Constrained Evaluation ConstrainEval(KC , x) is a deterministic algorithm that takes as
input a constrained key KC and a string x ∈ {0, 1}kin and outputs either a string y ∈ {0, 1}kout
or ⊥.

We define the notion of (single key) selective-function security for constrained PRFs.

Definition 3.1. A family of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a single-key selective-
function constrained PRF (henceforth, referred to simply as constrained PRF) if it satisfies the
following properties:

9

531
Approved for Public Release; Distribution Unlimited.

• Functionality computationally preserved under constraining. For every ppt adver-
sary (A0, A1), consider an experiment where we choose K ← KeyGen(1λ, 1kin , 1kout), (C, σ0)←
A0(1λ), and KC ← Constrain(K,C). Then:

Pr

[
x∗ ← A

Eval(K,·)
1 (1λ,KC , σ0); :

C(x∗) = 0 ∧
Eval(K,x∗) 6= ConstrainEval(KC , x

∗)

]
is negligible in the security parameter, where C,K,KC are selected as described above.

In words, it is computationally hard to find an x∗ such that C(x∗) = 0, and yet the result of
the constrained evaluation differs from the actual PRF evaluation.

• Pseudorandom at constrained points. For every ppt adversary (A0, A1, A2), consider an
experiment where K ← KeyGen(1λ, 1kin , 1kout), (C, σ0)← A0(1λ), and KC ← Constrain(K,C).
Then:

Pr

b← {0, 1};

:(x∗, σ1)← A
Eval(K,·)
1 (1λ,KC , σ0); C(x∗) = 1 ∧

If b = 0, y∗ = Eval(K,x∗), A2(1λ, y∗, σ1) = b
Else y∗ ← {0, 1}kout

 ≤ 1

2
+ negl(λ)

The correctness and security properties could potentially be combined into one game, but we choose
to present them as two distinct properties for the sake of clarity.

3.2 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05] as a generalization
of “learning parity with noise” [BFKL93, Ale03]. We now define the decisional version of LWE.
(Unless otherwise stated, we will treat all vectors as column vectors in this paper).

Definition 3.2 (Decisional LWE (DLWE) [Reg05]). Let λ be the security parameter, n = n(λ),
m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability distribution over Z. The
DLWEn,q,χ problem states that for all m = poly(n), letting A ← Zn×mq , s ← Znq , e ← χm, and
u← Zmq , the following distributions are computationally indistinguishable:(

A, sTA + eT
) c
≈
(
A,uT

)
There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between

DLWEn,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We write DLWEn,q,α to indicate
this instantiation. We now state a corollary of the results of [Reg05, Pei09, MM11, MP12]. These
results also extend to additional forms of q (see [MM11, MP12]).

Corollary 3.1 ([Reg05, Pei09, MM11, MP12]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

10

532
Approved for Public Release; Distribution Unlimited.

• If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any
n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. The best known algorithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ)

time. We refer the reader to [Reg05, Pei09] for more information.
In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security

parameter λ is assumed to be polynomially related to the dimension n.

3.3 One-Dimensional Short Integer Solution (SIS) and Variants

We present a special case of the well known Short Integer Solution (SIS) problem [Ajt96].

Definition 3.3. The One-Dimensional Short Integer Solution problem, denoted 1D-SISq,m,t, is the

following problem. Given a uniformly distributed vector v
$← Zmq , find z ∈ Zm such that ‖z‖ ≤ t

and also 〈v, z〉 ∈ [−t, t] + qZ.

For appropriately chosen moduli q, the 1D-SISq,m,t problem is as hard as worst-case lattice
problems. This follows from the techniques in the classical worst-case to average-case reduction of
Ajtai [Ajt96]. We state below the version due to Regev [Reg04].

Corollary 3.2 (Section 4 in [Reg04] and Proposition 4.7 in [GPV07]). Let n ∈ N and q =
∏
i∈n pi,

where all p1 < p2 < . . . < pn are co-prime. Let m ≥ c · n log q (for some universal constant c).
Assuming that p1 ≥ t · ω(

√
mn log n), the one-dimensional SIS problem 1D-SISq,m,t is at least as

hard as SIVP
t·Õ(
√
mn)

and GapSVP
t·Õ(
√
mn)

.

Proof. The hardness of a closely related problem is established by combining the techniques in

[Reg04, Section 4] and [GPV07, Proposition 4.7]: Given a
$← Zm+1

q , find y with ‖y‖ ≤ t such that
〈a,y〉 = 0 (mod q).

We now show how to convert an instance for this problem into an instance of 1D-SIS. Given an
instance a ∈ Zm+1

q , we consider the first component a1. If this element is not a unit (i.e. invertible)

in Zq, then the reduction aborts. Otherwise it defines v = a−1
1 · [a2, . . . , am+1]. Given a solution

z for 1D-SIS on input v, we define y by letting y = [−〈v, z〉, x1, . . . , xm]. It is easy to verify that
〈a,y〉 = a1 · (−〈v, z〉+ 〈v, z〉) = 0 (mod q). Further, by definition, ‖y‖ ≤ t.

Next, we define a related problem which will be useful for our reductions.

Definition 3.4. Let q = p ·
∏
i∈n pi, where all p1 < p2 < . . . < pn are all co-prime and co-prime

with p as well. Further let m ∈ N. The 1D-SIS-Rq,p,t,m problem is the following: Given v
$← Zmq ,

find z ∈ Zm with ‖z‖ ≤ t such that 〈v, z〉 ∈ [−t, t] + (q/p)Z.

The following corollary establishes the hardness of 1D-SIS-R based on 1D-SIS.

Corollary 3.3. Let q, p, t,m be as in Definition 3.4. Then 1D-SIS-Rq,p,t,m is at least as hards as
1D-SISq/p,t,m.

11

533
Approved for Public Release; Distribution Unlimited.

Proof. The reduction works in the obvious way: Given an input v ∈ Zmq/p for 1D-SISq/p,t,m, we

embed v in v′ ∈ Zmq , using CRT representation. Namely v′ = v (mod q/p) and v′ = r (mod p),

where r
$← Zmp . Then given a solution z for 1D-SIS-Rq,p,t,m with input v′, we claim that z is

also a solution for 1D-SISq/p,t,m with input v. This follows since by definition ‖z‖ ≤ t, and since
〈v, z〉 ≡ 〈v′, z〉 (mod q/p).

3.4 Admissible Hash Functions

The concept of admissible hash functions was defined by Boneh and Boyen [BB04] to convert
selectively secure identity based encryption (IBE) schemes into fully secure ones. In this paper,
we use admissible hash functions for our PRF construction. Our definition of admissible hash
functions below will follow that of Cash, Hofheinz, Kiltz and Peikert [CHKP12] with minor changes
(in particular, note that we do not require that the bad set is efficiently recognizable).

Definition 3.5 ([BB04, CHKP12]). Let H = {Hλ}λ be a family of hash functions such that
Hλ ⊆

(
{0, 1}∗ → {0, 1}`

)
for some ` = `(λ). We say that H is a family of admissible hash

functions if for every H ∈ H there exists a set badH of “bad string-tuples” such that the following
two properties hold:

1. For every PPT algorithm A, there is a negligible function ν such that

Pr[(x(0), . . . , x(t)) ∈ badH | H ← Hλ, (x(0), . . . , x(t))← A(1λ, H)] ≤ ν(λ)

where the probability is over the choice of H ← Hλ and the coins of A.

2. Let L = {0, 1}2`, and for all L ∈ L define ΠL : {0, 1}` → {0, 1} to be the string comparison
with wildcards function. Namely, write L as a pair of strings (α, β) ∈ {0, 1}`, and define

ΠL=(α,β)(w) = 1⇔ ∀i ∈ [`]
(
(αi = 0) ∨ (βi = wi)

)
.

Intuitively, Π is a string comparison function with wildcards. It compares w and β only at
those points where αi = 1. Note that this representation is somewhat redundant but it will be
useful for our application.

Then, we require that for every polynomial t = t(λ) there exists a noticeable function ∆t(λ)
and an efficiently sampleable distribution Lt over L such that for every H ∈ Hλ and sequences
(x(0), . . . , x(t)) /∈ badH with x(0) /∈ {x(1), . . . , x(t)}, we have:

Pr
L←Lt

[ΠL(H(x(0))) ∧ΠL(H(x(1))) ∧ · · · ∧ΠL(H(x(t)))] ≥ ∆t(λ)

It has been shown by [BB04] that a family of admissible hash functions can be constructed
based on any collision resistant hash function. In particular one can instantiate it based on the SIS
problem (for virtually any parameter setting for which the problem is hard), which is at least as hard
as LWE. Therefore throughout this manuscript we assume the existence of an LWE-based family
of admissible hash functions, which will not add an additional assumption to our construction.

12

534
Approved for Public Release; Distribution Unlimited.

3.5 Attribute-Based Encryption

We define (leveled) attribute-based encryption, following [GPSW06, GVW13]. An attribute-based
encryption scheme for a class of predicate circuits C (namely, circuits with a single bit output)
consists of four algorithms (ABE .Setup,ABE .KeyGen,ABE .Enc, ABE .Dec).

ABE .Setup(1λ, 1`, 1d)→ (pp,msk) : The setup algorithm gets as input the security parameter λ,
the length ` of the attributes and the maximum depth of the predicate circuits d, and outputs
the public parameter (pp,mpk), and the master key msk. All the other algorithms get pp as
part of their input.

ABE .KeyGen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate
specified by C ∈ C (of depth at most d). It outputs a secret key (C, skC).

ABE .Enc(pp,x,m)→ ct : The encryption algorithm gets as input mpk, attributes x ∈ {0, 1}` and
a message m ∈M. It outputs a ciphertext (x, ct).

ABE .Dec((C, skC), (x, ct))→ m : The decryption algorithm gets as input a circuit C and the
associated secret key skC , attributes x and an associated ciphertext ct, and outputs either ⊥
or a message m ∈M.

Correctness. We require that for all `, d, all (x, C) such that x ∈ {0, 1}`, C has depth at most
d and C(x) = 1, for all (pp,msk) ← ABE .Setup(1λ, 1`, 1d), all skC ← ABE .KeyGen(msk, C), all
ct← ABE .Enc(pp,x,m), and all m ∈M,

Dec((C, skC), (x, ct)) = m) .

Security Definition. We define selective security of ABE, which is sufficient for our purposes.
We allow the adversary to make multiple challenge message queries, which is equivalent to the
single query case but will be easier for us to work with.

Definition 3.6. For a stateful adversary A, we define the advantage function AdvABE
A to be

Pr

b = b′ :

b
$← {0, 1};

x1, . . . ,xQ ← A(1λ, 1`, 1d);
(pp,msk)← ABE .Setup(1λ, 1`, 1d);

{(m0,i,m1,i)}i∈[Q] ← AABE.KeyGen(msk,·)(pp),∀i.|m0,i| = |m1,i|;
cti ← ABE .Enc(pp,xi,mb,i);

b′ ← AABE.KeyGen(msk,·)(ct1, . . . , ctQ)

− 1

2

with the restriction that all queries C that A makes to ABE .KeyGen(msk, ·) satisfies C(xi) = 0 for
all i (that is, skC does not decrypt the ciphertext corresponding to any of the xi). An attribute-based
encryption scheme is selectively secure if for all PPT adversaries A, the advantage AdvABE

A is a
negligible function in λ.

We will use a special type of attribute-based encryption scheme with succinct keys, namely one
where |skC | does not grow with the size of the circuit C, but rather only its depth.

13

535
Approved for Public Release; Distribution Unlimited.

Theorem 3.4 ([BGG+14]). Let λ be the security parameter, and d ∈ N. Let n = n(λ, d), q =
q(λ, d) = nO(d), and let χ be a poly(n)-bounded error distribution. Then, there is a selectively
secure ABE scheme for the class of depth-d-bounded circuits, based on the hardness of DLWEn,q,χ.
Furthermore, the secret key skC for a circuit C has size poly(λ, n, d).

4 Embedding Circuits into Matrices

In this section, we present the core techniques that we use in our construction. In essence, we use
a method, developed in a recent work by Boneh et al. [BGG+14] to “embed” bits x1, . . . , xk into
matrices A1, . . . ,Ak and compute a circuit F on these matrices. This is done through a pair of
algorithms (ComputeA,ComputeC) satisfying the following properties:

1. The deterministic algorithm ComputeA takes as input a circuit F : {0, 1}k → {0, 1} and k
matrices A1, . . . ,Ak, and outputs a matrix AF ; and

2. The deterministic algorithm ComputeC takes as input a bit string x = (x1, . . . , xk) ∈ {0, 1}k,
and k LWE samples sT (Ai+xiG) + ei, and outputs an LWE sample sT (AF +F (x) ·G) + eF
associated to the output matrix AF and the output bit F (x).

These algorithms are closely modeled on the work of Boneh et al. [BGG+14]. We now describe how
these algorithms work, and what their properties are.

The Algorithm ComputeA. Given a circuit F , input matrices A1, . . . ,Ak (corresponding to
the k input wires) and an auxiliary matrix A0, the ComputeA procedure works inductively, going
through the gates of the circuit F from the input to the output. Assume without loss of generality
that the circuit F is composed of NOT and AND gates. For every AND gate g = (u, v;w), assume
inductively that we have computed matrices Au and Av for the input wires u and v. Define

Aw = −Au ·G−1(Av)

For every NOT gate g = (u;w), define

Aw = A0 −Au

The Algorithm ComputeC. Given a circuit F , an input x ∈ {0, 1}k and LWE samples (Ai,yi),
the ComputeC algorithm works as follows. For each AND gate g = (u, v;w), assume that we have
computed LWE samples (Au,yu) and (Av,yv) for the input wires u and v. Define

yw = xu · yv − yu ·G−1(Av)

where xu and xv are the bits on wires u and v when evaluating the circuit F on input x. For every
NOT gate g = (u;w), define

yw = y0 − yu

We will need the following lemma about the behavior of ComputeA and ComputeC. (We remind
the reader that we use || · || to denote the `∞ norm).

14

536
Approved for Public Release; Distribution Unlimited.

Lemma 4.1. Let F be a depth-d Boolean circuit on k input bits, and let x ∈ {0, 1}k be an input.
Let A0,A1, . . . ,Ak ∈ Zn×mq and y0, . . . ,yk ∈ Zmq be such that

||yi − sT (Ai + xiG)|| ≤ B for i = 0, 1, . . . , k.

for some s ∈ Znq and B = B(λ). Let AF ← ComputeA(F,A0, . . . ,Ak) and yF ← ComputeC(F, x,A0, . . . ,Ak,y0, . . . ,yk).

Then, ||yF − sT (AF + F (x) ·G)|| ≤ mO(d) ·B.

Furthermore, yF is a “low-norm” linear function of y0, . . . ,yk. That is, there are matrices Z0, . . . ,Zk
(which depend on the function F , the input x, and the input matrices A0, . . . ,Ak) such that
yF =

∑k
i=0 yiZi and ||Zi|| ≤ mO(d) ·B.

Proof. We show this by induction on the levels of the circuit F , starting from the input. Consider
two cases.

AND gate. Consider an AND gate g = (u, v;w) where the input wires are at level L, and assume
that yu = sT (Au +xuG) + eu and yv = sT (Av +xvG) + ev, with ||eu||, ||ev|| ≤ (m+ 1)L ·B. Now,

yw = xu · yv − yu ·G−1(Av)

= xu ·
(
sT (Av + xvG) + ev

)
−
(

sT (Au + xuG) + eu

)
·G−1(Av)

= sT
(
xuAv + xuxvG−AuG

−1(Av)− xuAv

)
+

(
− euG

−1(Av) + xuev

)
= sT (Aw + xwG) + ew

where Aw = −Au ·G−1(Av), xw = xuxv, and

||ew|| ≤ m · ||eu||+ ||ev|| ≤ (m+ 1) · (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

NOT gate. In a similar vein, for a NOT gate g = (u;w), assume that yu = sT (Au + xuG) + eu,
with ||eu|| ≤ (m+ 1)L ·B. Then,

yw = y0 − yu = sT (A0 + G−Au − xuG) + (e0 − eu)

= sT (Aw + (1− xu)G) + ew

where Aw = A0 −Au, xw = 1− xu, and

||ew|| ≤ ||e0||+ ||eu|| ≤ B + (m+ 1)L ·B ≤ (m+ 1)L+1 ·B

Thus, yF = sTAF + eF where ||eF || ≤ mO(d) · B. Furthermore, both transformations are linear
functions on yu and yv, as required.

5 Constrained PRF

5.1 Construction

A family of functions F ⊆ ({0, 1}∗ → {0, 1}) is z-uniform if each function F ∈ F can be described
by a string in {0, 1}z (we associate F with its description), and there exists a uniform circuit

15

537
Approved for Public Release; Distribution Unlimited.

family {Uk}k∈N such that Uk : {0, 1}z × {0, 1}k → {0, 1} such that for all x ∈ {0, 1}k it holds that
Uk(F, x) = F (x). We assume for the sake of simplicity that the depth of Uk grows monotonically
with k and for all d we let kd to be the maximal input size for which Uk has depth at most d. We
define Fd to be such that F ∈ F is undefined for inputs of length k > kd. We call such a family
d-depth-bounded.

Our constrained PRF for a z-uniform d-depth-bounded family F works as follows.

• KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maximum size z and
depth d of the constraining circuits. Let H be a family of admissible hash functions (see
Section 3.4) and let ` = `(λ) be the output length of hash functions in the family.

Let n = n(λ, d), q = q(λ, d), p = p(λ, d) be parameters chosen as described in Section 5.2
below, let m = n dlog qe.
Generate z+2`+3 matrices as follows: let A0 and A1 be the “input matrices”, let B1,B2, . . . ,Bz

be the “function matrices”, let C1, . . . ,C2` be the “partitioning matrices”, and let D be an
“auxiliary matrix”. All of these matrices are uniform in Zn×mq (note that the “gadget matrix”

G has the same dimensions). In addition sample an admissible hash function H
$← Hλ.

The public parameters consist of

PP = (H,A0,A1,B1, . . . ,Bz,C1, . . . ,C2`,D)

The seed of the PRF is a uniformly random vector s ∈ Znq .

• Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP, and an input x ∈
{0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and works as follows.

Recall that Uk : {0, 1}z × {0, 1}k → {0, 1} is the universal circuit that takes a description of
a function F and an input x and outputs Uk(F, x) = F (x). Let Π : {0, 1}2`×{0, 1}` → {0, 1}
denote the circuit that computes Π(L,w) = ΠL(w) from Definition 3.5. Note that Π can be
implemented by a binary circuit of depth log(`) +O(1).

Let (x1, . . . , xk) denote the bits of x. Let w = H(x), and let w1, . . . , w` be its bits. Compute

BU ← ComputeA
(
Uk,B1, . . . ,Bz,Ax1 ,Ax2 , . . . ,Axk

)
(1)

CΠ ← ComputeA
(
Π,C1, . . . ,C2`,Aw1 ,Aw2 , . . . ,Aw`

)
(2)

and output
PRFs(x) =

⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

• Constrain(s,PP, F) takes as input the PRF key s and a circuit F (of size at most z) and does
the following. Compute

ab = sT (Ab + b ·G) + eT1,b ∈ Zmq for b ∈ {0, 1}
bi = sT (Bi + fi ·G) + eT2,i ∈ Zmq for all i ∈ [z]

where the vectors e are drawn from an error distribution χ to be specified later (in Section 5.2).

The constrained seed KF is the tuple
(
a0,a1,b1, . . . ,bz

)
∈ (Zmq)z+2.

16

538
Approved for Public Release; Distribution Unlimited.

• ConstrainEval(KF ,PP,x) takes as input the constrained key KF and an input x. It computes

bU ,x ← ComputeC

(
U , (b1, . . . ,bz,ax1 , . . . ,axk), (f1, . . . , fz, x1, . . . , xk)

)
and outputs

⌊
bU ,x ·G−1(CΠ) ·G−1(D)

⌉
p
, where CΠ is defined as above.

5.2 Setting the Parameters

Let us start by providing a typical parameter setting, and then explain how parameters can be
modified and the effect on security.

Consider setting n(λ, d) = (λ · d)c, for a constant c that will be discussed shortly. We will
set χ to be a discrete Gaussian distribution DZ,αq s.t. αq = Θ(

√
n). We define n′ = λ and let

p1, . . . , pn′ = mO(d+log `) be all primes, and p = poly(λ) (in fact, there is a lot of freedom in the
choice of p, and it can be as large as mO(d+log `) under the same asymptotic hardness). Finally, let

q = p · (αq) ·
∏
i∈[n′] pi = mn′·O(d+log `) = 2Õ(λ·d) = 2Õ(n1/c) (recall that ` = poly(λ)).

This parameter setting translates into a PRF with m = n dlog qe·Θ(log λ) output bits per input,
whose security is based (as we show in the next section) on the hardness of approximating lattice

problems to within a factor of 2Õ(n1/c).
Taking larger values of c will increase the hardness of the underlying lattice problem, but at

the cost of considerably increasing the element sizes.

5.3 Security

Throughout this section, we let F be a family of z-uniform functions and let d be a depth bound
(both can depend on λ). We let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise
distributions χ = χ(λ, d) be as defined in Section 5.2. We let H be the family of admissible hash
functions as described in Section 3.4, with range {0, 1}`.

Theorem 5.1. Let F be a family of z-uniform functions and let d be a depth bound (both can depend
on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d)
be as defined in Section 5.2. Further let m′ = m · (z + 2`+ 3), and γ = ω(

√
n log λ) · p ·mO(d+log `).

Assuming the hardness of DLWEn,q,χ, 1D-SIS-Rq,p,γ,m′ and the admissible hash function family
H, the scheme CPRF = (KeyGen,Eval,Constrain,ConstrainEval) is a single-key secure selective-
function secure constrained PRF for F .

We note that the hardness of all three assumptions translates to the worst case hardness of
approximating lattice problems such as GapSVP and SIVP to within sub-exponential factors.

Proof. Let A be a PPT selective-constraint adaptive-input adversary against CPRFz,d. Let t =
poly(λ) be the (polynomial) number of input queries made by A (w.l.o.g). Let ε be the advantage
of A in the constrained PRF game. We let B = αq ·ω(

√
log λ). It holds that with all but negligible

probabilities, all samples that we take from χ will have absolute value at most B. For the duration
of the proof we assume that this is indeed the case.

The proof will proceed by a sequence of hybrids (or experiments) where the challenger samples
a bit b ∈ {0, 1} and interacts with A. We let AdvH(A) denote the probability that A outputs b in
hybrid H.

17

539
Approved for Public Release; Distribution Unlimited.

Hybrid H0. This hybrid is the legitimate constrained PRF security game. The challenger gen-
erates (s,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and produces a constrained key
KF←Constrain(s,PP, F). It then sends PP,KF to A. At this point A adaptively makes queries
x(i) ∈ {0, 1}∗, and the challenger computes y(i)←Eval(s,PP, x(i)) and returns it to A. Finally, A
outputs x∗ ∈ {0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if b = 1 it
returns a random y∗. Therefore, we have

AdvH0(A) ≥ 1/2 + ε .

Hybrid H1. This is the notorious “artificial abort” phase. Let ∆t = ∆t(λ) be the noticeable
function from Definition 3.5. This hybrid is identical to the previous one, except in the last step
the challenger flips a coin and with probability 1 −∆t/2 aborts the experiment (hence giving the
adversary no information on b).

The adversary’s advantage thus degrades appropriately:

AdvH1(A) ≥ (∆t/2) · (1/2 + ε) + (1−∆t/2) · (1/2) = 1/2 + ε ·∆t/2 .

Hybrid H2. In this hybrid, we associate some meaning with the artificial abort. Intuitively, the
abort will be associated with a failure of the admissible hash function to partition the queries
correctly. We are guaranteed that correct partitioning happens with probability ≥ ∆t (except for
sequences that are hard to generate), but we would like to make it (almost) exactly ∆t/2 so as to
not correlate the adversary’s success probability with the string L (the loss of the 2 factor is due
to probability estimation).

Specifically, in this hybrid, rather than flipping a coin at the end of the experiment, the chal-
lenger does the following. For all ~x = (x(1), . . . , x(t), x∗), we define the event GoodPartitionL,~x to
be the event in which ΠL(H(x(1))) = · · · = ΠL(H(x(t))) = 0 and ΠL(H(x∗)) = 1, and define
δ~x = Pr

L
$←Lt

[GoodPartition~x,L]. The challenger will first compute an estimate δ̃~x of δ~x by sam-

pling multiple values of L from Lt and using Chernoff (both additive and multiplicative). Using
poly(λ)-many samples we can compute δ̃~x such that

Pr
[∣∣∣δ~x − δ̃~x∣∣∣ > ∆t/4

]
≤ 2−λ .

and in addition if δ~x ≥ ∆t/2 then

Pr

[∣∣∣∣δ~xδ̃~x − 1

∣∣∣∣ > ε/2

]
≤ 2−λ .

The challenger will then perform as follows: (i) It first verifies that δ̃~x ≥ 3
4∆t, and aborts if this

is not the case. (ii) It then samples L
$← Lt and aborts if GoodPartition~x,L did not occur (note that

by our definitions above, this happens with probability 1 − δ~x over the choice of L). (iii) Then it

flips a coin with probability δ̃~x−∆t/2

δ̃~x
and aborts if the outcome is 1. Otherwise it carries out the

experiment towards completion.
To analyze the effect on the success probability, we first notice that the probability that δ̃~x <

3
4∆t

(abortion is step (i)) is negligible. This is since, except with 2−λ probability, this indicates that
δ~x < ∆t, which implies that ~x ∈ badH . Definition 3.5 guarantees that this happens with probability
at most ν(λ) = negl(λ).

18

540
Approved for Public Release; Distribution Unlimited.

If the above abort did not occur, we know that δ~x ≥ ∆t/2 (except with probability 2−λ), we
first notice that the total probability of abort in steps (ii) + (iii)

1− δ~x + δ~x ·
δ̃~x −∆t/2

δ̃~x
= 1− δ~x

δ̃~x
∆t/2 ∈

[
(1−∆t/2)− ε∆t/4, (1−∆t/2) + ε∆t/4

]
It therefore follows that if there was no abort in step (i), then the adversary’s view in H2 is

within statistical distance 2−λ + ε∆t/4 from its view in H1.
Putting all steps together, we get that

AdvH2(A) ≥ 1/2 + ε ·∆t/2− ν(λ)−O(2−λ)− ε∆t/4 = 1/2 + ε ·∆t/4− negl(λ) .

Hybrid H3. In this hybrid, the challenger first samples L
$← Lt, and then, for each x(i) in turn,

it checks whether ΠL(H(x(i))) = 0, and immediately aborts if not. Similarly, upon receiving x∗, it
checks whether ΠL(H(x∗)) = 1 and immediately aborts if not. Otherwise it continues the same as
H2.

It is rather straightforward to see that the A’s advantage does not change. The cases in which
we abort are exactly the same as the ones in the previous hybrid (since it is sufficient that a single
x(i) does not give the required value in order to abort). Further, the sampling of L has been
completely independent of all the other randomness in the experiment so it might as well happen
in the beginning. We conclude that

AdvH3(A) = AdvH2(A) ≥ 1/2 + ε ·∆t/4− negl(λ) .

Hybrid H4. In this hybrid, the challenger changes the way the matrices A,B,C are generated.
Recall that our security game is constraint-selective, namely A produces the constraint F before
seeing the public parameters.

Therefore, here, the challenger waits until receiving F from A and only generates the public
parameters at that point (note that by then L has also been specified). To generate the public
parameters, the matrix D is produced identically to before. In addition, the challenger samples
matrices {Âβ}β∈{0,1}, {B̂i}i∈[z], {Ĉi}i∈[2`] It then sets

Aβ = Âβ − βG

Bi = B̂i − fiG
Ci = Ĉi − LiG

The remainder of the experiment remains unchanged.
Since the distributions of the A,B,C matrices is identical to their original uniform distributions,

it follows that
AdvH4(A) = AdvH3(A) .

Hybrid H5. In this hybrid, the adversary changes the way it computes the outputs y(i). Recall
that KF = (a0,a1,b1, . . . ,bz) is the constrained key given to A. Let us denote

ci = sT (Ci + LiG) + eT3,i for all i ∈ [z]

d = sTD + eT4

19

541
Approved for Public Release; Distribution Unlimited.

where e3,i are sampled coordinate-wise from χ, and e4 is sampled coordinate-wise from χ′.
In this hybrid, in order to answer input queries, the challenger first computes

bU ,x(i) ← ComputeC

(
U , (b1, . . . ,bz,ax1 , . . . ,axk), (f1, . . . , fz, x

(i)
1 , . . . , x

(i)
k)

)
and then, letting w(i) = H(x(i))

cΠ,w(i) ← ComputeC

(
Π, (c1, . . . , c2`,aw1 , . . . ,aw`

), (L1, . . . , L2`, w
(i)
1 , . . . , w

(i)
`)

)
We recall that by Lemma 4.1 it holds that

bTU ,x(i) = sT (BU ,x(i) + F (x(i)) ·G) + eTU

cT
Π,w(i) = sT (CΠ,w(i) + ΠL(w(i)) ·G) + eTΠ ,

for some eU , eΠ for which ‖eU‖ ≤ B ·mO(d), ‖eΠ‖ ≤ B ·mO(log `).
We recall that by definition

PRFs(x
(i)) =

⌊
sTBU ,x(i) ·G

−1(CΠ,w(i))G−1(D)
⌉
p

=

⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

− F (x(i))sTCΠ,w(i)G−1(D)

⌉
p

=
⌊
sT (BU ,x(i) + F (x(i))G) ·G−1(CΠ,w(i))G−1(D)

−F (x(i))sT (CΠ,w(i) + ΠL(w(i))G)G−1(D)

+F (x(i))ΠL(w(i))sTD
⌉
p

=
⌊
bTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)− F (x(i))cT
Π,w(i)G

−1(D)

+F (x(i))ΠL(w(i))dT + e′T
⌉
p
, (3)

where

e′T = −eTUG−1(CΠ,w(i))G−1(D) + F (x(i))eTΠG−1(D)− F (x(i))ΠL(w(i))eT4 (4)

which implies that ‖e′‖ ≤ E for some E = (mO(d) +mO(log `)) ·B.
To analyze the distinguishing probability between these hybrids, for any input x (and w = H(x))

we define the event Borderlinex as the event where there exists j ∈ [m] such that:

(bTU ,x ·G−1(CΠ,w) ·G−1(D)−F (x) · cTΠ,w ·G−1(D)

+ F (x) ·ΠL(w) · dT) · uj ∈ [−E,E] + (q/p)Z ,

where we recall that uj is the jth indicator vector. Namely, this is the probability that one of
the coordinates of the vector bTU ,x · G−1(CΠ,w)G−1(D) − F (x)cTΠ,wG−1(D) + F (x)ΠL(w)dT is
“dangerously close” to being rounded in the wrong direction.

20

542
Approved for Public Release; Distribution Unlimited.

By definition of rounding, if ¬Borderlinex(i) , then

PRFs(x
(i)) = bbTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)− F (x(i))cT
Π,w(i)G

−1(D)

+ F (x(i))ΠL(w(i))dT ep .

The challenger in this hybrid, given a query x(i), will first check whether Borderlinex(i) . If the
event happens, the challenger aborts. Otherwise it returns PRFs(x

(i)) as defined above. Note that
the challenger only needs to respond to queries x(i) for which ΠL(w(i)) = ΠL(H(x(i))) = 0, which
do not depend on d, a fact that will be important later on.

Finally, on the challenge query x∗, unless abort is needed, it holds that F (x∗) = 1 and ΠL(w∗) =
1 (where w∗ = H(x∗)) and therefore, unless the event Borderlinex∗ happens, it holds that

PRFs(x
∗) =

⌊
bTU ,x∗ ·G−1(CΠ,w(i))G−1(D)− cTΠ,w∗G

−1(D) + dT
⌉
p
.

The challenger will therefore abort if Borderlinex∗ and return the aforementioned value otherwise
(that is if the bit b is 0; if b = 1 then of course a uniform value is returned).

It follows that if we define Borderline = (∨iBorderlinex(i)) ∨ Borderlinex∗ , then

|AdvH5(A)−AdvH4(A)| ≤ Pr
H5

[Borderline] .

We will bound PrH5 [Borderline] as a part of our analysis in the next hybrid.
As a final remark on this hybrid, we note that in order to execute this hybrid, the challenger

does not need to access s itself, but rather only the aβ,bi, ci,d vectors. This will be useful in the
next hybrid.

Hybrid H6. In this hybrid, all aβ,bi, ci,d are sampled from the uniform distribution. Everything
else remains the same. We note that by definition, in hybrid H5:

aTβ = sT Âβ + eT1,β

bTi = sT B̂i + eT2,i

cTi = sT Ĉi + eT3,i

dT = sTD + eT4 ,

where all Âβ, B̂i, Ĉi,D are uniformly distributed, and all eT1,β, e
T
2,i, e

T
3,i, e

T
4 are sampled coordinate-

wise from χ. The DLWEn,q,χ assumption therefore asserts that:

|AdvH6(A)−AdvH5(A)| ≤ negl(λ) .

Furthermore, since Borderline is an efficiently recognizable event, it also holds that∣∣∣∣Pr
H6

[Borderline]− Pr
H5

[Borderline]

∣∣∣∣ = negl(λ) . (5)

In H6, the probability of Borderline can be bounded under the 1D-SIS-R assumption.

Claim 5.1.1. Under the 1D-SIS-Rq,p,γ,m′ assumption, it holds that PrH6 [Borderline] = negl(λ),
where m′ = m · (2 + z + 2`+ 1), and γ = p ·B ·mO(d+log `).

21

543
Approved for Public Release; Distribution Unlimited.

Proof. Let v ∈ Z(2+z+2`+1)m
q be an input to 1D-SIS-Rq,p,γ,m′ . Then define aβ,bi, ci,d be so that

their concatenation is v.
The reduction executes H6 as the challenger, using the vectors defined above. We claim that

if Borderline occurs, then we solve 1D-SIS-R. This follows since if Borderline occurs then we found
x, j such that

(bTU ,x ·G−1(CΠ,w)G−1(D)− F (x(i))cTΠ,wG−1(D) + F (x)ΠL(w)dT)uj

∈ [−E,E] + (q/p)Z .

However, by Lemma 4.1, it follows that

bTU ,x =
∑

β∈{0,1}

aTβR′1,β +
∑
i∈[z]

bTi R′2,i

cTΠ,x =
∑

β∈{0,1}

aTβR′′1,β +
∑
i∈[2`]

cTi R′′3,i

where
∥∥∥R′1,β∥∥∥ ,∥∥∥R′2,i∥∥∥ ≤ mO(d) and

∥∥∥R′′1,β∥∥∥ ,∥∥∥R′′3,i∥∥∥ ≤ mO(log `). It follows that there exists an

(efficiently derivable) matrix R0 such that

bTU ,x ·G−1(CΠ,w)G−1(D)− F (x(i))cTΠ,wG−1(D) + F (x)ΠL(w)dT = vTR0 ,

and ‖R0‖ ≤ mO(d+log `).
Finally,

〈v,R0 · uj〉 ∈ [−E,E] + (q/p)Z ,

with ‖R0 · uj‖ ≤ ‖R0‖ ≤ mO(d+log `) and E = B ·mO(d+log `) = mO(d+log `). Thus R0 · uj is a valid
solution for 1D-SIS-Rq,p,γ,m′ . The claim thus follows. �

Putting together Claim 5.1.1 and Eq. (5), we get that

Pr
H5

[Borderline] ≤ Pr
H6

[Borderline] + negl(λ) ≤ negl(λ) .

and thus, finally
|AdvH5(A)−AdvH6(A)| ≤ negl(λ) .

Finally, we notice that the vector d is only used when answering the challenge query in the case
of b = 0. This means that in the adversary’s view, the answer it gets when b = 0 is uniform and
independent of its view so far, exactly the same as the case b = 1 where an actual random vector
is returned. It follows that

AdvH6(A) = 1/2 .

On the other hand
AdvH6(A) ≥ 1/2 + ε∆t/4− negl(λ) ,

and thus

ε ≤ negl(λ)

∆t/4
= negl(λ) .

It follows that A cannot achieve a noticeable advantage in the constrained PRF experiment under
the DLWEq,n,χ assumption.

22

544
Approved for Public Release; Distribution Unlimited.

5.4 Computational Functionality Preserving

We now prove the computational functionality preservation of our scheme, as per Definition 3.1.
Throughout this section, we let F be a family of z-uniform functions and let d be a depth bound
(both can depend on λ). We let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise
distributions χ = χ(λ, d) be as defined in Section 5.2. We let H be the family of admissible hash
functions as described in Section 3.4, with range {0, 1}`.

Theorem 5.2. Let F be a family of z-uniform functions and let d be a depth bound (both can depend
on λ). Let n = n(λ, d), m = m(λ, d), q = q(λ, d), p = p(λ, d) and the noise distributions χ = χ(λ, d)
be as defined in Section 5.2. Further let m′ = m · (z + 2`+ 3), and γ = ω(

√
n log λ) · p ·mO(d+log `).

Assuming the hardness of DLWEn,q,χ and 1D-SIS-Rq,p,γ,m′, the scheme CPRF is computation-
ally functionality preserving.

We note that the hardness of both assumptions translates to the worst case hardness of approx-
imating lattice problems such as GapSVP and SIVP to within sub-exponential factors.

outline. The theorem follows from an argument practically identical to that made in Hybrids H5,H6

of the proof of Theorem 5.1.
Recall that we showed that Borderline events only happen with negligible probability, and there-

fore with all but negligible probability, it holds that the PRF value at point x(i) is exactly equal
to ⌊

bTU ,x(i) ·G
−1(CΠ,w(i))G−1(D)− F (x(i))cT

Π,w(i)G
−1(D) + F (x(i))ΠL(w(i))dT

⌉
p
.

However, when F (x(i)) = 0, this term simplifies to⌊
bTU ,x(i) ·G

−1(CΠ,w(i))G−1(D)
⌉
p

which is exactly ConstrainEval(KF ,PP, x(i)) by definition. Functionality is thus preserved with all
but negligible probability.

5.5 Other Properties

We describe several other properties that our construction satisfies.

Unconditional Almost-Correctness. We have shown that our constrained PRF satisfies a
computational correctness property, namely that it is hard to find an input x such that PRFK(x) 6=
ConstrainEval(KF ,PP,x). We are also able to show unconditionally that the constrained evaluation
and the actual PRF evaluation do not differ by much, for any input x. Indeed, by Equation 3 and
4, we have

||PRFK(x)− ConstrainEval(KF ,PP,x)||∞ ≤ mO(d) ·B

Key Homomorphism. Our PRF is also “almost key homomorphic” in the sense that PRFs(x)+
PRFs′(x) is close to PRFs+s′(x) for any keys s and s′ and any input x. Recall that our PRF is

PRFs(x) =
⌊
sTBU ·G−1(CΠ) ·G−1(D)

⌉
p

23

545
Approved for Public Release; Distribution Unlimited.

For any keys si and input x, denoting sTi BU ·G−1(CΠ) ·G−1(D) as hi, we have

||PRF∑ si(x)−
∑

PRFsi(x)||∞ =

∣∣∣∣∣∣∣∣⌊∑
i

hi
⌉
p
−
∑
i

bhiep

∣∣∣∣∣∣∣∣
∞
≤ k + 1

Constrained-Key Homomorphism. Our constrained keys are “almost homomorphic” as well,
in the same sense as above. That is, if KF and K ′F are constrained versions of PRF keys K and K ′

for the same function F , the summation KF +K ′F is a constrained version of K+K ′ for the function
F . For any input x, we then have that ConstrainEval(KF +K ′F ,PP,x) is close to PRFK+K′(x).

We remark that techniques similar to what we used in showing computational correctness can be
used to strengthen the almost key-homomorphism property into computational key-homomorphism
where it is computationally hard to find an input for which key homomorphism does not hold.

6 Succinct Constrained Keys

In this section we show how to reduce the size of the constrained key so that asymptotically it
depends only on the security parameter and independent of the function class. The construction
builds upon the scheme CPRF from Section 5 but reduces the key size by utilizing an attribute
based encryption scheme (ABE). In particular, the constrained keys in our new system have size
poly(λ), independent of the parameters of the constraining circuit (namely, its size or depth).

Our succinct constrained PRF SCPRF for a z-uniform d-depth-bounded family F works as
follows.

• KeyGen(1λ, 1z, 1d): The key generation algorithm takes as input the maximum size z and
depth d of the constraining circuits. Let t = O(log z) to be specified later.

It starts by calling CPRF .KeyGen(1λ, 1z, 1d) to obtain the seed s, and public parameters
PP = (H,A0,A1, {Bi}i∈[z]).

It then generates: aβ = sT (Aβ + βG) + eT1,β and bi,β = sT (Bi + βG) + eT2,i,β. Note that
any possible constrained key of CPRF consists of a0 and a1, together with a subset of
{bi,β}i∈[z],β∈{0,1}.

Next it generates parameters for the ABE scheme (ABE .msk,ABE .pp)← ABE .Setup(1λ, 1t),
and generates cti,β ← ABE .Enc(ABE .pp, (i, β),bi,β), encryptions with (i, β) as the “at-
tributes” and bi,β as the “message”.

The public parameters consist of

SCPRF .PP = (CPRF .PP,ABE .PP,a0,a1, {cti,β}i,β)

The seed for SCPRF contains a seed for CPRF , namely a uniformly random vector s ∈
Znq , and in addition the ABE master secret key ABE .msk. We note that in fact s can be
retrieved from the public parameters using ABE .msk and therefore it is not necessary to give
it explicitly. However, it is more natural to think of s as a part of the seed. In particular
s will be used to evaluate SCPRF (see Eval below) and ABE .msk will be used to produce
constrained keys (see Constrain below).

24

546
Approved for Public Release; Distribution Unlimited.

• Eval(s,PP,x) takes as input the PRF seed s, the public parameters PP which contains
CPRF .pp, and an input x ∈ {0, 1}k such that k ≤ kd (i.e. Uk is of depth ≤ d), and outputs
the result of the CPRF evaluation, namely CPRF .Eval(s, CPRF .pp,x).

• Constrain(ABE .msk, F) takes as input the ABE master secret key ABE .msk and a circuit F
(represented as a string in {0, 1}z) and does the following. Consider the function:

φF (i, β) =

{
1, if Fi = β
0, otherwise

Note that φF can be computed by a depth O(log z) circuit (whose depth is independent of
the depth of F itself), the parameter t from above is set to be equal to this depth. We recall
Section 3.5

The constrained key for F is the ABE token for φF , namely

KF = ABE .KeyGen(ABE .msk, φF)

• ConstrainEval(KF ,PP,x) takes as input the constrained key KF , the public parameters PP
and an input x.

Recalling that PP = (CPRF .pp,ABE .pp,a0,a1, {cti,β}), and that KF is the ABE decryption
key for the function φF , it first decrypts to obtain bi = ABE .Dec(KF , cti,Fi), and then applies
the constrained evaluation algorithm CPRF .ConstrainEval

(
(a0,a1, {bi}), CPRF .PP,x

)
.

The correctness follows in a straightforward manner from the correctness of ABE and CPRF .
The constrained key size of SCPRF is derived from that of ABE and is poly(λ, t) = poly(λ, log z).
It follows that there exists a poly(λ) asymptotic upper bound on the key sizes that applies for all
polynomial values of z. Security is proven in the following theorem.

Theorem 6.1. If CPRF is a single-key secure constrained pseudorandom function for function
class F (Definition 3.1), which is built according to the template in Section 5, and if ABE is
a selectively secure ABE scheme (Definition 3.6), then the scheme SCPRF described above is a
secure single-key CPRF for F .

Proof. Let A be a CPRF adversary against SCPRF . The proof will proceed by a sequence of
hybrids where in each hybrid the challenger will sample a random bit b and the adversary’s success
in inferring b will be A’s advantage in the hybrid.

Hybrid H0. This hybrid is the constrained PRF security game for SCPRF . The challenger
generates (SK,PP)←KeyGen(1λ, 1z, 1d). It gets F ∈ {0, 1}z from A and produces a constrained
key KF←Constrain(SK,PP, F). It then sends PP,KF to A. At this point A adaptively makes
queries x(i) ∈ {0, 1}∗, and the challenger computes y(i)←Eval(s,PP, x(i)) and returns it to A.
Finally, A outputs x∗ ∈ {0, 1}∗. If b = 0 then the challenger returns y∗←Eval(s,PP, x∗), and if
b = 1 it returns a random y∗.

AdvH0(A) ≥ 1/2 + ε .

25

547
Approved for Public Release; Distribution Unlimited.

Hybrid H1. In this hybrid, the challenger does the following. It first receives the function F
and then generates (SK,PP) with one change compared to the previous hybrid. The ciphertexts
cti,1−Fi will now be generated as ABE .Enc(ABE .pp, (i, β), 0).

Claim 6.1.1. Under the selective security of ABE, it holds that

|AdvH0(A)−AdvH1(A)| ≤ negl(λ) ,

Proof. Let B be the following adversary against multi-message selective security of ABE (see Defi-
nition 3.6), which will work by simulating the interaction of A in the CPRF security game against
SCPRF . First of all B generates a key pair (s, CPRF .PP)←CPRF .KeyGen(1λ, 1z, 1d), and pro-
duces the vectors aβ, bi,β as in the key generation process of SCPRF .

Then B runs A to obtain the function description F ∈ {0, 1}z. It sends to the ABE challenger
the attribute sequence {(i, 1 − Fi)}i∈[z]. Then, for each i, it will send to the ABE challenger the
message pair m0,i = bi,1−Fi , m1,i = 0. It receives ABE .PP and ciphertexts cti,1−Fi which encrypt
either m0,i or m1,i. Using ABE .PP it generates cti,Fi by itself as in SCPRF .KeyGen. Further, B
generates SCPRF .PP using CPRF .PP, ABE .PP and cti,β, and forwards this value to A. Note
that this is distributed identically to an SCPRF .PP in H0 if b = 0 and identically to SCPRF .PP
in H1 if b = 1.

Next, B queries the ABE challenger on the function token φF , noting that φF (i, 1−Fi) = 0 for
all i. The challenger responds with the appropriate token, which will be forwarded to A as KF .
Note that this value is correctly distributed.

The adversary B continues to simulate A, answering its oracle queries using the seed s. Finally,
when A halts and outputs some b′, B halts as well and outputs b′ as its own output.

By definition, the advantage of B against ABE is exactly AdvH0(A)−AdvH1(A), and the claim
follows from the selective security of ABE . �

Next, we notice that the adversary’s advantage in this hybrid cannot be noticeable without
breaking the security of CPRF .

Claim 6.1.2. If CPRF is a secure single-key constrained PRF then |AdvH1(A)− 1/2| = negl(λ).

Proof. We present an adversary B against CPRF whose advantage is |AdvH1(A)− 1/2| as follows.
It will first get F from A and forward it to the CPRF challenger. Then, upon receiving CPRF .PP,
aβ, bi, it will generate (ABE .msk,ABE .PP) by itself. Then it will encrypt bi as bi,Fi to obtain
cti,Fi , and will encrypt zero to obtain cti,1−Fi . Finally it will generate KF by running ABE .KeyGen
on the function φF . This will allow generating SCPRF .PP,KF which are consistent with the
distribution that A receives in H1.

The values SCPRF .PP,KF will be sent to A, and when A makes PRF queries they will
be forwarded to the CPRF challenger, and the response forwarded back to A. In addition, A’s
challenge will be forwarded, and the response forwarded back. When A terminates and returns b′,
the same b′ will be returned by B.

It is straightforward to see that whenever A wins in H1, B wins against CPRF . The claim
follows. �

Putting the two claims together, it follows that

1/2 + ε ≤ AdvH0(A) ≤ AdvH1(A) + negl(λ) ≤ 1/2 + negl(λ) ,

which completes the proof of the theorem.

26

548
Approved for Public Release; Distribution Unlimited.

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
99–108. ACM, 1996.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 298–307. IEEE Computer Society, 2003.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random or-
acles. In Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
pages 443–459, 2004.

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Advances in Cryptology -
CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 22-26, 1993, Proceedings, pages 278–291, 1993.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Public-Key Cryptography - PKC 2014 - 17th International Confer-
ence on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic prfs and their applications. In Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 410–428, 2013.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseu-
dorandom functions. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 353–370. Springer, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.

27

549
Approved for Public Release; Distribution Unlimited.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part II, pages 280–300, 2013.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986. Extended abstract in FOCS 84.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006, pages 89–98. ACM, 2006.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. Electronic Colloquium on Computational Com-
plexity (ECCC), 14(133), 2007.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 545–554. ACM, 2013.

[HKKW14] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adap-
tively secure constrained pseudorandom functions. Cryptology ePrint Archive, Report
2014/720, 2014. http://eprint.iacr.org/.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
669–684. ACM, 2013.

[LMR14] Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Improved con-
structions of prfs secure against related-key attacks. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Security -
12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014.
Proceedings, volume 8479 of Lecture Notes in Computer Science, pages 44–61. Springer,
2014.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 465–484, 2011.

28

550
Approved for Public Release; Distribution Unlimited.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions
and kdcs. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in
Computer Science, pages 327–346. Springer, 1999.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342,
2009.

[Reg04] Oded Regev. Lattices in computer science - average case hardness. Lecture Notes
for Class (scribe: Elad Verbin), 2004. http://www.cims.nyu.edu/~regev/teaching/
lattices_fall_2004/ln/averagecase.pdf.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

29

551
Approved for Public Release; Distribution Unlimited.

http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf

Communication Locality

in Secure Multi-party Computation

How to Run Sublinear Algorithms in a Distributed Setting

Elette Boyle1, Shafi Goldwasser2, and Stefano Tessaro1,�

1 MIT CSAIL
eboyle@mit.edu, tessaro@csail.mit.edu

2 MIT CSAIL and Weizmann
shafi@theory.csail.mit.edu

Abstract. We devise multi-party computation protocols for general se-
cure function evaluation with the property that each party is only re-
quired to communicate with a small number of dynamically chosen
parties. More explicitly, starting with n parties connected via a com-
plete and synchronous network, our protocol requires each party to send
messages to (and process messages from) at most polylog(n) other
parties using polylog(n) rounds. It achieves secure computation of any
polynomial-time computable randomized function f under cryptographic
assumptions, and tolerates up to (1

3
−ε)·n statically scheduled Byzantine

faults.

We then focus on the particularly interesting setting in which the func-
tion to be computed is a sublinear algorithm: An evaluation of f depends
on the inputs of at most q = o(n) of the parties, where the identity of
these parties can be chosen randomly and possibly adaptively. Typically,
q = polylog(n). While the sublinear query complexity of f makes it pos-
sible in principle to dramatically reduce the communication complexity
of our general protocol, the challenge is to achieve this while maintaining
security: in particular, while keeping the identities of the selected inputs
completely hidden. We solve this challenge, and we provide a protocol
for securely computing such sublinear f that runs in polylog(n) + O(q)
rounds, has each party communicating with at most q · polylog(n) other
parties, and supports message sizes polylog(n) · (� + n), where � is the
parties’ input size.

Our optimized protocols rely on a multi-signature scheme, fully ho-
momorphic encryption (FHE), and simulation-sound adaptive NIZK ar-
guments. However, we remark that multi-signatures and FHE are used
to obtain our bounds on message size and round complexity. Assuming
only standard digital signatures and public-key encryption, one can still
obtain the property that each party only communicates with polylog(n)
other parties. We emphasize that the scheduling of faults can depend on
the initial PKI setup of digital signatures and the NIZK parameters.

� This research was initiated and done in part while the authors were visiting the Isaac
Newton Institute for Mathematical Sciences in Cambridge, UK.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 356–376, 2013.
c© International Association for Cryptologic Research 2013

552
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 357

1 Introduction

Multiparty computation (MPC) protocols for secure function evaluation (SFE)
witnessed a significant body of work within the cryptography research commu-
nity in the last 30 years.

These days, an emerging area of potential applications for secure MPC is to
address privacy concerns in data aggregation and analysis, to match the explo-
sive current growth of available data. Large data sets, such as medical data,
transaction data, the web and web access logs, or network traffic data, are now
in abundance. Much of the data is stored or made accessible in a distributed
fashion. This necessitated the development of efficient distributed protocols to
compute over such data. In order to address the privacy concerns associated
with such protocols, cryptographic techniques such as MPC for SFE where data
items are equated with servers can be utilized to prevent unnecessary leakage of
information.

However, before MPC can be effectively used to address today’s challenges,
we need protocols whose efficiency and communication requirements scale prac-
tically to the modern regime of massive data. An important metric that has
great effect on feasibility but has attracted surprisingly little attention thus far
is the number of other parties that each party must communicate with during
the course of the protocol. We refer to this as the communication locality. In-
deed, if we consider a setting where potentially hundreds of thousands, or even
millions of parties are participating in a computation over the internet, requiring
coordination between each pair of parties will be unrealistic.

In this work, we work to optimize the communication locality for general se-
cure function evaluation on data which is held distributively among n parties.
These parties are connected via a complete synchronous communication net-
work, of whom (1

3 − ε)n may be statically scheduled, computationally bounded
Byzantine faults. We do not assume the existence of broadcast channels.

We also focus on a particularly interesting setting in which the randomized
function f to be computed is a sublinear algorithm: namely, a random execution
of f(x1, ..., xn) depends on at most q = o(n) of the inputs xi. We consider both
non-adaptive and adaptive sublinear algorithms, in which the identities of the
selected inputs may depend on the randomness r of execution, or on both r and
the values of xi queried thus far. Sublinear algorithms play an important role
in efficiently testing properties and trends when computing on large data sets.
The sublinear query complexity makes it possible in principle to dramatically
reduce the amount of information that needs to be communicated within the
protocol. However, the challenge is to achieve this while maintaining security—
in particular, keeping the identities of the selected inputs completely hidden.

Straightforward application of known general MPC techniques results in pro-
tocols where each party sends and receives messages from all n parties, and where
the overall communication complexity is O(n2), regardless of the complexity of
the function to be computed. We remark that this is obviously the case for the
classical general SFE protocols (beginning with [26,14,5]) in which every party
first secret shares its input among all other parties (and exchanges messages

553
Approved for Public Release; Distribution Unlimited.

358 E. Boyle, S. Goldwasser, and S. Tessaro

between all n parties at the evaluation of every gate of the circuit of the func-
tion computed). Furthermore, although much progress was made in the MPC
literature of the last two decades to make MPC protocols more efficient and suit-
able for practice, this is still the case both in works on scalable MPC [17,20,19,18]
and more recent works utilizing the existence of fully homomorphic encryption
schemes [35,3] for MPC. The latter achieve communication complexity that is
independent of the circuit size, but not of the number of parties when broadcast
channels are not available.

A recent notable exception to the need of each party to communicate with
all other parties is the beautiful work of King, Saia, Sanwalani and Vee [34] on
what they call scalable protocols for a relaxation of the Byzantine agreement and
leader election problems. Their protocols require each honest party to send and
process a polylog(n) number of bits. On the down side, the protocols of [34] do
not guarantee that all honest parties will achieve agreement, but only guarantee
that 1 − o(1) fraction of the good processors reach agreement—achieving only
so-called almost everywhere agreement. In another work of King et al [32], it
is shown how using Õ(

√
n) communication, full Byzantine agreement can be

achieved. The technique of almost-everywhere leader election of [34] will be the
technical starting point of our work.

1.1 Our Results

We provide multiparty computation protocols for general secure function evalu-
ation with communication locality that is polylogarithmic in the number of par-
ties. That is, starting with n parties connected via a complete and synchronous
network, we prove the following main theorem:

Theorem 1. Let f be any polynomial-time randomized functionality
on n inputs. Then, for every constant ε > 0, there exists an n-party
protocol Πf that securely computes a random evaluation of f , tolerating
t < (1/3− ε)n statically scheduled active corruptions, with the following
complexities:
(1) Communication locality: polylog(n).
(2) Round complexity: polylog(n).
(3) Message sizes: O(n · l · polylog(n)), where l = |xi| is the individual

input size.
(4) The protocol uses a setup consisting of n · polylog(n) signing keys

of size polylog(n), as well as a polylog(n)-long additional common
random string (CRS).1

The protocol assumes a secure multisignature scheme, a fully homo-
morphic encryption (FHE) scheme, simulation-sound NIZK arguments,
as well as pseudorandom generators.

Assuming only a standard signature scheme and semantically secure
public-key encryption, and setup as in (4), there exists a protocol for
securely computing f with polylog(n) communication locality.

1 Adversarial corruptions may be made as a function of this setup information.

554
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 359

Multisignatures [39,36] are digital signatures which enable the verification
that a large number of signers have signed a given message, where the number
of signers is not fixed in advance. The size of a multisignature is independent of
the number of signers, but in order to determine their identities one must attach
identifying information to the signature. Standard instantiations of such schemes
exist under the bilinear computational Diffie-Hellman assumption [44,36].

The use of multisignatures rather than standard digital signatures enables us
to bound the size of the messages sent in the protocol. Further, the use of FHE
enables us to bound the number of messages sent, rather than depend on the time
complexity of the function f to be computed and polynomially on the input size.
However, we can obtain the most important feature of our complexity, the need
of every party to send messages to (and process messages from) only polylog(n)
parties in the network, solely under the assumption that digital signatures and
public-key encryption exist.

In addition, we show how to convert an arbitrary sublinear algorithm with
query complexity q = polylog(n) into a multi-party protocol to evaluate a
randomized run of the algorithm with polylog(n) communication locality and
rounds, and where the total communication complexity sent by each party is
only O(polylog(n) · (l + n)) for l = |x| an individual input size. We prove that
participating in the MPC reveals no information beyond the output of the sub-
linear algorithm execution using a standard Ideal/Real simulation-based security
definition.

For underlying query complexity q, our second main theorem is as follows:

Theorem 2. Let SLA be a sublinear algorithm which retrieves q =
q(n) = o(n) different inputs. Then, for all constant ε > 0, there exists
an n-party protocol ΠSLA that securely computes an execution of the
sublinear algorithm SLA tolerating t < (1/3 − ε)n statically scheduled
active corruptions, with the following complexities, where l is the size of
the individual inputs held by the parties:

(1) Communication locality: q · polylog(n).
(2) Round complexity: O(q) + polylog(n).
(3) Message sizes: O((l + n) · polylog(n)).
(4) The protocol uses a setup consisting of n · polylog(n) signing keys of

size polylog(n), as well as a polylog(n)-long additional CRS.

The protocol assumes a secure multisignature scheme, an FHE scheme,
simulation-sound NIZK arguments, and pseudorandom generators.

Techniques. We first describe how to achieve our second result, for the case
when f is a sublinear algorithm. This setting requires additional techniques in
order to attain the communication complexity gains. After this, we describe
the appropriate modifications required to maintain polylog(n) communication
locality for general functions f .

There are three main technical components to our protocol for sublinear al-
gorithms. The first is to set up a committee structure constituted of a supreme
committee C and n input committees C1, ..Cn. These committees will all be of

555
Approved for Public Release; Distribution Unlimited.

360 E. Boyle, S. Goldwasser, and S. Tessaro

size polylog(n) and with high probability have a 2/3 majority of honest parties.
Each committee Ci will (to begin with) hold shares of the input xi whereas the
role of the supreme committee will essentially be to govern the running of the
protocol. A major challenge is to ensure that all parties in the network know
the identity of parties in all the committees. The starting point to address this
challenge is to utilize the communication-efficient almost-everywhere leader elec-
tion protocol of [34]. We remark that [34] achieves better total communication
complexity of polylog(n) bits and offers unconditional results, but only achieves
an almost-everywhere agreement: there may be a o(1) fraction of honest parties
who will not reach agreement and, in our context, will not know the makeup of
the committees. The main idea to remedy this situation is to add an iterated
certification procedure using multi-signatures to the protocol of [34], while keep-
ing the complexity of only polylog(n) messages sent and processed by any honest
party. In the process, however, we move from unconditional to computational
security and our message sizes grow, as they will be signed by multi-signatures.
Whereas the size of the multi-signatures depends only on the security parameter,
the messages should indicate the identities of the signers – this is cause for the
increased size of messages.

The second component is to implement a randomly chosen secret reshuffling ρ
of parties’ inputs within the complexity restrictions we have alloted. At the end
of the shuffling, committee Cρ(i) will hold the input of committee Ci. Informally,
this will address the major privacy issue in executing a sublinear algorithm in a
distributed setting, which is to ensure that the adversary does not learn which
of the n inputs are used by the algorithm. We implement the shuffling via dis-
tributed evaluation of a switching network with very good mixing properties
under random switching, all under central coordination by the supreme commit-
tee. We assume that a fixed switching network over n wires is given, with depth
d = polylog(n), and is known to everyone.

The third component, once the inputs will be thus permuted, is to actually
run the execution of the sublinear algorithm. For lack of space, let us illustrate
how this is done for the sub class of non-adaptive sublinear algorithms. This is
a class of algorithms that proceed in two steps:

– First, a random subset I of size q of the indices 1, ..., n is selected.
– Second, an arbitrary polynomial-time algorithm is computed on inputs xj

for j ∈ I.

To run an execution of such an algorithm, the supreme committee: first selects
a random and secret q = polylog(n) size subset I of the inputs; and second, runs
a secure function evaluation (SFE) protocol on the set of inputs in ρ(I) with the
assistance of parties in committees Cj for j ∈ ρ(I). In the adaptive case, one
essentially assumes queries are asked in sequence, and executes in a similar way
the sublinear algorithm query after query, contacting committee ρ(i) for each
query i, instead of parallelizing the computation for all inputs from I. The price
to pay is an additive factor q in the number of rounds of the protocol. However,
note that in the common case q = polylog(n), this does not affect the overall
asymptotic complexity.

556
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 361

Now, consider the case when f is a general polynomial-time function, whose
evaluation may depend on a large number of its inputs. In this case, we can skip
the aforementioned shuffling procedure, and instead simply have each party Pi

send his (encrypted) input up to the supreme committee C to run the evaluation
of f . That is, each Pi gives an encryption of his input to the members of his
input committee Ci, and each party in Ci sends the ciphertext up to C via a
communication tree that is constructed during the process of electing committees
(in Step 1). Then, the members of the supreme committee C (who collectively
have the ability to decrypt ciphertexts) are able to evaluate the functionality f
directly via a standard SFE.

Remarks. A few remarks are in order.

– Flooding by faulty parties. There is no limit (nor can there be) on how many
messages are sent by faulty parties to honest parties, as is the case in the
works mentioned above. To address this issue in [34,32,33,21], for example, it
is (implicitly) assumed that the authenticated channels between parties can
“recognize” messages from unwarranted senders which should not be pro-
cessed and automatically drop them, whereas we will use a digital signature
verification procedure to recognize and drop these messages which should
not be processed.

– Security definition for sublinear algorithms. The security definition we achieve
is the standard definition of secure multiparty computation (MPC). In-
formally, the parties will receive the output corresponding to a random
execution of the sublinear algorithm but nothing else. Formally, we use
the ideal/real simulation-based type definition. We note that in works of
[29,23,31] on MPC for approximation algorithms for functions f , privacy
is defined so as to mean that no information is revealed beyond the exact
value of f , rather than beyond the approximate value of f computed by the
protocol. One may ask for a similar privacy definition for sublinear algo-
rithms, which are an approximation algorithm of sorts. However, this is an
orthogonal concern to the one we address in this work.

1.2 Further Related Work

Work on MPC in partially connected networks, such as the recent work of Chan-
dran, Garay and Ostrovsky [12,13], shows MPC protocols for network graphs of
degree polylog(n) (thus each party is connected to no more than polylog(n) par-
ties). They can only show how to achieve MPC amongst all but o(n) honest
parties. Indeed, in this setting it is unavoidable for some of the honest parties
to be cut out from every other honest party. In contrast, in the present work,
we assume that although the n parties are connected via a complete network
and potentially any party can communicate with any other party, our protocols
require each honest party to communicate with only at most polylog(n) parties
whose identity is only determined during the course of the protocol execution.

557
Approved for Public Release; Distribution Unlimited.

362 E. Boyle, S. Goldwasser, and S. Tessaro

The problem of sublinear communication in MPC has also been considered
in the realm of two-party protocols, e.g. by [40] who provide communication-
preserving protocols for secure function evaluation (but which require super-
polynomial computational effort), and in a recent collection of works including
[28] which achieve amortized sublinear time protocols, and the work of [31] which
show polylogarithmic communication for specific functions.

An interesting point of comparison to our result is the work of Halevi, Lin-
dell and Pinkas [30]. They design computationally secure MPC protocols for n
parties in which one party is singled out as a server and all other parties com-
municate directly with the server in sequence (in one round of communication
each). However, it is easy to see that protocols in this model can only provide a
limited privacy guarantee: for example, as pointed out by the authors, if the last
i parties collude with the server then they can always evaluate the function on
as many input settings as they wish for variable positions n− i, n− i+1, . . . , n.
No such limitations exist in our model.

In a recent and independent work to the current paper, King et al [21] extends
[32] to show a protocol for unconditionally secure SFE for general f that requires
every party to send at most O(m

n +
√
n) messages, where m is the size of a circuit

representation of f . A cursory comparison to our work shows that in [21] each
party sends messages to Ω(

√
n) other parties.

Finally, let us point out that our approach to anonymize access patterns
to parties is similar in spirit to problems arising in the context of Oblivious
RAM [27], and uses similar ideas to the obfuscated secret shuffling protocols of
Adida and Wilkström [2].

2 Preliminaries

We recall first the definitions of standard basic tools used throughout the paper,
and then move to some important results on shuffling and our notation for
sublinear algorithms.

2.1 Basic Tools

Non-interactive Zero Knowledge. We make use of a standard non-interactive
zero knowledge (NIZK) argument system (Gen,Prove,Verify,S = (Scrs,SProof))
with unbounded adaptive simulation soundness, as defined in [22,6,7]. That is,
soundness of the argument system holds even against PPT adversaries who are
given access to an oracle that produces simulated proofs of (potentially false)
statements. For a formal definition, we refer the reader to, e.g., [22,6,7].

Theorem 1. [42] There exists an unbounded simulation-sound NIZK proof sys-
tem for any NP language L, based on trapdoor one-way permutations, with proof
length poly(|x|, |w|), where x is the statement and w is the witness.

558
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 363

Fully Homomorphic Encryption. We make use of a fully homomorphic public-
key encryption (FHE) scheme (Gen,Enc,Dec,Eval) as defined in, e.g., [25]. For
our purposes, we require an FHE scheme with the additional property of certi-
fiability. A certifiable FHE scheme is associated with a set R of “good” encryp-
tion randomness such that (repeated execution of) the Eval algorithm and the
decryption algorithm Dec are correct on ciphertexts derived from those using
randomness from R to encrypt. A formal definition follows.

Definition 1. For a given subset R ⊆ {0, 1}poly(k) of possible randomness val-
ues, we (recursively) define the class of R-evolved ciphertexts with respect to a
public key pk to include all ciphertexts c of the form:

– c = Encpk(m; r) for some m in the valid message space and randomness
r ∈ R, and

– c = Evalpk((ci)i∈I , f) for some poly(k)-size collection of R-evolved ciphertexts
(ci)i∈I and some poly-size circuit f .

Definition 2. A FHE scheme is said to be certifiable if there exists a subset
R ⊆ {0, 1}poly(k) of possible randomness values for which the following hold.

1. Pr[r ∈ R] = 1 − negl(k), where the probability is over uniformly sampled
r ← {0, 1}poly(k).

2. There exists an efficient algorithm AR such that AR(r) = 1 for r ∈ R and 0
otherwise.

3. With overwhelming probability, Gen outputs a key pair (pk, sk) such that
Decsk(Evalpk((ci)1≤i≤n, f)) = f((xi)1≤i≤n) for all poly-sized circuits f and
for all R-evolved ciphertexts c1, . . . , cn, where xi = Decsk(ci).

Certifiable FHE schemes have been shown to exist based on the Learning with
Errors assumption, together with a circular security assumption (e.g., Brakerski
and Vaikuntanathan [10] and Brakerski, Gentry, and Vaikuntanathan [9]). For
the readers who are familiar with these constructions, the set of “good” certifying
randomness R corresponds to encrypting with sufficiently “small noise.”

Multisignatures. A multisignature scheme is a digital signature scheme with
the ability to combine signatures from multiple signers on the same message
into a single short object (a multisignature).2 The first formal treatment of
multisignatures was given by Micali, Ohta, and Reyzin [39].

Definition 3. A multisignature scheme is a tuple of PPT algorithms
(Gen, Sign,Verify,Combine,MultiVerify), where syntactically (Gen, Sign,Verify) are
as in a standard signature scheme, and Combine,MultiVerify are as follows:

Combine({{vkj}j∈Ji , σi}�i=1,m): For disjoint J1, . . . , J� ⊆ [n], takes as input a
collection of signatures (or multisignatures) σi with respect to verification
keys vkj for j ∈ Ji, and outputs a combined multisignature, with respect to
the union of verification keys.

2 Note that multisignatures are a special case of aggregate signatures [8], which in
contrast allow combining signatures from n different parties on n different messages.

559
Approved for Public Release; Distribution Unlimited.

364 E. Boyle, S. Goldwasser, and S. Tessaro

MultiVerify({vki}i∈I ,m, σ): Verifies multisignature σ with respect to the collec-
tion of verification keys {vki}i∈I. Outputs 0 or 1.

All algorithms satisfy the standard natural correctness properties, except with
negligible probability. Moreover, the scheme is secure if for any PPT adversary
A, the probability that the challenger outputs 1 in the following game is negligible
in the security parameter k:

Setup. The challenger samples n public key-secret key pairs, (vki, ski)← Gen(1k)
for each i ∈ [n], and gives A all verification keys {vki}i∈[n]. A selects a
proper subset M ⊂ [n] (corresponding to parties to corrupt) and receives the
corresponding set of secret signing keys {ski}i∈M .

Signing Queries. A may issue multiple adaptive signature queries, of the form
(m, i). For each such query, the challenger responds with a signature σ ←
Signski(m) on message m with respect to the signing key ski.

Output. A outputs a triple (σ̄∗,m∗, I∗), where σ̄∗ is an alleged forgery multisig-
nature on message m∗ with respect to a subset of verification keys I∗ ⊂ [n].
The challenger outputs 1 if there exists i ∈ I∗ \ M such that the mes-
sage m∗ was not queried to the signature oracle with key ski, and 1 ←
MultiVerify({vki}i∈I∗ ,m∗, σ∗).

The following theorem follows from a combination of the (standard) signature
scheme of Waters [44] together with a transformation from this scheme to a
multisignature scheme due to Lu et. al. [36].

Theorem 2. [44,36] There exists a secure multisignature scheme with signature
size poly(k) (independent of message length and number of potential signers),
based on the Bilinear Computational Diffie-Hellman assumption.

Multi-party Protocols: Model and Security Definitions. We consider the setting
of n parties P = {P1, ..., Pn} within a synchronous network who wish to jointly
compute any PPT function f over their private inputs. We allow up to t statically
chosen Byzantine (malicious) faults and a rushing adversary. In our protocols
below, we consider t ≤ (1

3−ε)n for any constant ε > 0. We assume that every pair
of parties has the ability to initiate direct communication via a point-to-point
private, authenticated channel. (However, we remark that in our protocol, each
(honest) party will only ever send or process information along subset of only
polylog(n) such channels.) We assume the existence of a public-key infrastruc-
ture, but allow the adversary’s choice of corruptions to be made as a function of
this public information.

The notion of security we consider is the standard simulation-based definition
of secure multiparty computation (MPC), via the real/ideal world paradigm.
Very loosely, we require that for any PPT adversary A in a real-world execution
of the protocol, there exists another PPT adversary who can simulate the output
of A given only access to an “ideal” world where he learns only the evaluated
function output. We refer the reader to, e.g., [11] for a formal definition of
(standalone) MPC security.

560
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 365

General secure function evaluation. The following theorem is well known and
will be use throughout this paper. Let C be a circuit with n inputs, and let FC

the functionality that computes the circuit.

Theorem 3. [5] For any t < n/3, there exists a protocol that securely computes
the functionality FC functionality, with perfect security. The protocol proceeds
in O(|C|) rounds, and each party sends poly(n) messages of size poly(k, n) each.

Verifiable Secret Sharing. A secret sharing scheme is a protocol that allows a
dealer who holds a secret input s, to share his secret among n parties such that
any t parties do not gain any information about the secret s, but any set of (at
least) t+ 1 parties can reconstruct s. A verifiable secret sharing (VSS) scheme,
introduced by Chor et al. [15], is a secret sharing scheme with the additional
guarantee that after the sharing phase, a dishonest dealer is either rejected, or
is committed to a single secret s, that the honest parties can later reconstruct,
even if dishonest parties do not provide their correct shares.

For concreteness, we consider a class of VSS constructions that takes advan-
tage of reconstruction and secrecy properties of low-degree polynomials [43,38].
In particular, security of such a VSS protocol Share is formalized as emulating the
ideal functionality F t

VSS for parties PD, P1, ..., Pn with distinguished dealer PD

such that FVSS(q, (∅, ..., ∅)) =
(∅, (q(α1), ..., q(αn))

)
for fixed evaluation points

α1, . . . , αn if deg(q) ≤ t, and FVSS(q, (∅, ..., ∅)) = (∅, (⊥, ...,⊥)) otherwise. The
party can also run a reconstruction protocol Reconst such that if honest parties
input the correct shares output by the above functionality to them, then they
recover the right value. The following result is well known.

Theorem 4. [5,4] For any t < n/3, there exists a constant-round protocol Share
that securely computes the F t

VSS functionality, with perfect security. Each party
sends poly(n) messages of size O(l log l), where l = max{|x|, n}.
Also, we will be interested in the case where the dealer D can be any of the n
parties, and he sends shares to a subset P ′ of the n parties of size n′ (e.g., n′ =
polylog(n)), and we may not necessarily have D ∈ P ′. The above functionality
can be extended to this case naturally, and it is a folklore result that the protocols
given by the above theorem also remain secure in this case as long as less than
a fraction 1/3 of the parties in P ′ are corrupted.

Broadcast. Another important functionality we need to implement is broadcast.
To define, a broadcast protocol can be seen as an example of an MPC imple-
menting a functionality FBC for parties PD, P1, ..., Pn with distinguished dealer
PD, defined as FBC(m, (∅, ..., ∅)) = (∅, (m, . . . ,m))

)
, where m is the message to

be broadcast.

Theorem 5. [24] For any t < n/3, there exists a constant-round protocol that
securely computes the FBC functionality, with perfect security. Each party sends
poly(n) messages of size O(|m|) each.

561
Approved for Public Release; Distribution Unlimited.

366 E. Boyle, S. Goldwasser, and S. Tessaro

2.2 Random Switching Networks and Random Permutations

Our protocol will employ what we call an n-wire switching network, which con-
sists of a sequence of layers, each layer in turn consisting of one or more swapping
gates which decide to swap the values of two wires depending on a bit. Formally,
given an input vector x = (x1, . . . , xn) (which we assume to be integers wlog), a
swap gate operation swap(i, j,x, b) returns x′, where if b = 0 then x = x′, and
if b = 1 then we have x′

i = xj , x
′
j = xi, and x′

k = xk for all k
= i, j. A switching
layer is a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs of distinct in-
dices of [n]. A d-depth switching network is a list SN = (L1, . . . , Ld) of switching
layers. Note that for each assignment of the bits of the gates in SN , the network
defines a permutation from [n] to [n] by inputting the vector x = (1, 2, . . . , n)
to the network. The question we are asking is the following: If we set each bit in
each swap gate uniformly and independently at random, how close to uniform is
the resulting permutation? The following theorem guarantees the existence of a
sufficiently shallow switching network giving rise to an almost-uniform random
permutation.

Theorem 6. For all c > 1, there exists an efficiently computable n-wire switch-
ing network of depth d = O(polylog(n) · logc(k)) (and size O(n · d)) such that
the permutation π̂ : [n] → [n] implemented by the network when setting swaps
randomly and independently has negligible statistical distance (in k) from a uni-
formly distributed random permutation on [n].

Proof. By Theorem 1.11 in [16], there exists such network SN of depth d =
O(polylog(n)) where the statistical distance is of the order O(1/n). Consider
now the switching network SN ′ obtained by cascading r copies of SN . Then,
when setting switching gates at random, the resulting permutation π̂ equals
π̂1 ◦ · · · ◦ π̂n, where π̂i are independent permutations obtained each by setting
the gates in SN uniformly at random. With π being a random permutation, a
well-known property of the statistical distance Δ(·, ·), combined with the fact
permutation composition gives a group (see e.g. [37] for a proof) yields

Δ(π̂, π) ≤ 2r−1 ·
r∏

i=1

Δ(π̂i, π) ≤ O

((
2

n

)r)
≤ O(2r(log 2−log(n))) ,

which is negligible in k for r = logc(k). �
Note that in particular this means that each wire is connected to at most d =
O(polylog(n) · logc(k)) other wires via a switching gates, as each wire is part of
at most one gate per layer.

2.3 Sublinear Algorithms

We consider a model where n inputs x1, . . . , xn are accessible to an algorithm
SLA via individual queries for indices i ∈ [n]. Formally, a Q-query algorithm
in the n-input model is a tuple of (randomized) polynomial time algorithms

562
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 367

SLA = (SLA.Sel1, SLA.Sel2, . . . , SLA.SelQ, SLA.Exec). During an execution with
inputs (x1, . . . , xn), SLA.Sel1 takes no input and produces as output a state σ1

and a query index i1 ∈ [n], and for j = 2, . . . , n, SLA.Selj takes as input a
state σj−1 and input xij−1 , and outputs a new state σj and a new query index
ij. Finally, SLA.Exec takes as input σQ and xQ, and produces a final output
y. We say that SLA is sublinear if Q = o(n). We will also consider the special
case of non-adaptive algorithms which consist without loss of generality of only
two randomized algorithms SLA = (SLA.Sel, SLA.Exec), where SLA.Sel outputs a
subset I ⊆ [n] of indices of inputs to be queried, and the final output is obtained
by running SLA.Exec on input (xi)i∈I .

Examples of sublinear algorithms, many of them non-adaptive, include algo-
rithms for property testing such as testing sortedness of the inputs, linearity,
approximate counting, and numerous graph properties, etc. Surveying this large
area and the usefulness of these algorithms goes beyond the scope of this paper,
and we refer the reader to the many available surveys [1].

3 Multi-party Computation for Sublinear Algorithms

We present a high-level overview geared at illustrating the techniques used within
our sublinear algorithm compiler (Theorem 2), which is the more involved of
our two results. For exposition, we focus on the case of non-adaptive algorithms.
Given aQ-query non-adaptive sublinear algorithm SLA, we would like to evaluate
it in a distributed fashion along the following lines. First, a small committee
C consisting of polylog(n) parties is elected, with the property that at least
two thirds of its members are honest. This committee then jointly decides on a
random subset ofQ parties I, output by SLA.Sel, from which inputs are obtained.
The parties in C∪I jointly execute a multi-party computation among themselves
to produce the output of the sublinear algorithm according to the algorithm
SLA.Exec, which is then broadcasted to all parties.

But things will not be as simple. Interestingly, one main challenge is very
unique to the setting of sublinear algorithms: An execution of the protocol needs
to hide the subset I of parties whose inputs contribute to the output! More
precisely, an ideal execution of the sublinear algorithm via the functionality
FSLA only reveals the output of the sublinear algorithm. Therefore, we need to
ensure that the adversary does not learn any additional information about the
composition of I from a protocol execution beyond what leaked via the final
output. Our protocol will indeed hide the set I completely. This will require
modifying the above naive approach considerably.

The second challenge is complexity theoretic in nature. Enforcing low com-
plexity of our protocol when implementing the above steps, while realizing our
mechanism to hide the subset I, will turn out to be a delicate balance act.

In particular, at a high level our protocol will consist of the following
components:

Committee Election Phase. The n parties jointly elect a supreme committee
C, as well as individual committees C1, . . . , Cn on which they all agree,

563
Approved for Public Release; Distribution Unlimited.

368 E. Boyle, S. Goldwasser, and S. Tessaro

sending each at most polylog(n) messages of size each n·poly(logn, log k). All
committees have size polylog(n) and at least a fraction 2/3 of the parties in
them are honest. As part of this process, the parties set up a communication
structure that allows the supreme committee to communicate messages to
all parties.

Commitment Phase. Each party Pi commits to its input so that Ci holds
shares of these inputs.

Shuffling Phase. To hide the access pattern of the algorithm (i.e., which in-
puts are included in the computation), the committees will randomly shuffle
the inputs they hold with respect to a random permutation ρ. This will hap-
pen by using a switching network with good shuffling properties. For each
swap gate (i, j) in the switching network, committees Ci and Cj will swap at
random the sharings they hold via a multi-party computation under a ran-
dom decision taken by the supreme committee C. The supreme committee
then holds a secret sharing of ρ.

Evaluation Phase. The parties in the supreme committee C sample a random
query set I according to SLA.Sel via MPC and learn ρ(I) only. They will
then include the parties in committees Ci for i ∈ ρ(I) in a multi-party
computation to evaluate the sublinear algorithm on the inputs they hold.
(Recall that C holds ρ in shared form.)

Output Phase. The supreme committee broadcasts the output of the compu-
tation to all parties, using the communication structure from the first stage.

In addition, we carefully implement sharings and multi-party computations using
FHE to improve complexity, making the dependency of both the communication
and round complexities linear in the input length |x|, rather than polynomial,
and independent of the circuit sizes to implement the desired functionalities.

The following paragraphs provide a more detailed account of the techniques
used within our protocol. In addition, a high-level description of the protocol
procedure is given in Figure 1.

Committee Election Phase. The backbone behind this first phase is given
by the construction of a communication tree using a technique of King et al [34].
Such tree is a sparse communication subnetwork which will ensure both the
election of the supreme committee, as well as a basic form of communication
between parties and the supreme committee where each party communicates
only with polylog(n) other parties and only polylog(n) rounds of communication
are required. Informally, the protocol setting up the tree assigns (possibly over-
lapping) subsets of parties of polylogarithmic size to the nodes of a tree with
polylogarithmic height and logarithmic degree. The set of parties assigned to the
root will take the role the supreme committee C. Communication from the root
to the parties (or the other way round) occurs by communicating messages over
paths from the root to the leaves of the tree, with an overall communication cost
of polylog(n) messages per party. To elect the committees C1, . . . , Cn, we can
have the supreme committee agree on the seed s of a PRF family F = {Fs}s via
a coin tossing protocol, where Fs maps elements of [n] to subsets of [n] of size
polylog(n), and send s to all parties. We then let Ci = Fs(i).

564
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 369

However, a closer look reveals that it is only possible for the protocol building
the communication tree to enforce that a vast majority of the nodes of the
tree are assigned to a set of parties for which a 2/3 majority is honest, but
some nodes are unavoidably associated with too large a fraction of corrupted
parties. Indeed, some parties may be connected to too many bad nodes and
their communication ends up being essentially under adversarial control. As a
consequence, the supreme committee is only able to correctly communicate with
a 1 − o(1) fraction of the (honest) parties. Moreover, individual parties are not
capable of determining whether the value they hold is correct or not. We refer
to this situation as almost-everywhere (ae) agreement.

Our main contribution here is the use of cryptographic techniques to achieve
full agreement on C and s in this stage, while maintaining polylog(n) commu-
nication locality; this improves on previous work in the information-theoretic
setting [32,33,21] which requires each party to talk to O(

√
n · polylog(n)) other

parties to reach agreement. We tackle these two issues in two separate ways.

1. From ae agreement to ae certified agreement. We first move to a stage where
a large 1 − o(1) fraction of the parties learn the value sent by the supreme
committee, together with a proof that the output is the one sent by the com-
mittee, whereas the remaining parties who do not know the output are also
aware of this fact. We refer to this scenario as almost-everywhere certified
agreement. Let us start with the basic idea using traditional signatures (we
improve on this below using multisignatures). After having the supreme com-
mittee send a value m to all parties with almost-everywhere agreement, each
party Pi receiving a valuemi will signmi with his own signing key, producing
a signature σi. Then, Pi sends (mi, σi) up the tree to the supreme committee,
and each member will collect at least n/2 signatures on σi on some message
m. Note that this will always be possible, as a fraction 1− o(1) > n/2 of the
honest parties will receive the messagemi = m and send a valid signature up
the tree. Moreover, the adversary would need to forge signatures for honest
parties in order to produce a valid certificate for a message which was not
broadcast by the supreme committee.

2. From ae certified agreement to full agreement. We finally describe a transfor-
mation from ae certified agreement to full agreement. If a committee wants
to broadcast m to all parties, the committee additionally generates a seed
s for a PRF and broadcasts (m, s) in a certified way using the above trans-
formations. Each party i receiving (m, s) with a valid certificate π forwards
(m, s, π) to all parties in “his” committee Fs(i). Whenever a party receives
(m, s, π) with a valid certificate, it stops and outputs m. Note that no party
sends more than polylog(n) additional messages in this transformation. More-
over, it is not hard to see that with very high probability every honest party
will be in at least one of the Fs(i) for a party i who receives (m, s) correctly
with a certificate, by the pseudorandomness of F . Note in particular that the
same seed s can be used over multiple executions of this broadcast procedure
from the committee to the parties, and can be used directly to generate the
committees C1, . . . , Cn.

565
Approved for Public Release; Distribution Unlimited.

370 E. Boyle, S. Goldwasser, and S. Tessaro

While we do guarantee that every party sends at most polylog(n) messages, a
problem of the above approach is the potentially high complexity of processing
incoming messages if dishonest parties flood an honest party by sending too
many messages. Namely, the t = Θ(n) corrupted parties can always each send
(m, s) with an invalid certificate to some honest party Pi, who needs to verify
all signatures in the certificate to confirm that these messages are not valid.
We propose a solution based on multisignatures that alleviates this problem by
making certificates only consist of an individual aggregate signature (instead of
of Θ(n)), as well as of a description of the subset of parties whose signatures
have been aggregated. The main idea is to have all parties initially sign the value
they receive from the supreme committee with their own signing keys. However,
when sending their values up the tree, parties assigned to inner nodes of the tree
will aggregate valid signatures on the message which was previously sent down
the tree, and keep track of which signatures have contributed.

Commitment Phase. Our instantiations of multi-party computations among
subsets of parties will be based on fully homomorphic encryption (FHE). To this
end, we want parties in each input committee Ci to store an FHE encryption
Enc(pk, xi) of the input xi that we want to be committing. The FHE public
key pk is generated by the supreme committee (who holds secret shares of the
matching secret key sk), and sent to all parties using the methods outlined above.
A party i is committed to the value xi if the honest parties in Ci all hold the
same ciphertext encrypting xi. This presents some challenges which we address
and solve as follows:

1. First, a malicious party Pi must not be able to broadcast an invalid cipher-
text to the members of the committee Ci. This is prevented by appending
a simulation-sound NIZK argument π to the ciphertext c that there exists a
message x and “good” randomness r such that Enc(pk, x; r) = c.

2. Second, for a security proof to be possible, it is well known that not only
the encryption needs to be hiding and binding, but a simulator needs to be
able to have some way to extract the corresponding plaintext from a valid
ciphertext-proof pair (c, π). A major issue here is that the simulated setup
must be independent of the corrupted set in our model. This prevents the
use of NIZK arguments of knowledge. Moreover, we can expect the FHE
encryption to be secure against chosen plaintext attacks only. We will solve
this by means of double encryption, following Sahai’s construction [41] of a
CCA-secure encryption scheme from a CPA-secure one. Namely, we provide
an additional encryption c2 of x under a different public-key (for which no one
needs to hold the secret key), together with an additional NIZK argument
that c1 and c2 encrypt the same message. The ciphertext c2 will not be
necessary at any later point in time and serves only the purpose of verifying
commitment validity (and permitting extraction in the proof).

3. Third, a final problem we have to face is due to rushing adversaries and the
possibility of mauling commitments, in view of the use of the same public
key pk for all commitments. This can be prevented in a black-box way by

566
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 371

letting every party Pi first (in parallel) VSS its commitment to the parties
in Ci, and then in a second phase letting every committee Ci reconstruct
the corresponding commitment. If the VSS protocol is perfectly secure, this
ensures input-independence.

Another challenge is how to ensure that ciphertext sizes and the associated NIZK
proof length are all of the order |x| · poly(k), instead of poly(|x|, k). We achieve
this by encrypting messages bit-by-bit using a bit-FHE scheme, whose cipher-
texts are hence of length poly(k). The corresponding NIZK proof is obtained
by sequentially concatenating individual proofs (each of length poly(k)) for the
encryptions of individual bits.

Shuffling Phase. The major privacy issue in executing a sublinear algorithm
in a distributed setting is that the adversary must not learn which parties have
contributed their inputs to the protocol evaluation, beyond any information that
the algorithm’s output itself reveals. Ideally, we would like parties to shuffle their
inputs in a random (yet oblivious) fashion, so that at the end of such a protocol
each party Pi holds the input of party Pπ(i) for a random permutation π, but
such that the adversary has no information about the choice of π and for which
party π(i) he holds an input. At the same time, the supreme committee jointly
holds information about the permutation π in a shared way. Unfortunately, this
seems impossible to achieve: A disrupting adversary may always refuse to hold
inputs for other parties. However, we can now exploit the fact that the inputs
are held by committees C1, . . . , Cn containing a majority of honest parties.

The actual shuffling is implemented via distributed evaluation of a switching
network SN , under central coordination by the supreme committee. We assume
that a switching network over n wires is given, with depth d = polylog(n),
and is known to everyone, and with the property given by Theorem 6: i.e., it
implements a nearly uniform permutation on [n] under random switching. For
each swap gate (i, j) in the network, the supreme committee members jointly

produce an encryption b̂i,j of an (unknown) random bit bi,j , indicating whether
the inputs xi and xj are to be swapped or not when evaluating the corresponding

swapping gate. The value b̂i,j is broadcast to all parties in Ci and Cj . At this
point, each party in Ci broadcasts his copy of x̂i to all parties in Cj , and each
party in Cj does the same with x̂j to all parties in Ci. (Each party then, given
ciphertexts from the other committee, will choose the most frequent one as the
right one.) Then, each party in Ci (or Cj) will update his encryption x̂i to

be an encryption of Dec(sk, x̂j) or Dec(sk, x̂i), depending on the value of b̂i,j ,
using homomorphic evaluation of the swap-or-not function. We note that this
operation can be executed in parallel for all gates on the same layer, hence the
swapping requires d rounds.

Evaluation Phase. Once the parties’ inputs have been (obliviously) shuffled,
we are ready to run the sublinear algorithm. The execution is controlled by the
supreme committee C. First, the members of C will run an MPC to randomly
select the subset of inputs I ⊂ [n] to be used by the algorithm. The output of

567
Approved for Public Release; Distribution Unlimited.

372 E. Boyle, S. Goldwasser, and S. Tessaro

Protocol for Non-adaptive Sublinear Algorithm Evaluation (Overview)
Committee Election Phase
1. Execute almost-everywhere committee election protocol of [34] to generate a com-

munication tree together with a committee C at its root (where (1− o(1)) fraction
of honest parties agree on C).

2. Achieve certified almost-everywhere agreement on C and individual committees
{Ci}i∈[n] as follows. Members of C collectively sample a PRF seed s and commu-
nicate it to (almost) all parties. Each Ci is defined by Fs(i). Every party signs his
believed value of (C, s) and passes it up the communication tree to C, where agree-
ing signatures are aggregated into a single multisignature at each inner node. The
message and “certificate” multisignature that contains signatures from a majority
of all parties is sent back down the tree.

3. Achieve full agreement on C, {Ci}i∈[n] as follows. Each party Pi possessing a valid
certificate π on (C, s) sends (C, s, π) to each party in Ci := Fs(i). Each party Pj

who does not have a valid certificate listens for incoming messages and adopts the
first properly certified tuple. (Note steps 2-3 enable C to broadcast messages).

Commitment Phase
4. Parties in the primary committee C run the (standard) MPC protocol of [5]

amongst themselves to generate keys for the FHE scheme and a second standard
PKE scheme. Parties in C receive the public keys pk, pk′ and a secret share of FHE
key sk. They broadcast pk, pk′ to all parties.

5. In parallel, each party Pi acts as dealer to VSS the following values to his input
committee Ci: (1) an FHE encryption of his input x̂i ← Encpk(xi), (2) a second
encryption of xi under the standard PKE with pk′, and (3) NIZK proofs that x̂i

is a valid encryption and the two ciphertexts encrypt the same value.
Shuffling Phase
6. Parties in primary committee C run an MPC to generate a random permutation

ρ, expressed as a sequence of random swap bits in the switching network SN . The
output is an FHE encryption ρ̂ of ρ, which they broadcast to all parties.

7. The committees Ci obliviously shuffle their stored input values, as follows.
For each layer L1, ..., Ld in the sorting network SN ,
– Let L� = ((i1, j1), ..., (in/2, jn/2)) be the swapping pairs in the current layer �.
– In parallel, the corresponding pairs of committees (Ci1 , Cj1), ..., (Cin/2

, Cjn/2
)

exchange their currently held input ciphertexts x̂p, x̂q (using broadcast then
majority vote) and homomorphically evaluate the swap-or-not function on
x̂p, x̂q, and the appropriate encrypted swap bit b̂ contained in ρ̂.

Outcome: each party in committee Ci holds encryption of input xρ(i).
Evaluation Phase
8. Parties in primary committee C run an MPC to execute the input selection proce-

dure I ← SLA.Sel. The output of the MPC is the set of permuted indices ρ(I) ⊂ [n].
9. Every party in C sends a message “Please send encrypted input �” to every party

Pj in C� for which � ∈ ρ(I).
10. Each party Pj ∈ C� who receives consistent messages “Please send encrypted input

�” from amajority of the parties in C, broadcasts his currently held encrypted input
x̂j
p�

to all parties in C. (Recall that this allegedly corresponds to an encryption of
the input xp held by the committee C� = Cρ(p) after the ρ-permutation shuffle).

11. The parties of C evaluate the second portion of the sublinear algorithm, SLA.Exec
via an MPC. Each party of C broadcasts the resulting output answer to all parties.

Fig. 1. High-level overview of the protocol ΠSLA for secure distributed evaluation of a
non-adaptive sublinear algorithm SLA = (SLA.Sel,SLA.Exec)

568
Approved for Public Release; Distribution Unlimited.

Communication Locality in Secure Multi-party Computation 373

the MPC will be the set of permuted indices σ(I) := {σ(i) : i ∈ I}. The corre-
sponding committees {Cj : j ∈ σ(I)} are invited to join in a second MPC. Each
member of Cj enters the MPC with input equal to his currently held encrypted
secret share (of some unknown input xi, for which j = σ(i)). Each member of
C enters the MPC with input equal to his share of the secret decryption key sk.
Collectively, the members of C∪(⋃j∈σ(I) Cj) run an MPC which (1) recombines

the shares of sk, (2) decrypts the secret shares held by each Cj , (3) reconstructs
each of the relevant inputs xi, i ∈ I, from the corresponding set of secret shares,
(4) executes the sublinear algorithm on the reconstructed inputs, and (5) out-
puts only the output value dictated by the sublinear algorithm (e.g., for many
algorithms, this will simply be YES/NO).

The main challenge is making the complexity of this stage such that
only poly(log n, log k) rounds are executed, and only messages of size |x| ·
poly(log k, logn) will be exchanged. This will be achieved by performing most of
the computations locally via FHE by the parties in the supreme committee, and
by generating the randomness to be used in SLA.Sel and SLA.Exec by first agree-
ing on a poly(k)-short seed of a PRG via coin-tossing, and then subsequently
using the PRG output as the actual randomness.

Extension: Adaptive Algorithms. The above protocol can be modified to accom-
modate adaptive sublinear algorithms SLA = (SLA.Sel1, . . . , SLA.Selq, SLA.Exec)
simply by modifying the evaluation phase such that an MPC is run for each
next-query SLA.Selj to obtain the permuted index of the next query ρ(ij). Note
that without loss of generality all queries are distinct. As a result of this mod-
ification, the number of rounds unavoidably increases: Namely, we need O(q)
additional rounds to obtain inputs from the committees Cρ(ij) one by one. How-
ever, the proof and the protocol are otherwise quite similar, and we postpone a
more detailed description to the final version of this paper.

Acknowledgments. This research was initiated and done in part while the au-
thors were visiting the Isaac Newton Institute for Mathematical Sciences in Cam-
bridge, UK. This work was partially supported by NSF contract CCF-1018064,
a Simon Investigator award, and a Visiting Fellowship of the Isaac Newton In-
stitute for Mathematical Sciences.

This material is based on research sponsored by DARPA under agreement
number FA8750-11-2-0225. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

569
Approved for Public Release; Distribution Unlimited.

374 E. Boyle, S. Goldwasser, and S. Tessaro

References

1. Collection of surveys on sublinear algorithms,
http://people.csail.mit.edu/ronitt/sublinear.html

2. Adida, B., Wikström, D.: How to Shuffle in Public. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 555–574. Springer, Heidelberg (2007)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty Computation with Low Communication, Computation and Interaction
via Threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

4. Asharov, G., Lindell, Y.: A full proof of the bgw protocol for perfectly-secure
multiparty computation. IACR Cryptology ePrint Archive, 2011:136 (2011)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112 (1988)

7. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: ITCS, pp. 309–325 (2012)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: FOCS (2011)

11. Canetti, R.: Security and composition of cryptographic protocols: A tutorial. Cryp-
tology ePrint Archive, Report 2006/465 (2006), http://eprint.iacr.org/

12. Chandran, N., Garay, J., Ostrovsky, R.: Improved Fault Tolerance and Secure
Computation on Sparse Networks. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp.
249–260. Springer, Heidelberg (2010)

13. Chandran, N., Garay, J., Ostrovsky, R.: Edge Fault Tolerance on Sparse Networks.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part
II. LNCS, vol. 7392, pp. 452–463. Springer, Heidelberg (2012)

14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Proto-
cols. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462. Springer,
Heidelberg (1988)

15. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: FOCS, pp. 383–395 (1985)

16. Czumaj, A., Kanarek, P., Lorys, K., Kutylowski, M.: Switching networks for gen-
erating random permutations. Manuscript (2001)

17. Damg̊ard, I., Ishai, Y.: Scalable Secure Multiparty Computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

18. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computa-
tion and the Computational Overhead of Cryptography. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

19. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multi-
party Computation with Nearly Optimal Work and Resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

570
Approved for Public Release; Distribution Unlimited.

http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://people.csail.mit.edu/ronitt/sublinear.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Communication Locality in Secure Multi-party Computation 375

20. Damg̊ard, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

21. Dani, V., King, V., Movahedi, M., Saia, J.: Breaking the o(nm) bit barrier: Secure
multiparty computation with a static adversary. CoRR, abs/1203.0289 (2012)

22. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)

23. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Transactions on Algo-
rithms 2(3), 435–472 (2006)

24. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: STOC,
pp. 148–161 (1988)

25. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

27. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

28. Dov Gordon, S., Katz, J., Kolesnikov, V., Malkin, T., Raykova, M., Vahlis, Y.: Se-
cure computation with sublinear amortized work. IACR Cryptology ePrint Archive,
2011:482 (2011)

29. Halevi, S., Krauthgamer, R., Kushilevitz, E., Nissim, K.: Private approximation of
np-hard functions. In: STOC, pp. 550–559 (2001)

30. Halevi, S., Lindell, Y., Pinkas, B.: Secure Computation on the Web: Computing
without Simultaneous Interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011)

31. Indyk, P., Woodruff, D.P.: Polylogarithmic Private Approximations and Efficient
Matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264.
Springer, Heidelberg (2006)

32. King, V., Lonargan, S., Saia, J., Trehan, A.: Load Balanced Scalable Byzantine
Agreement through Quorum Building, with Full Information. In: Aguilera, M.K.,
Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS,
vol. 6522, pp. 203–214. Springer, Heidelberg (2011)

33. King, V., Saia, J.: Breaking the o(n2) bit barrier: Scalable byzantine agreement
with an adaptive adversary. J. ACM 58(4), 18 (2011)

34. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp.
990–999 (2006)

35. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

36. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate
Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

37. Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability Amplification.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer,
Heidelberg (2007)

38. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Com-
mun. ACM 24, 583–584 (1981)

39. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: ACM Conference on Computer and Communications Security, pp.
245–254 (2001)

571
Approved for Public Release; Distribution Unlimited.

376 E. Boyle, S. Goldwasser, and S. Tessaro

40. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: Proc. of 33rd STOC, pp. 590–599 (2001)

41. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

42. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Ro-
bust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

43. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (November
1979)

44. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

572
Approved for Public Release; Distribution Unlimited.

How to Compute in the Presence of Leakage

Shafi Goldwasser∗

MIT and The Weizmann Institute of Science
Guy N. Rothblum†

Microsoft Research

Abstract

We address the following problem: how to execute any algorithm P , for an unbounded
number of executions, in the presence of an adversary who observes partial information on
the internal state of the computation during executions. The security guarantee is that the
adversary learns nothing, beyond P ’s input/output behavior.

This general problem is important for running cryptographic algorithms in the presence of
side-channel attacks, as well as for running non-cryptographic algorithms, such as a proprietary
search algorithm or a game, on a cloud server where parts of the execution’s internals might be
observed.

Our main result is a compiler, which takes as input an algorithm P and a security parameter
κ, and produces a functionally equivalent algorithm P ′. The running time of P ′ is a factor
of poly(κ) slower than P and is composed of a series of calls to poly(κ) time computable sub-
algorithms. During the executions of P ′, an adversary algorithm A which can choose the inputs
of P ′, can learn the results of adaptively chosen leakage functions– each of bounded output size
Ω̃(κ) – on the sub-algorithms of P ′ and the randomness they use.

We prove that for any computationally unboundedA observing the results of computationally
unbounded leakage functions, will learn no more from its observations than it could given black-
box access only to the input-output behavior of P . This result is unconditional and does not
rely on any secure hardware components.

∗Research supported by DARPA Grant FA8750-11-2-0225 and NSF Grant CCF-1018064. Email:
shafi@theory.csail.mit.edu.

†Part of this research was done while the author was at Princeton University and supported by NSF Grant
CCF-0832797 and by a Computing Innovation Fellowship. Email: rothblum@alum.mit.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 10 (2012)

573
Approved for Public Release; Distribution Unlimited.

Contents

1 Introduction 1
1.1 Continual Leakage Attack Models and Prior Work 1
1.2 The New Work . 3
1.3 Connections with Obfuscation . 5
1.4 Other Related Work . 6

2 Compiler Overview and Technical Contributions 7
2.1 Leakage-Resilient One Time Pad . 8
2.2 Leakage-Resilient Compiler Overview: One-Time Secure Evaluation 10

2.2.1 Leakage Resilient SafeNAND . 11
2.3 Leakage-Resilient Compiler Overview: Multiple Secure Evaluations 13

2.3.1 Ciphertext Banks for Secure Generation . 14
2.4 Organization and Roadmap . 15

3 Definitions and Preliminaries 15
3.1 Leakage Model . 15
3.2 Extractors, Entropy, and Leakage-Resilient Subspaces 17
3.3 Independence up to Orthogonality . 18
3.4 Secure Compiler: Definitions . 20

4 Leakage-Resilient One-Time Pad (LROTP) 21
4.1 Semantic Security under Multi-Source Leakage . 22
4.2 Key and Ciphertext Refreshing . 22
4.3 “Safe” Homomorphic Computations . 24

5 Ciphertext Banks 25
5.1 Ciphertext Bank: Interface and Security . 25
5.2 Piecemeal Matrix Computations . 33
5.3 Piecemeal Leakage Attacks on Matrices and Vectors 34

5.3.1 Piecemeal Leakage Resilience: One Piece . 36
5.3.2 Piecemeal Leakage Resilience: Many Pieces 37
5.3.3 Piecemeal Leakage Resilience: Jointly with a Vector 41

5.4 Piecemeal Matrix Multiplication: Security . 45
5.5 Ciphertext Bank Security Proofs . 46

6 Safe Computations 49
6.1 Safe Computations: Interface and Security . 49
6.2 Leakage-Resilient Permutation . 50
6.3 Proof of SimNAND Security (Lemma 6.1) . 54

7 Putting it Together: The Full Construction 55

2

574
Approved for Public Release; Distribution Unlimited.

1 Introduction

This work addresses the question of how to compute any program P , for an unbounded number
of executions, so that an adversary who can obtain partial information on the internal states of
executions of P on inputs of its choice, learns nothing about P beyond its I/O behavior.

This question is interesting for cryptographic as well as non-cryptographic algorithms. In the
setting of cryptographic algorithms, the program P is usually viewed as a combination of a public
algorithm with a secret key, and the secret key should be protected from side channel attacks. Step-
ping out of the cryptographic context, P may be a proprietary search algorithm or a novel numeric
computation procedure which we want to protect, say while running on an insecure environment,
say a cloud server, where its internals can be partially observed. Looking ahead, our results will not
rely on any computational assumptions and thus will be applicable to non-cryptographic settings
without adding any new conditions. They will hold even if one-way functions (and cryptography
as we know it) do not exist.

The question of executing general computations for an unbounded (continual) number of exe-
cutions, viewed largely within the context of cryptographic algorithms, has been addressed in the
last few years with varying degrees of success in different adversarial settings. The crucial question
seems to be how to model the partial information or leakage that an adversary can obtain during
executions. The goal is to simultaneously capture real world attacks and achieve the right level of
theoretical abstraction.

Impossibility results on obfuscation [BGI+01] imply inherent limitations on the leakage that
can be tolerated in the continual attack model for general programs P . Even if only a single
bit of leakage is output in each execution, Impagliazzo [Imp10] observes that if this bit can be
computed as a function of the entire internal state of the execution, then there exist polynomial
time computable functions f , for which no execution can achieve leakage resilience. Thus, to rule
out this impossibility, we must put additional restriction on the leakage attack model.

1.1 Continual Leakage Attack Models and Prior Work

We discuss a few leakage attack model restrictions and corresponding results which have been
considered for the question of protecting general programs under continual leakage.

ISW-L. The pioneering work of Ishai, Sahai, and Wagner [ISW03] first considered the question
of converting general algorithms to equivalent leakage resistant algorithms. Their work views
algorithms as stateful circuits (e.g. a cryptographic algorithm, whose state is the secret-key of an
algorithm), and considers adversaries which can learn the value of a bounded number of wires in
each execution of the circuit, whereas the values of all other wires in this execution are perfectly
hidden and that all internal wire values are erased between executions. Let L be a global bound on
the number of wires that can leak. Then, they show how to convert any circuit C into a new circuit
C ′ of size O(|C| ·L2) which is unconditionally resilient to leakage of up to L individual wire values.
In fact, their method achieves more. The new circuit C ′ is composed of a sequence of sub-circuits,
each of size O(L2), of which the value of L arbitrary wires can leak.

CB-L. Faust, Rabin, Reyzin, Tromer and Vaikuntanathan [FRR+10] extended the leakage model
and result of [ISW03]. They still model an algorithm as a stateful circuit, but in every execution,
they let the adversary learn the result of any bounded length AC0 computable function f on the
values of all the wires. Let L be a global bound on the output length of function f . under the

1

575
Approved for Public Release; Distribution Unlimited.

additional assumption that leak free hardware components exist, they show how to convert any
circuit C into a new circuit C ′ of size O(|C| · L2), which is resilient to leakage of the result of f
computed on the entire set of wire values. Similarly to [ISW03], their method achieves actually
more. The new circuit C ′ is composed of a sequence of sub-circuits, each of size O(L2), and is
resilient to L bits of AC0 leakage on each of these sub-circuits.

RAM-L. the RAM model of Goldreich and Ostrovsky [GO96] considers a CPU, which loads data
from fully protected memory, and runs its computations in a secure CPU. [GO96] allowed an adver-
sary to view the access pattern to memory (and showed how to make this access pattern oblivious),
but assumed that the CPU’s internals and the contents of the memory are perfectly hidden.1 This
was recently extended by Ajtai [Ajt11]. He divides the execution into sub-computations. Within
each sub-computation, the adversary is allowed to observe the contents of a constant fraction of the
addresses read from memory. These are called the compromised memory accesses (or times). The
contents of the un-compromised addresses, and the contents of the main memory not loaded into the
CPU, are assumed to be perfectly hidden. Taking L to be a security parameter, [Ajt11] shows how
to transform a program P on input size n, to a program P ′ which is divided into sub-computations
of size O(L), and is resilient to L compromised accesses in each sub-computation.

OC-L. the Micali-Reyzin [MR04] only-computation axiom assumes that there is no leakage in the
absence of computation, but computation always does leak. This axiom was used in the works
of Goldwasser and Rothblum [GR10] and by Juma and Vhalis [JV10], who both transform an
input algorithm P (expressed as a Turing Machine or a boolean circuit) into an algorithm P ′,
which is divided into subcomputations. An adversary can learn the the value of any (adaptively
chosen) polynomial time length bounded functions,2 computed on each sub-computation’s input
and randomness. To obtain results in this model, both [GR10] and [JV10] needed to assume
the existence of leak free hardware components that produce samples from a polynomial time
sampleable distribution. Namely, it is assumed that there is no data leakage from the randomness
generated and the computation performed inside of the device. Assuming the intractability of the
DDH problem, [GR10] transform P to P ′ which is composed of O(|P |) sub-computations, each of
size O(poly(L)), that is resilient to leakage of length L on each sub-computation. [JV10] assume the
existence of fully homomorphic encryption scheme, and get P ′ composed of O(1) sub-computations,
one of which has size O(|P |·poly(L)). P ′ is resilient to leakage of length L on each sub-computation,
assuming that the fully homomorphic encryption scheme cannot be broken in time 2O(L).

The assumptions on the existence of leak-free secure hardware components make it possible,
in the security proofs of [GR10] and [JV10], to argue that the view of the side channel attack in
the real protocol is indistinguishable from the view output by a polynomial time simulator, which
samples a very different, but computationally indistinguishable, distribution.

Finally, we mention that whereas our focus is on enabling any algorithm to run securely in
the presence of continual leakage, continual leakage on restricted computations (e.g. [DP08, Pie09,
FKPR10, BKKV10, DHLAW10, LRW11, LLW11]), and on storage ([DLWW11]), has been consid-
ered under various additional leakage models in a rich body of recent works. We elaborate on a
few pertinent results in Section 1.4.

1alternatively, they assume that the memory contents are encrypted, and their decryption in the CPU is perfectly
hidden.

2In contrast to the AC0 restriction on f in [FRR+10]

2

576
Approved for Public Release; Distribution Unlimited.

1.2 The New Work

In this paper, we address the question of how to transform any algorithm P into a functionally
equivalent algorithm Eval which can be run for an unbounded number of executions, in the presence
of leakage attacks on the internal state of the executions. Before stating our exact results, let us
describe the power of our leakage-adversary, and the security guarantee to be provided

Leakage Adversary. The leakage attacks we address are in the “only computation leaks in-
formation” model of [MR04]. The algorithm Eval will be composed of a sequence of calls to
sub-computations. The leakage adversary Aλ, on input a security parameter 1κ, can (1) specify
a polynomial number of inputs to P and (2) per execution of Eval on input x, request for every
sub-computation of Eval, any λ bits of information of its choice, computed on the entire internal
state of the sub-computation, including any randomness the sub-computation may generate.

We stress that we did not put any restrictions on the complexity of the leakage Adversary Aλ,
and that the requested λ bits of leakage may be the result of computing a computationally un-
bounded function of the internal state of the sub-computation. This is in contrast to previous works
that only allow the adversary to obtain polynomial-time computable functions of the execution’s
internal state [GR10, JV10, BKKV10, DHLAW10, LRW11, LLW11, DLWW11].

Security Guarantee. Informally, the security guarantee that we provide will be that for any
leakage adversary Aλ, whatever Aλ can compute during the execution of Eval, it can compute
with black-box access to the algorithm P . Formally, this is proved by exhibiting a simulator which,
for every leakage-adversary Aλ, given black box access to the functionality P , simulates a view
which is statistically indistinguishable from the real view of Aλ during executions of Eval . The
simulated view will contains the results of I/O calls to P , as well as results of applying leakage
functions on the sub-computations as would be seen by Aλ. The running time of the simulator is
polynomial in the running time of Aλ and the running time of the leakage functions Aλ chooses.

Informal Main Theorem. We show a compiler that takes as input a program, in the form of a
circuit family {Cn}, a secret state y ∈ {0, 1}n, and a security parameter κ, and produces as output
a description of an uniform stateful algorithm Eval such that:

1. Eval(x) = C(y, x) for all inputs x.

2. The execution of Eval(x) for |x| = n, will consist of O(|Cn|) sub-computations, each of
complexity (time and space) O(poly(κ)).

3. There exists a simulator Sim, a leakage bound λ(κ) = Ω̃(κ), and a negligible distance bound
δ(κ), such that for every leakage-adversary Aλ(κ) and κ ∈ N:
SimC(1κ,A) is δ(κ)-statistically close to view(Aλ), where SimC(1κ,A) denotes the output
distribution of Sim, on input the description of A, and with black-box access to C. view(Aλ)
is the view of the leakage adversary during a polynomial number of executions of Eval on
inputs of its choice. The running time of Sim is polynomial in that of A and that of the
leakage functions chosen by A. The number of oracle calls made is always poly(κ).

Our result holds unconditionally, without the use of computational assumptions or leak-free
hardware. In Section 2 we give an overview of the construction, and highlight some of the new
technical ideas of our work.

3

577
Approved for Public Release; Distribution Unlimited.

OC-L and the Leaky CPU Model. An alternative model to OC-L is that of a leaky CPU.
We proceed with an informal description of this model. Computations are run on a RAM with two
components:

1. A CPU which executes instructions from a fixed set of special universal instructions, each of
size poly(κ) for a security parameter κ.

2. A memory that stores the program, input, output, and intermediate results of the computa-
tion. The CPU fetches instructions and data and stores outputs in this memory.

The adversary model is as follows:

1. For each program instruction loaded and executed in the CPU, the adversary can learn the
value of an arbitrary and adaptively chosen leakage function of bounded output length (output
length Ω(κ) in our results). The leakage function is applied to the instruction executed in the
CPU – namely, it is a function of all inputs, outputs, randomness, and intermediate wires of
the CPU instruction being executed.

2. Contents of memory, when not loaded into the CPU, are hidden from the adversary.

Our result, stated in this model, provides a fixed set of CPU instructions, and a compiler which
can take any polynomial time computation (say given in the form of a boolean circuit), and compile
it into a program that can be run on this leaky CPU. A leakage adversary as above, who can specify
inputs to the compiled program and observe its outputs, learns nothing from the execution beyond
its input-out behavior.

Comparison to Prior Work. We now compare our main result to prior work on protecting
general programs under continual leakage. See Section 1.4 for other related work.

Comparing to the work of Ishai, Sahai and Wagner [ISW03] in the ISW-L leakage model, they
convert any circuit C into a new circuit C ′, which is composed of O(|C|) sub-circuits each of
size O(L2), and allow the leakage of L arbitrary wires from each sub-circuit. Our transformation
converts C into O(|C|) sub-circuits, each of size Õ(Lω), from which L arbitrary bits of information
can be leaked (here ω is the exponent in the best algorithm known for matrix multiplication).
These leaked bits can be the output of arbitrary computations on the wire values.

Comparing to the work of Faust et al. [FRR+10] in the CB-L model, the main differences are
(i) that construction used secure hardware, whereas we do not use secure hardware, and (ii) in
terms of the class of leakage tolerated, they can handle bounded-length AC0 leakage on the entire
computation of each execution. We, on the other hand, can handle arbitrary length bounded OC-L
leakage that operates separately (if adaptively) on each sub-computation.

Comparing to the work of Ajtai [Ajt11] in the RAM-L model, he divides the computation into
sub-computations of size O(L), and shows resilience to an adversary who see the full contents
of memory loaded into CPU for L memory accesses, whereas all the other memory accesses are
perfectly hidden. Translating our result to the RAM model, we divide the computation into sub-
computations of size Õ(Lω), and show resilience against an adversary that can receive L arbitrary
bits of information on the entire set of memory accesses and randomness. In particular, there are
no protected or hidden accesses.

Comparing to the work of Goldwasser and Rothblum [GR10] and of Juma and Vhalis [JV10] in
the OC-L model, the main qualitative difference is that both of those prior works use computational

4

578
Approved for Public Release; Distribution Unlimited.

intractability assumptions and secure hardware. Our result, on the other hand, is unconditional
and uses no secure hardware components. In terms of quantitative bounds, for security parameter
κ, [JV10] transform a circuit of size C into a new circuit C ′ of size poly(κ) · |C|. The new circuit C ′

is composed of O(1) sub-circuits (one of the subcircuits is of size poly(κ) · |C|). Assuming a fully-
homomorphic encryption scheme that is secure against adversaries that run in time exp(O(L)), their
construction can withstand L bits of leakage on each sub-circuit. For example, if the FHE is secure
against poly(κ)-time adversaries, then the leakage bound is O(log κ). In our new construction, for
leakage parameter L, there are O(|C|) sub-computations (i.e. more sub-computations), each of size
Õ(Lω) (i.e. smaller), and each withstanding L bits of leakage (i.e. the amount of leakage we can
tolerate, relative to the sub-computation size, is larger). The quantitative parameters of [GR10]
are similar to the current work (up to polynomial factors).

Subsequent Related Work. The compiler provided in this work, and the new tools introduced
in its construction, have been used in several subsequent works.

Bitansky et al. [BCG+11] use the compiler to obfuscate programs using leaky secure hardware.
In a nutshell, they run each “sub-computation” on a separate leaky secure hardware component.
The new challenge in that setting is providing security even when the communication channels
between the components are observed and controlled by an adversary.

Boyle et al. [BGJK12] use the compiler to build secure MPC protocols that are resilient to cor-
ruptions of a constant fraction of the players and to leakage on each of the players (separately). The
MPC should output a function of the players’ inputs computed by some circuit C. Intuitively, one
can think of each player in the MPC as running one of the “sub-computations” in a compilation of
C using our OC-L compiler. The additional challenges here are both adversarial monitoring/control
of the communication channels and (more significantly) that the adversary may completely corrupt
many of the players/sub-computations.

Using the idea of ciphertext banks, a technical tool introduced in this work, [Rot12] gives a
compiler for AC0 leakage in the CB-L model. The new compiler removes the need for secure
hardware components that was present in the work of [FRR+10], but its security relies on an
unproven computational assumption about the power (or rather, the weakness) of AC0 circuits
with pre-processing.

1.3 Connections with Obfuscation

We remark that while protecting cryptographic algorithms from side channels is an immediate
application (and motivation) for this work, the question of protecting computations is interesting
for non-cryptographic computations, e.g. if one-way functions do not exist. In particular, our results
do not rely on cryptographic assumptions and so they would continue to hold. As a motivating
example, consider a proprietary algorithm running on a cloud server, where parts of its internals
might be observed.

This motivating example brings to light the fascinating connection between the problem of code
obfuscation and leakage resilience for general programs. In a nut-shell, one may think of obfuscation
of an algorithm as the ultimate “leakage resilient” transformation: If successful, it implies that the
resulting algorithm can be “fully leaked” to the adversary – it is under the adversary’s complete
control! Since we know that full and general obfuscation is impossible [BGI+01], we must relax
the requirements on what we may hope to achieve when obfuscating a circuit. Leakage resilient
versions of algorithms can be viewed as one such relaxation. In particular, one may view our

5

579
Approved for Public Release; Distribution Unlimited.

result as showing that although we cannot protect general algorithms if we give the adversary
complete view of code which implements the algorithm (i.e obfuscation), nevertheless we can (for
any algorithm) allow an adversary to have a “partial view” of the execution and only learn its
black-box functionality. In our work, this “partial view” is as defined by the “only computation
leaks” leakage attack model.

The recent work of Bitansky et al. [BCG+11], mentioned above, makes the connection between
obfuscation and the OCL attack model even more explicit. They first strengthen the requirement
of OCL attack model to allow the adversary to control the order of the execution of the sub-
components (they call this DCL). They then show that any compiler that converts stateful circuits
into circuits that are secure in the DML model, implies the possibility of obfuscation of any program
given simple hardware components which themselves are subject to memory leakage attacks.

1.4 Other Related Work

Constructions in the OCL Leakage Model. Various constructions of particular cryptographic
primitives [DP08, Pie09, FKPR10], such as stream ciphers and digital signatures, have been pro-
posed in the OCL attack model and proved secure under various computational intractability as-
sumptions. The approach in these results was to consider leakage in design time and construct new
schemes which are leakage resilient, rather than a general transformation on non leakage-resilient
schemes

In the context of a bounded number of executions, we remark that the work of Goldwasser,
Kalai and Rothblum [GKR08] on one-time programs imply that any cryptographic functionality
can be executed once in the presence of OCL attack after the initial compilation is done. There any
data that is ever read or written can leak in its entirety (i.e tolerate the identity leakage function).
This holds under the assumption that one-way functions exist and requires no secure hardware.
The idea is that in the compilation stage, one transforms the cryptographic algorithm into a one-
time program with one crucial difference. Whereas one-time programs use special hardware based
memory to ensure that only certain portions of this memory cannot be read by the adversary
running the one-time program, in the context of leakage the party who runs the one-time program
is not an adversary but rather the honest user attempting to protect himself against OCL attacks.
In the compilation stage, the honest user, stores the entire content of the special hardware based
memory of [GKR08] in ordinary memory. At the execution stage, the user can be trusted to only
read those memory locations necessary to run the single execution. Since an OCL attack can only
view the contents of memory which are read, the execution is secure. We further observe that
the follow up work of Goyal et al. [GIS+10] on one-time programs, which removes the need for
the one-way function assumption, similarly implies that any cryptographic functionality can be
executed once in the presence of OCL attacks unconditionally.

Specific Cryptographic Primitives in the Continual Memory Leakage Model. The con-
tinual memory-leakage attack model for public key encryption and digital signatures was introduced
by Brakerski et al. [BKKV10] and Dodis et al. [DHLAW10]. They consider a model where an
adversary can periodically compute arbitrary polynomial time functions of bounded output length
L on the entire secret memory of the device. The device has an internal notion of time periods
and, at the end of each period, it updates its secret key, using some fresh local randomness, main-
taining the same public key throughout. As long as the rate at which the adversary can compute
its leakage functions is slower than the update rate, [BKKV10, DHLAW10, LRW11, LLW11] can

6

580
Approved for Public Release; Distribution Unlimited.

construct leakage resilient public-key primitives which are still semantically secure under various
intractability assumptions on problems on bi-linear groups. The continual memory leakage model
is quite strong: it does not restrict the leakage functions, as in say ISW-L, to output individual
wire values, or as in CB-L, to AC0 bounded functions, nor does it restrict the leakage functions
to compute locally on sub-computations, as in RAM-L or OC-L. However, as pointed out by the
impossibility result discussed above, this model cannot offer the kind of generality or security that
we are after. In particular, the results in [BKKV10, DHLAW10, LRW11, LLW11] do not guarantee
that the view the attacker obtains during the execution of a decryption algorithm is “computa-
tionally equivalent” to an attacker viewing only the I/O behavior of the decryption algorithm. For
example, say an adversary’s goal in choosing its leakage requests is to compute a bit about the
plain-text underlying ciphertext c. In the [BKKV10, DHLAW10] model, it will simply compute a
leakage function that decrypts c, and output the requested bit. This could not be computed from
the view of the I/O of the decryption algorithms decrypting ciphertexts which are unrelated to c.

Continual Leakage on a Stored Secret. A recent independent work of Dodis, Lewko, Waters,
and Wichs [DLWW11], addresses the problem of how to store a value S secretly on devices that
continually leak information about their internal state to an external attacker. They design a
leakage resilient distributed storage method: essentially storing an encryption of S denoted Esk(S)
on one device and storing sk on another device, for a semantically secure encryption method
E which: (i) is leakage resilient under the linear assumption in prime order groups, and (ii) is
”refreshable” in that the secret key sk and Esk(S) can be updated periodically. Their attack model
is that an adversary can only leak on each device separately, and that the leakage will not ”keep
up” with the update of sk and Esk(S). One may view the assumption of leaking separately on each
device as essentially a weak version of the only computation leak axiom, where locality of leakage
is assumed per “device” rather than per “computation step”. We point out that storing a secret on
continually leaky devices is a special case of the general results described above [ISW03, FRR+10,
GR10, JV10] as they all must implicitly maintain the secret “state” of the input algorithm (or
circuit) throughout its continual execution. The beauty of [DLWW11] is that no interaction is
needed between the devices, and they can update themselves asynchronously.

We proceed to present an overview of our compiler and highlight some of our main technical
contributions in Section 2 below. The full definitions, tools, and specifications of the compiler are
in the subsequent sections. See the roadmap in Section 2.4.

2 Compiler Overview and Technical Contributions

The main contribution of this paper is a compiler which takes any algorithm in the form of a boolean
circuit and transforms it into a functionally equivalent probabilistic stateful algorithm. A user can
run this transformed secure algorithm for an unbounded (polynomial) number of executions. The
security guarantee is that any computationally unbounded adversary who launches a leakage attack
on the algorithm’s executions, learns nothing more than the input-output behavior.

In this section, we will give an overview of the compiler, its main components, and the technical
ideas introduced. The transformed secure algorithm is executed repeatedly, on a sequence of inputs
chosen by an adversary. Each execution of the transformed secure algorithm proceeds by a sequence
of sub-computations, and the adversary’s view of each execution is through the results of a sequence
of leakage functions (chosen adaptively and with bounded output length), applied to these sub-

7

581
Approved for Public Release; Distribution Unlimited.

computations.
The first component in our construction is a leakage-resilient one-time pad cryptosystem (LROTP),

which we refer to as the subsidiary cryptosystem. See Section 2.1 for further details. We remark
that it is important to distinguish between the leakage resilience of the secure transformed algo-
rithm, and the leakage resilience of the subsidiary LROTP keys and ciphertexts. Whereas the
LROTP scheme retains security even after direct applications of bounded output length leakage on
the LROTP keys and ciphertexts (separately), the security guarantee for the transformed algorithm
is that, even under a leakage attack on its execution, there is will be no leakage at all on its internal
state or secrets. All that an adversary can learn is its input-output behavior.

Our compiler transforms a program by encrypting the bits of its description using the LROTP
cryptosystem. In Section 2.2, we show how to use these encryptions to compute the program’s
output on a single given input. This “one-time” safe evaluation is resilient to OC leakage attacks.
The main new component we use is a procedure for “safe homomorphic evaluation” of LROTP-
encrypted bits.

In Section 2.3 we show how to extend the one-time safe evaluation to any polynomial number of
safe evaluations. This yields a compiler that is secure against continual OC leakage attacks. Here
we use a new technical tool of “ciphertext banks”, which allow us to repeatedly generate secure
ciphertexts even under leakage.

2.1 Leakage-Resilient One Time Pad

Our construction uses a leakage resilient one-time pad cryptoscheme (LROTP) as one of its main
components. This simple private-key encryption scheme uses a vector key ∈ {0, 1}κ as its secret key,
and each ciphertext is also a vector c⃗ ∈ {0, 1}κ. The plaintext underlying c⃗ (under key) is the inner
product: Decrypt(key , c⃗) = ⟨key , c⃗⟩. The scheme maintains the invariants that key [0] = 1, c⃗[1] = 1,
for any key and ciphertext c⃗. We generate each key to be uniformly random under this invariant.
To encrypt a bit b, we choose a uniformly random c⃗ s.t. c⃗[1] = 1 and Decrypt(key , c⃗) = b.

The LROTP scheme is remarkably well suited for our goal of transforming general computations
to resist leakage attacks. In particular, we highlight several properties of LROTP, specified below,
that are used in our construction. See Section 4 for further details.

• Semantic Security under Multi-Source Leakage. Semantic security of LROTP holds
against an adversary who launches leakage attacks on both a key and a ciphertext encrypted
under that key. This might seem impossible at first glance. The reason it is facilitated is
two-fold: first due to the nature of our attack model, where the adversary can never apply
a leakage function to the ciphertext and the secret-key simultaneously (otherwise it could
decrypt); second, the leakage from the ciphertext is of bounded length. This ensures that
the adversary cannot learn enough of the ciphertext to be useful for it at a later time, when
it could apply an adaptively chosen leakage function to the secret key (otherwise, again, it
could decrypt).

Translating this reasoning into a proof, we show that semantic security is retained under
concurrent attacks of bounded leakage O(κ) length on key and c⃗. As long as leakage is
of bounded length and operates separately on key and on c⃗, they remain (w.h.p.) high
entropy sources, and are independent up to their inner product equaling the underlying
plaintext. We call such sources independent up to orthogonality, see Definition 3.10. Since
the inner product function is a two-source extractor (see Lemma 3.7), the underlying plaintext

8

582
Approved for Public Release; Distribution Unlimited.

is statistically close to uniformly random even given the leakage. Moreover, this is true even
for computationally unbounded adversaries and leakage functions.

To ensure that the leakage operates separately on key and c⃗, we take care in our construction
not to load ciphertexts and keys into working memory simultaneously. There will be one
exception to this rule (see below), where a key and ciphertext will be loaded into working
memory simultaneously, but this will be done only after ensuring that the ciphertext are
“blinded” and contain no sensitive information.

• Key and Ciphertext Refreshing. We give procedures for “refreshing” LROTP keys and
ciphertexts, injecting new entropy while maintaining the underlying plaintexts. We overview
here the case of key refresh, ciphertext refresh is similar. The key entropy generator outputs
a uniformly random σ ∈ {0, 1}κ s.t. σ[0] = 0. This σ is used to inject new entropy in the
key by updating key ′ ← (key ⊕ σ), so that key ′ is a uniformly random key, independent of
key . σ can also be used on its own and without knowledge of the key, to “correlate” c⃗ to a
new ciphertext c⃗′ s.t. Decrypt(key ′, c⃗′) = Decrypt(key , c⃗). The requirement that refreshing on
ciphertexts must not use the key, is due to the fact that we always want to avoid loading the
ciphertext and key into memory at once (otherwise a leakage attack can decrypt and learn
the plaintext). It follows that without any leakage, the new key or ciphertext is a uniformly
random one that maintains the underlying plaintext.

In this work, key and ciphertext refreshing is used to obtain security properties even in the
presence of leakage. One task that we will consider is permuting m key-ciphertext pairs that
all have the same underlying plaintext.3 We refresh all m pairs and then permute them using
a random permutation π. If there is no leakage on this refresh-and-permute procedure, then it
follows that even given the m input key-ciphertext pairs, and the m refreshed-and-permuted
pairs, the permutation used looks uniformly random. Furthermore, even if there is a bounded
amount of leakage on the refresh-and-permute procedure, the distribution of the permutation
used, given all input and output key-ciphertext pairs, will have high entropy.

The example above shows that a single application of key-ciphertext refresh can give security
guarantees even in the presence of OC leakage. In particular, it maintains security of the
underlying plaintext. It is natural to hope that a large number of composed applications of
refresh to a key-ciphertext pair also maintains security of the underlying plaintext. However,
after a large enough number of composed application, an OC leakage adversary can success-
fully reconstruct the underlying plaintext. This attack is described in Section 4.2. Intuitively,
it “kicks in” once the length of the accumulated leakage is a large constant fraction of the
key and ciphertext length. Our construction uses composed applications of refresh, but we
take care that the accumulated leakage is never a large enough fraction of the key-ciphertext
length. We show that the security properties we use are maintained under a bounded number
of composed applications of refresh.

• Homomorphic Addition. For key and two ciphertexts c⃗1, c⃗2, we can homomorphically add
by computing c⃗′ ← (c⃗1 ⊕ c⃗2). By linearity, the plaintext underlying c⃗′ is the XOR of the
plaintexts underlying c⃗1 and c⃗2.

3To be precise, we will consider a related task or independently permuting m sets, each comprising 4 key-ciphertext
pairs, and the ciphertexts in each set will not all have the same underlying plaintexts. We find the simplified question
of permuting m pairs with the same underlying plaintext, as considered here, to be illuminating.

9

583
Approved for Public Release; Distribution Unlimited.

We note that the construction in [GR10] relied on several similar properties of a computationally
secure public-key leakage resilient scheme: the BHHO/Naor-Segev scheme [BHHO08, NS09]. Here
we achieve these properties with information theoretic security and without relying on intractability
assumptions such as Decisional Diffie Hellman.

2.2 Leakage-Resilient Compiler Overview: One-Time Secure Evaluation

Here we describe the high-level structure of the compilation and evaluation algorithm for a single
secure execution. In Section 2.3 we will show how to extend this framework to support any poly-
nomial number of secure executions. We note that the high-level structure of the compilation and
evaluation algorithm builds on the construction of [GR10]. The building blocks, however, are very
different, as the subsidiary cryptosystem is now LROTP, and we now longer use secure hardware.

The input to the compiler is a secret input y ∈ {0, 1}n, and a public circuit C of size poly(n) that
is known the adversary. The circuit takes as inputs the secret y, and also public input x ∈ {0, 1}n
(which may be chosen by the adversary), and produces a single bit output.4 One can think of C
as a universal circuit, where y describes a particular algorithm that is to be protected. Or, C can
be a public cryptographic algorithm (say for producing digital signatures), and y is a secret key.

The output of the compiler on C and y is a probabilistic stateful evaluation algorithm Eval
(with a state which will be updated during each run of Eval), such that for all x ∈ {0, 1}n,
C(y, x) = Eval(y, x). The compiler is run exactly once at the beginning of time and is not subject
to leakage. See Section 3.4 for a formal definition of utility and security under leakage. In this
section, we describe an initialization of Eval that suffices for a single secure execution on any
adversarially chosen input.

Without loss of generality, the circuit C is composed of NAND gates with fan-in 2 and fan-out
1, and duplication gates with fan-in 1 and fan-out 2. We assume a lexicographic ordering on the
circuit wires, s.t. if wire k is the output wire of gate g then for any input wire i of the same gate,
i < k. The Eval algorithm keeps track of the value vi ∈ {0, 1} on each wire i of the original input
circuit C(y, x) in a secret-shared form: vi = ai ⊕ bi, where ai, bi ∈ {0, 1}. The invariant for every
wire is that the ai shares are public and known to all, including the leakage adversary, whereas bi
are private: they are kept encrypted by a LROTP ciphertext(s) encrypted under key i. There is one
key for each circuit wire i. For each input wire i, there is a single ciphertext c⃗ini . For the output
wire output , there is a single ciphertext c⃗outoutput . For each internal wire i, an output wire for gate g
and an input wire for gate h, there are two ciphertexts c⃗outi and c⃗ini (both with the same underlying
plaintext bi and the same key key i). Intuitively, c⃗outi is used in a computation corresponding to
gate g (for which i is an output wire), and c⃗ini is used in a computation corresponding to gate h
(for which i is an input wire).

We emphasize that the adversary does not actually ever see any key or ciphertext – let alone the
underlying plaintext – in their entirely. Rather, the adversary only sees the result of bounded-length
leakage functions that operate separately on these keys and ciphertexts.

Initialization for One-Time Evaluation. To initialize Eval for a single secure execution, we
generate keys and ciphertexts for the output wires, the internal wires, and the y-input wires (ini-
tialization is performed without leakage). This is done as follows. For each bit y[j] of the y-input
that is carried on a wire i, we generate a key-ciphertext pair (key i, c⃗

in
i) with underlying plaintext

4We restrict our attention to single bit output, the case of multi-bit outputs also follows using the same ideas.

10

584
Approved for Public Release; Distribution Unlimited.

y[j]. The input wire’s bit value vi is thus encoded by ai = 0 and bi = y[j]. For each internal wire
i, we choose bi uniformly at random, and we generate a key key i and two ciphertexts c⃗outi and c⃗ini
that both have underlying plaintext bi (under the key key i). The internal wire’s bit value vi will be
encoded by bi ∈R {0, 1} and ai = bi ⊕ vi (which we have not yet computed). For the output wire
output , we generate (keyoutput , c⃗

out
output) with underlying plaintext 0. The output bit will be encoded

by boutput = 0, and aoutput , the public share, that will equal the output value C(y, x). The output
wire’s public share aoutput will be computed during evaluation once the input x is specified.

This initialization suffices for a single execution (see below). Looking ahead, the main challenge
for multiple execution will be securely generating the keys ciphertexts for each wire even in the
presence of OC leakage. See Section 2.3.

Eval on input x. When a (non secret) input x is selected for Eval , we generate ciphertexts for
the x-input wires. This determines the private shares (independently of the input x), and sets
the stage for computing the public shares—culminating with the computation of the output wire’s
public share, which equals the circuit’s output.

We proceed as follows. Each bit x[j] of the x-input that is carried on wire i, is encoded by
ai = x[j] and bi = 0, where bi is the underlying plaintext for randomly chosen (key i, c⃗

in
i). Given

these keys and ciphertexts for the x input, and those generated in the initialization, we now have,
for each circuit wire i, a key and (one or two) ciphertexts whose underlying plaintext(s) equal bi.
We also have, for each circuit input wire i, a public share ai.

Eval proceeds to compute the public shares of the internal and output wires one by one, using a
safe homomorphic computation procedure discussed below. The output is the public share aoutoutput =
C(y, x). Throughout the computation, all the private bi shares are protected from the leakage
adversary. Each internal bi looks “uniformly random” to the adversary, even under leakage. Thus,
the public shares ai of the internal wires reveal nothing about the actual values vi on those wires.
All the adversary “sees” are the input x and the output ao = C(y, x). The main remaining challenge
is evaluating the public shares without exposing the private shares.

Challenge I: Leakage-Resilient “Safe NAND” Computation. We seek a procedure that, for
a NAND gate takes as input the public shares for the gates’s input wires, and the encrypted private
shares for the gate’s input wires and output wire. The output should be the correct public share
of the gate’s output wire. For security, we require that even under leakage, this procedure exposes
nothing about the private shares of the gate’s input wires and output wire (beyond the value of the
output wire’s public share). We also need a similar procedure for aforementioned duplication gates,
but we focus here on the more challenging case of NAND. We give an overview of this procedure,
which we call SafeNAND , in Section 2.2.1.

2.2.1 Leakage Resilient SafeNAND

For a NAND gate with input wires i, j and output wire k, the input to SafeNAND is public shares
ai, aj ∈ {0, 1}, and ciphertext-key pairs (key i, c⃗

in
i , keyj , c⃗

in
j , keyk, c⃗

out
k). We use bi, bj , bk ∈ {0, 1} to

denote (respectively) the plaintext bits underlying these key-ciphertext pairs. The goal is to output

ak = ((ai ⊕ bi) NAND (aj ⊕ bj))⊕ bk

moreover, we want to do this using a procedure that, even under leakage, exposes nothing about
(bi, bj , bk) beyond the output ak. We proceed with an overview, see Section 6 for details.

11

585
Approved for Public Release; Distribution Unlimited.

As a starting point, we first choose a fresh new key ← KeyGen(1κ), and compute c′i, c
′
j , c
′
k whose

underlying plaintexts under this new key remain bi, bj , bk. This uses the key refresh property of
the LROTP scheme. Once the ciphertexts are all encrypted under the same key , we can use the
homomorphic addition properties of LROTP. Starting with an idea of Sanders Young and Yung
[SYY99], we can compute NAND by first computing a 4-tuple of encryptions:

C ← (c⃗′k, ((ai, 0, . . . , 0)⊕ c⃗′i ⊕ c⃗′k), ((aj , 0, . . . , 0)⊕ c⃗′j ⊕ c⃗′k), ((1⊕ ai ⊕ aj , 0, . . . , 0)⊕ c⃗′i ⊕ c⃗′j ⊕ c⃗′k))

Note the plaintexts underlying the 4 ciphertexts in C are:

(bk, (ai ⊕ bi ⊕ bk), (aj ⊕ bj ⊕ bk), (1⊕ ai ⊕ bi ⊕ aj ⊕ bj ⊕ bk))

and that if ak = 0, then 3 of these plaintexts will be 1, and one will be 0, whereas if ak = 1, then
3 of the plaintexts will be 0 and one will be 1.

The first idea may be to simply decrypt C (using key), and compute ak based on the number
of 0’s and 1’s plaintext underlying C. We cannot do this, however, since the locations of 0’s and 1’s
might reveal (via the adversary’s leakage) information about (bi, bj , bk) beyond just the value of ak.
A natural idea, then, is to permute the ciphertexts before decrypting. This, indeed, is what was
suggested by [SYY99]. Our problem, however, is that any permutation we use might leak. What
we seek, then, is a method for randomly permuting the ciphertexts even under leakage.

Permute: Securely Permuting under Leakage. The leakage-resilient permutation procedure
Permute that takes as input key and a 4-tuple C, consisting of 4 ciphertexts. Permute makes 4
copies of key , and then proceeds in iterations. The input to each iteration is two 4-tuples of keys
and ciphertexts. The output from each iteration is a 4-tuple of keys and corresponding ciphertexts,
whose underlying plaintexts are some permutation of those in that iteration’s input. The key
property is that the permutation chosen in each iteration will look “fairly random” even to a
leakage adversary. As a result, the composition of these permutations over many iterations will
look (statistically close to) uniformly random. The “fairly random” property of each iteration is
achieved by a “duplicate and permute” step:

1. creating many copies of the input key and ciphertext 4-tuples

2. refreshing each tuple-copy using key-ciphertext refresh as in Section 2.1 (each refresh uses
independent randomness)

3. permutating each tuple-copy using an independently chosen uniformly random permutation

Given (length-bounded) leakage from the above “duplicate-and-permute” step of each iteration,
most of the permutations chosen will look “fairly uniform”. Finally, after the leakage from each
iteration’s duplicate-and-permute step has occurred, one of the tuple-copies is chosen. We will show
that the permutation used for this tuple-copy will (w.h.p.) look “fairly random”, even given the
leakage. The tuple-copy chosen in each iteration is then fed as input to the next iteration.

The Permute procedure does this for ℓ iterations. We show that the composition of all permu-
tations used is exp(−Ω(ℓ))-statistically close to uniformly random, even given the leakage from all
ℓ iterations of Permute. This is the high-level intuition for the security of Permute and SafeNAND
(omitting many non-trivial details).

12

586
Approved for Public Release; Distribution Unlimited.

2.3 Leakage-Resilient Compiler Overview: Multiple Secure Evaluations

In this section we modify the Init and Eval procedures described in Section 2.2 to support any
polynomial number of secure evaluations. The main challenge is generating secure key-ciphertext
pairs for the output and the y-input wires.

Challenge II: Ciphertext Generation under Continual Leakage. We seek a procedure for
repeatedly producing (key i, c⃗i) pairs. For each y-input wire i corresponding to the j-th bit of y, the
underlying plaintext should be y[j]. For the output wire output , the underlying plaintext should
0. We also seek a procedure for repeatedly producing key i and a pair of ciphertexts (c⃗outi , c⃗ini) that
both have the same independently random underlying plaintext bi ∈R {0, 1}. For security, the
underlying plaintexts of the keys and ciphertexts produced should be completely protected even
under (repeated) leakage in all the generations.

In previous works such as [FRR+10, JV10, GR10], similar challenges were (roughly speaking)
overcome using secure hardware to generate “fresh” encodings of leakage-resilient plaintexts from
scratch in each execution.

We generate key-ciphertext pairs using ciphertext banks. We begin by describing this new tool
and how it is for repeated secure generations with a fixed underlying plaintext bit. This is what
is needed for the y-input and the output wire. We then describe how a ciphertext bank is used to
generate a sequence of keys and pairs of ciphertexts (with uniformly random underlying plaintexts)
for the internal wires.

A ciphertext bank is initialized once using a BankInit(b) procedure, where b is either 0 or 1 (there
is no leakage during initialization). It can then be used, via a BankGen procedure, to repeatedly
generate key-ciphertext pairs with underlying plaintext bit b, for an unbounded polynomial number
of generations. A BankUpdate procedure is used between generations to inject entropy into the
ciphertext bank. The intuition behind the ciphertext bank security requirement is that, even
under leakage from the repeated generations, the plaintext underlying each key-ciphertext pair
is protected. In particular, there are efficient simulation procedures that have arbitrary control
over the plaintexts underlying the key-ciphertext pairs that the bank produces/ Leakage from the
simulated calls is statistically close to leakage from the “real” ciphertext bank calls. We outline
these procedures in Section 2.3.1 below. See Section 5 for details.

Using ciphertext banks, we modify the initialization and evaluation outlined in Section 2.2.
In initialization, for each y-input bit y[j], carried on wire i, we initialize a ciphertext bank for
repeatedly generating key-ciphertext pairs with underlying plaintext y[j]. For the output wire we
initialize a ciphertext bank for repeatedly generating key-ciphertext pairs with underlying plaintext
0. In Eval , we add an initial step where the ciphertext banks of each y-input wire and of the output
wire are used to securely generate a key-ciphertext pair for that wire. After this first step, given
an input x, Eval proceeds as outlined in Section 2.2.

Finally, to generate a sequence of keys and pairs of ciphertexts for the internal wires, we also
provide a BankRedraw procedure. This procedure re-draws a new, uniformly and independently
random plaintext bit, that will underly the key-ciphertext pairs produced by the bank. To generate
a key and a pair of ciphertext with the same underlying plaintext we simply call BankGen twice:
the key produced in both calls will be the same, but the ciphertexts produced will be different
(albeit with the same underlying plaintext). After this pair of generations, we call BankRedraw to
re-draw the underlying plaintext bit and then BankUpdate to inject new entropy. We note that it
is the call to BankUpdate that changes the key that will be produced in future BankGen calls. For

13

587
Approved for Public Release; Distribution Unlimited.

security, we provide efficient simulation procedures that have arbitrary control over the plaintext
bits underlying the key-ciphertext pairs that are produced. As above, leakage from simulated calls
is statistically close to leakage form the “real” calls. See the overview below in Section 2.3.1, and
Section 5 for further details.

We now can now repeatedly generate keys and ciphertext-pairs for internal wires even under
leakage. For this, we further modify the initialization and evaluation outlined in Section 2.2. In
initialization, we initialize a (single) additional ciphertext bank for the internal wires. This bank
is initialized to generated key-ciphertext pairs with a uniformly random underlying plaintext bit.
In Eval , for each internal wire we use two BankGen calls to this bank to generate a key and
two ciphertexts. After each two such calls we use BankRedraw and BankUpdate to re-draw the
underlying plaintext bit for the next wire and to inject new entropy.

This completes the high-level description of our Init and Eval procedures, the full procedures
are in Section 7.

2.3.1 Ciphertext Banks for Secure Generation

The ciphertext bank state consists of an LROTP key , and a collection C of 2κ ciphertexts. We
view C as a κ×2κ matrix, whose columns are the ciphertexts. In the BankInit procedure, on input
b, key is drawn uniformly at random, and the columns of C are drawn uniformly at random s.t
the plaintext underlying each column equals b. This invariant will be maintained throughout the
ciphertext bank’s operation, and we call b the bank’s underlying plaintext bit.

The BankGen procedure outputs key and a linear combination of C’s columns. The linear
combination is chosen uniformly at random s.t. it has parity 1. This guarantees that it will yield
a ciphertext whose underlying plaintext is b.

The BankUpdate procedure injects new entropy into key and into C: we refresh the key using
the LROTP key refresh property, and we refresh C by multiplying it with a random 2κ×2κ matrix
whose columns all have parity 1. These refresh operations are performed under leakage.

The BankRedraw procedure chooses a uniformly random ciphertext v⃗ ∈ {0, 1}κ, and adds it to
all the columns of C. If the inner product of key and v⃗ is 0 (happens w.p. 1/2), then the bank’s
underlying plaintext bit is unchanged. If the inner product is 1 (also w.p. 1/2), then the bank’s
underlying plaintext bit is flipped.

For security, we provide a simulation procedure SimBankGen that can arbitrarily control the
value of the plaintext bit underlying the key-ciphertext pair it generates. Here we maintain a
simulated ciphertext bank, consisting of a key and a matrix, similarly to the real ciphertext bank.
These are initialized, without leakage, using a SimBankInit procedure that draws key and the
columns of C uniformly at random from {0, 1}κ. Note that here, unlike in the real ciphertext bank,
the plaintexts underlying C’s columns are uniformly random bits (rather than a single plaintext
bit b). The operation of SimBankGen is similar to BankGen, except that it uses a biased linear
combination of C’s columns to control the underlying plaintext it produces.

The main technical challenge and contribution here is showing that leakage from the real and
simulated calls is statistically close. Note that, even for a single generation, this is non-obvious. As
an (important) example, consider the rank of the matrix C: in the real view (say for b = 0), C’s
columns are all orthogonal to key , and the rank is at most κ− 1. In the simulated view, however,
the rank will be κ (w.h.p). If the matrix C was loaded into memory in its entirety, then the real and
simulated views would be distinguishable! Observe, however, that if only “sketches” (or “pieces”)
of C are loaded into memory at any one time, where each “sketch” (or “piece”) is a collection of

14

588
Approved for Public Release; Distribution Unlimited.

(c · κ) linear combinations of C’s columns (for a small 0 < c < 1), then it is no longer clear how
a leakage adversary can compute C’s rank or distinguish a real and simulated generation (even if
the adversary knows the coefficients of the linear combinations of C’s columns).

We show that: (i) sketches of random matrices are leakage resilient, and in particular leak-
age from sketches of C is statistically close in the real and simulated distributions, and (ii) how
to implement BankGen and SimBankGen using subcomputations, where each sub-computation
only loads a single “sketch” of C into memory. This implies security for a single generation (or
a bounded number). We then extend our leakage-resilience results to show security for an un-
bounded (polynomial) number of generations. We view these roofs as our most important technical
contribution.

2.4 Organization and Roadmap

Definitions, notation and preliminaries are in Section 3. This includes the definitions of secure
compilers against leakage and of independence up to orthogonality, a central notion in many of our
technical proofs. That section also includes lemmas about entropy, multi-source extractors, and
leakage-resilience that will be used in the subsequent sections.

We then proceed with a full description of our construction. In Section 4 we specify the leakage-
resilient one time pad scheme and its properties. We present the ciphertext bank procedures, used
for secure generation of secure ciphertexts under leakage, in Section 5. The SafeNAND procedure
for securely computing NAND gates on encrypted inputs is in Section 6. These ingredients are put
together in Section 7, where we present the main construction and a proof (sketch) of its security.

3 Definitions and Preliminaries

In this section we define leakage and multi-source leakage attacks (Section 3.1) and give a brief ex-
position about entropy, multi-source extractors, and facts about them that will be used throughout
this work (Section 3.2). We then define and discuss the notion of independence up to orthogonality
(Section 3.3).

Preliminaries. For a string x ∈ Σ∗ (where Σ is some finite alphabet) we denote by |x| the length
of the string, and by xi or x[i] the i’th symbol in the string. For a finite set S we denote by y ∈R S
that y drawn uniformly at random from S. We use ∆(D,F) to denote the statistical (L1) distance
between distributions D and F . For a distribution D over a finite set, we use x ∼ D to denote the
experiment of sampling x by D, and we use D[x] to denote the probability of item x by distribution
D. For random variables X and Y , we use (X|Y = y) or (X|y) to denote the distribution of X,
conditioned on Y taking value y.

3.1 Leakage Model

We follow the model and notation used in [GR10].

Leakage Attack. A leakage attack is launched on an algorithm or on a data string. In the case of
a data string x, an adversary can request to see any function ℓ(x) whose output length is bounded
by λ bits. In the case of an algorithm, the algorithm is divided into ordered sub-computations. The

15

589
Approved for Public Release; Distribution Unlimited.

adversary can request to see a bounded-length (λ bit) function of each sub-computation’s input
and randomness. The leakage functions are computed separately on each sub-computation, in the
order in which the sub-computations occur, and can be chosen adaptively by the adversary.

Remark 3.1. Throughout this work we focus on computationally unbounded adversaries. In par-
ticular, we do not restrict the computational complexity of the leakage functions. Moreover, without
loss of generality, we consider only deterministic adversaries and leakage functions.

Definition 3.2 (Leakage Attack Aλ(x)[s]). Let s be a source: either a data string or a computation.
We model a λ-bit leakage attack of adversary A with input x on the source s as follows.

If s is a computation (viewed as a boolean circuit with a fixed input), it is divided into m
disjoint and ordered sub-computations sub1, . . . , subm, where the input to sub-computation subi
should depend only on the output of earlier sub-computations. A λ-bit Leakage Attack on s is
one in which A can adaptively choose functions ℓ1, . . . ℓm, where ℓi takes as input the input to
sub-computation i and any randomness used in that sub-computation. Each ℓi has output length
at most λ bits. For each ℓi (in order), the adversary receives the output of ℓi on sub-computation
subi’s input and randomness, and then chooses ℓi+1. The view of the adversary in the attack
consists of the outputs to all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation.

Multi-Source Leakage Attacks. A multi-source leakage attack is one in which the adversary
gets to launch concurrent leakage attacks on several sources. Each source is an algorithm or a
data string. We consider both ordered sources, where an order is imposed on the adversary’s access
to the sources, and concurrent sources, where the leakage the leakages from each source can be
interleaved arbitrarily. In both case, each leakage is computed as a function of a single source only.

Ordered Multi-Source Leakage. An ordered multi-source leakage attack is one in which the
adversary gets to launch a leakage attack on multiple sources, where again each source is an
algorithm or a data string. The attacks must occur in a specified order.

Definition 3.3 (Ordered Multi-Source Leakage Attack A(x){sλ1
1 , . . . , sλk

k }). Let s1, . . . , sk be leak-
age sources (algorithms or data strings, as in Definition 3.2). We model an ordered multi-source
leakage attack on {s1, . . . , sk} as follows. The adversary A with input x runs k separate leakage
attacks, one attack on each source. When attacking source si, the adversary can request λi bits of
leakage. The attacks on sources s1, . . . , sk are run sequentially and in order, i.e. once the adversary
requests leakage from sj , it cannot get any more leakage from si for i < j.

For convenience, we drop the superscript when the source is exposed in its entirety (i.e. λi =
|si|). So A(x){sλ1

1 , s2} is an attack where the adversary can request λ1 bits of leakage on s1, and
then sees s2 in its entirety. Finally, when the leakage bound on all k sources is identical we use a
“global” leakage bound λ and denote this by Aλ(x){s1, . . . , sk}.

Concurrent Multi-Source Leakage. A concurrent leakage attack on multiple sources is one in
which the adversary can interleave the leakages from each of the sources arbitrarily. Each leakage is
still a function of a single source though. We allow additional flexibility by considering concurrent
sources and ordered sources as above. Leakage from the ordered sources must obey the ordering,
and the leakage from the concurrent sources can be arbitrarily interleaved with the leakage from
the ordered sources.

16

590
Approved for Public Release; Distribution Unlimited.

Definition 3.4 (Multi-Source Leakage Attack A(x)[sλ1
1 , . . . , sλk

k]{rλ
′
1

1 , . . . , r
λ′
m

m }). Let s1, . . . , sk and
r1, . . . , rm be k + m leakage sources (algorithms or data strings, as in Definition 3.2). We model
a concurrent multi-source leakage attack on [s1, . . . , sk]{r1, . . . , rm} as follows. The adversary runs
k +m leakage attacks, one on each source. The attacks on each source, si or rj , for a λi or λ

′
j-bit

leakage attack as in Definition 3.2. We emphasize that each λ-bit attack on a single source consists
of λ adaptive choices of 1-bit leakage functions. Between different sources, the leakages can be
interleaved arbitrarily and adaptively, except for each j and j′ such that j < j′, no leakage from rj
can occur after any leakage from rj′ . There are no restrictions on the interleaving of leakages from
si sources.

It is important that each leakage function is computed as a function of a single sub-computation
in a single source (i.e. the leakages are never a function of the internal state of multiple sources). It
is also important that the attacks launched by the adversary are concurrent and adaptive, and their
interleaving is controlled by the adversary. For example, A can request a leakage function from
a sub-computation of source si before deciding which source to attack next, then after attacking
several other sources, it can go back to source i and request a new adaptively chosen leakage attack
on its next sub-computation.

As in Definition 3.3, we drop the superscript if a source s exposed in its entirety.5 When the
leakage from all sources is of the same length λ, we append the superscript to the adversary and
drop it from the sources. If there are no ordered sources then we drop the curly braces.

3.2 Extractors, Entropy, and Leakage-Resilient Subspaces

In this section we define notions of min-entropy and two-source extractors that will be used in
this work. We will then present the inner-product two-source extractor. Finally, we will state two
lemmas that will be used in our proof of security: a lemma of [DRS04] about the connection between
leakage and min-entropy, and a lemma of Brakerski et al. regarding leakage-resilient subspaces.

Definition 3.5 (Min-Entropy). For a distribution D over a domain X, its min-entropy is:

H∞(D) , min
x∈X

log Pr
y∼D

[y = x]

Definition 3.6 ((n,m, k, ε)-two source strong extractor). A function Ext : {0, 1}n × {0, 1}n →
{0, 1}m is a (n,m, k, ε)-2-source extractor is for every two distributions X and Y over {0, 1}n such
that H∞(X),H∞(X) ≥ k it is the case that:

Pr
y∼Y

[∆(Ext(X, y), Um) > ε] < ε

Pr
x∼X

[∆(Ext(x, Y), Um) > ε] < ε

Chor and Goldreich [CG88] showed that the inner-product function over any field is a two-
source extractor. See also the excellent exposition of Rao [Rao07]. The claims made in those works
imply the lemma below (they make more general statements).

5we use this only for the ordered sources, concurrent sources exposed in their entirety are w.l.o.g. given to the
adversary as part of its input.

17

591
Approved for Public Release; Distribution Unlimited.

Lemma 3.7 (Inner-Product Extractor [CG88]). For κ ∈ N and x⃗, y⃗ ∈ GF[2]κ define

Ext(x⃗, y⃗) = ⟨x⃗, y⃗⟩

For any κ ∈ N, the function Ext(x, y) is a (κ, 1, 0.51κ, 2−Ω(κ))-two source strong extractor.

Finally, we will use the fact that bounded-length multi-source (or rather two-source) leakage
attacks on high-entropy sources X and Y , leave an adversary with a view that is statistically close
to one in which each of the sources comes from a high-entropy distribution. This follows from a
result of Dodis et al. [DRS04].

Lemma 3.8 (Residual Entropy after Leakage [DRS04]). Let X and Y be two sources with min-
entropy at least k. Then for any leakage adversary A, taking w = Aλ[X,Y], consider the conditional
distributions X ′ = (X|w) and Y ′ = (Y |w), which are just X and Y conditioned on leakage w. For
any δ > 0, with probability at least 1− δ over the choice of w, H∞(X ′),H∞(Y ′) ≥ k−λ− log(1/δ).

3.3 Independence up to Orthogonality

Definition 3.9 (Independent up to Orthogonality (IuO) Distribution on Vectors). Let D be a
distribution over pairs (x⃗, y⃗) ∈ {0, 1}κ × {0, 1}κ. We say that D is IuO w.r.t. v⃗ ∈ {0, 1}κ and
b ∈ {0, 1}, if there exist distributions X and Y, both over {0, 1}κ, s.t. D is obtained by sampling
x⃗ ∼ X and then sampling y⃗ ∼ Y, conditioned on ⟨x⃗ + v⃗, y⃗⟩ = b. We call X and Y the underlying
distributions of D, and denote this by D = X ⊥(v⃗,b) Y.

When v⃗ = 0⃗ we will sometimes simply say that D is IuO with orthogonality b, and denote this
by D = X ⊥b Y.

We also consider the independently drawn variant of D which is obtained by independently
sampling x⃗ ∼ X and y⃗ ∼ Y . We denote the independently drawn variant by D× or X × Y.

Definition 3.10 (Independent up to Orthogonality (IuO) Distribution on Matrices). Generalizing
Definition 3.10, for an integer m ≥ 1, let D be a distribution over pairs (X,Y) ∈ {0, 1}m×κ ×
{0, 1}m×κ. We say that D is IuO w.r.t. V ∈ {0, 1}m×κ and b⃗ ∈ {0, 1}m if there exist distributions
X and Y, both over {0, 1}m×κ, s.t. D is obtained by sampling X ∼ X and then (independently)
sampling Y ∼ Y conditioned on ∀i ∈ [m], ⟨X[i] + V [i], Y [i]⟩ = b⃗[i]. As in Definition 3.10, we call X
and Y the underlying distributions of D, and denote this by D = X ⊥

(V,⃗b)
Y.

When V is the all-zeros matrix, we will sometimes simply say that D is IuO with orthogonality
b⃗, and denote this by D = X ⊥

b⃗
Y.

We also consider the independently drawn variant of D which is obtained by independently
sampling X ∼ X and Y ∼ Y . We denote the independently drawn variant by D× or X × Y.

Finally, for a distribution D over pairs (x⃗, Y) ∈ {0, 1}κ × {0, 1}mκ, we say that D is IuO (with
parameters as above), if D′, in which we replace x⃗ with a matrix X whose columns are m (identical)
copies of x⃗ is IuO (as above). We emphasize that the copies of x⃗ are all identical and completely
dependant.

One important property of IuO distributions, which we will use repeatedly, is that they are
indistinguishable from their independently drawn variant under multi-source leakage (as long as
they have sufficient entropy).

18

592
Approved for Public Release; Distribution Unlimited.

Lemma 3.11. Let D be an IuO distribution over pairs (X,Y) ∈ SX × SY , with underlying dis-
tributions X and Y. Suppose that SX = {0, 1}mX ·κ and SY = {0, 1}mY ·κ for mX and mY s.t.
1 ≤ mX ≤ mY ≤ 10. Suppose also that H∞(D) ≥ (mX + mY − 0.3) · κ. Then for any (compu-
tationally unbounded) multi-source leakage adversary A, and leakage bound λ ≤ 0.1κ, taking the
following two distributions:

Real =
(
Aλ[X,Y]

)
(X,Y)∼D

Simulated =
(
Aλ[X,Y]

)
(X,Y)∼D×

it is the case that ∆(Real ,Simulated) = exp(−Ω(κ)).
Moreover, for any w in the support of Real: (i) we can derive from X a conditional underlying

distribution X (w), and from Y a conditional underlying distribution Y(w). In particular, note that
D is not needed for computing these conditional underlying distributions. Taking D(w) = (D|w) to
be the conditional distribution of D, given leakage w, then D(w) is IuO, with underlying distributions
X (w) and Y(w).

Before proving the lemma, we consider a simple application to multi-source leakage from two
strings. In Real the strings are uniformly random with inner product 0, and in Simulated they
are independently uniformly random. By Lemma 3.11, the leakage in both cases is statistically
close. The distribution of the strings in Real , given the leakage, is IuO, and each of its underlying
distributions can be computed (separately) given the leakage (and that the original underlying
distribution were uniformly random).

Proof of Lemma 3.11. Take w = Aλ[X,Y]. Since the leakage operates separately on X and on Y ,
there exist two sets SX(w) ⊆ SX and SY (w) ⊆ SY , s.t.:

w = Aλ[X,Y]⇔ (X,Y) ∈ SX(w)× SY (w)

We take X (w) to be X conditioned onX ∈ SX(w), and Y(w) to be Y conditioned on Y ∈ SY (w).
Let D(w) = (D|w) be the distribution D conditioned on leakage w. By the above, D(w) is D
conditioned on (X,Y) ∈ SX(w) × SY (w). Thus, D(w) is also IuO, with underlying distributions
X (w) and Y(w) and the same orthogonality as D.

Finally, to show that Real and Simulated are statistically close, let β(w) denote the distance of
the inner product ⟨X + V, Y ⟩X∼X (w),Y∼Y(w) from uniform.

Claim 3.12. For any w ∈ Support(Real):

1−O(β(w)) ≤ Simulated [w]

Real [w]
≤ 1 +O(β(w))

Proof. Observe that:

Simulated [w] = Pr
X∼X ,Y∼Y

[(X,Y) ∈ SX(w)× SY (w)]

Real [w] = Pr
(X,Y)∼D

[(X,Y) ∈ SX(w)× SY (w)]

= Pr
X∼X ,Y∼Y ′(X)

[(X,Y) ∈ SX(w)× SY (w)]

19

593
Approved for Public Release; Distribution Unlimited.

where Y ′(X) is Y conditioned on ⟨X + V, Y ⟩ = b⃗.
The claim follows because:

1−O(β(w) · 2mY) ≤
PrX∼X ,Y∼Y [⟨X + V, Y ⟩ = b⃗]

PrX∼X ,Y∼Y [⟨X + V, Y ⟩ = b⃗|(X,Y) ∈ SX(w)× SY (w)]
≤ 1 +O(β(w) · 2mY)

Claim 3.13. With all but exp(−Ω(κ)) probability over w ∼ Real, β(w) = exp(−Ω(κ)).

Proof. By Lemma 3.8, with all but δ probability over w ∼ Real , we have that H∞(X (w)) +
H∞(Y(w)) ≥ (mX + mY − 0.45) · κ. When this is the case, by Lemma 3.7 we have β(w) =
exp(−Ω(κ)).

By Claim 3.12 and 3.13 we conclude that ∆(Real ,Simulated) = exp(−Ω(κ)).

3.4 Secure Compiler: Definitions

We now present formal definitions for a secure compiler against continuous and computationally
unbounded leakage. We view the input to the compiler as a circuit C that is known to all parties
and takes inputs x and y. The input y is fixed, whereas the input x is chosen by the user. The user
can adaptively choose inputs x1, x2, . . . and the functionality requirement is that on each input xi
the user receives C(y, xi). The secrecy requirement is that even for a computationally unbounded
adversary who chooses the inputs (say polynomially many inputs in the security parameter), even
giving the adversary access(repeatedly) to a leakage attack on the secure transformed computation,
the adversary learns nothing more than the circuit’s outputs. In particular, the adversary should
not learn y.6

We divide a compiler into parts: the first part, the initialization occurs only once at the begin-
ning of time. This procedure depends only on the circuit C being compiled and the private input
y. We assume that during this phase there is no leakage. The second part is the evaluation. This
occurs whenever the user wants to evaluate the circuit C(y, ·) on an input x. In this part the user
specifies an input x, the corresponding output C(y, x) is computed under leakage.

Definition 3.14 ((λ(·), δ(κ)) Continuous Leakage Secure Compiler). We say that a compiler
(Init ,Eval) for a circuit family {Cn(y, x)}n∈N, where Cn operates on two n-bit inputs, is (λ(·), δ(κ))-
secure under continuous leakage, if for every integer n, κ ∈ N, and every y ∈ {0, 1}n, the following
hold:

• Initialization: Init(1κ, Cn, y) runs in time poly(κ, n) and outputs an initial state state0

• Evaluation: for every integer t ≤ poly(κ), the evaluation procedure is run on the previous
state statet−1 and an input xt ∈ {0, 1}n. We require that for every xt ∈ {0, 1}n, when we run:

(out t, statet)← Eval(statet−1, xt)

with all but negligible probability over the coins of Init and the t invocations of Eval , out t =
Cn(y, xt).

6Unless, of course, y can be computed from the outputs of the circuit on the inputs the adversary chose.

20

594
Approved for Public Release; Distribution Unlimited.

• (λ(κ), δ(κ))-Continuous Leakage Security: There exists a simulator Sim, s.t. for every (com-
putationally unbounded) leakage adversary A, the view RealA of A when adaptively choosing
T = poly(κ) inputs (x1, x2, . . . xT) while running a continuous leakage attack on the sequence
(Eval(state0, x1), . . . ,Eval(stateT−1, xT)), with adaptively and adversarially chosen xt’s, is
(δ(κ))-statistically close to the view SimulatedA generated by Sim, which only gets the de-
scription of the adversary and the input-output pairs ((x1, C(y, x1)), . . . , (xT , C(y, xT))).

Formally, the adversary repeatedly and adaptively, in iterations t ← 1, . . . , T , chooses an
input xt and launches a λ(κ)-bit leakage attack on Eval(statet−1, xt) (see Definition 3.2).
RealA,t is the view of the adversary in iteration t, including the input xt, the output ot, and
the (aggregated) leakage wt from the t-th iteration. The complete view of the adversary is

RealA = (RealA,1, . . . ,RealA,T)

a random variable over the coins of the adversary, of Init and of Eval (in all of its iterations).

The simulator’s view is generated by running the adversary with simulated leakage attacks.
The simulator includes SimInit and SimEval procedures. The initial state is generated using
SimInit . Then, in each iteration t the simulator gets the input xt chosen by the adversary
and the circuit output C(y, xt). It generates simulated leakage wt. It is important that the
simulator sees nothing of the internal workings of the evaluation procedure. We compute:

state0 ← SimInit(1κ, Cn)

xt ← A(SimulatedA,1, . . . ,SimulatedA,t−1)

(statet,SimulatedA,t)← SimEval(statet−1, xt, , C(y, xt),A,SimulatedA,1, . . . ,SimulatedA,t−1)

where SimA,t is a random variable over the coins of the adversary when choosing the next
input and of the simulator. The complete view of the simulator is

SimulatedA = (SimulatedA,1, . . . ,SimulatedA,T)

We require that the two views RealA and SimulatedA are (exp(−Ω(κ)))-statistically close.

We note that modeling the leakage attacks requires dividing the Eval procedure into sub-
computations. In our constructions, the size of these sub-computations will always be O(κω),
where ω is the exponent in the running time of an algorithm for matrix multiplication.

4 Leakage-Resilient One-Time Pad (LROTP)

In this section we present the leakage resilient one-time pad cryptoscheme, a main component of
our construction. See the overview in Section 2.1. Here we specify the scheme and its properties
that will be used in the main construction.

21

595
Approved for Public Release; Distribution Unlimited.

Leakage-Resilient One-Time Pad (LROTP) Cryptosystem (KeyGen,Encrypt ,Decrypt)

• KeyGen(1κ): output a uniformly random key ∈ {0, 1}κ s.t. key [0] = 1

• CipherGen(1κ): output a uniformly random c⃗ ∈ {0, 1}κ s.t. c⃗[1] = 1.

• Encrypt(key , b ∈ {0, 1}): output a uniformly random c⃗ ∈ {0, 1}κ s.t. c⃗[1] = 1 and ⟨key , c⃗⟩ = b

• Decrypt(key , c⃗): output ⟨key , c⃗⟩

Figure 1: Leakage-Resilient One-Time Pad (LROTP) Cryptosystem

4.1 Semantic Security under Multi-Source Leakage

Definition 4.1 (Semantic Security Under λ(·)-Multi-Source Leakage). An encryption scheme
(KeyGen,Encrypt ,Decrypt) is semantically secure under computationally unbounded multi-source
leakage attacks if for every (unbounded) adversary A, when we run the game below, the adversary’s
advantage in winning (over 1/2) is exp(−Ω(κ)):

1. The game chooses key key ← KeyGen(1κ), chooses uniformly at random a bit b ∈R {0, 1},
and generates a ciphertext c⃗← Encrypt(key , b).

2. The adversary launches a leakage attack on key and c⃗, and outputs a “guess” b′:

b′ ← Aλ(κ)(1κ)[key , c⃗]

the adversary wins if b′ = b.

Lemma 4.2. The LROTP cryptosystem, as defined in Figure 1, is semantically secure in the
presence of multi-source leakage with leakage bound λ(κ) = κ/3.

Proof. The proof follows directly from Lemma3.11.

4.2 Key and Ciphertext Refreshing

As discussed in the introduction, the LROTP scheme supports procedures for injecting new entropy
into a key or a ciphertext. This is done using entropy generators KeyEntGen and CipherEntGen.
The values these procedures produce can be used to refresh a key or ciphertext using KeyRefresh
or CipherRefresh (respectively). Key entropy σ can also be used, without knowledge of key , to
correlate a ciphertext c⃗ so that the plaintext underlying the correlated ciphertext c⃗′ under key ′ ←
KeyRefresh(key , σ), is equal to the plaintext underlying c⃗ under key . This is done using the
CipherCorrelate procedure.A similar KeyCorrelate procedure for correlating keys using ciphertext
entropy. These procedures are all in Figure 2 below.

We proceed with a discussion of the security properties of the refreshing procedures, and their
limitation. For a key-ciphertext pair (key , c⃗), a refresh operation on the pair injects new entropy
into the key and the ciphertext, while maintaining the underlying plaintext, as follows:

1. σ ← KeyEntGen(1κ)

2. key ′ ← KeyRefresh(key , σ)

22

596
Approved for Public Release; Distribution Unlimited.

LROTP key and ciphertext refresh

• KeyEntGen(1κ) : output a uniformly random σ ∈ {0, 1}κ s.t. σ[0] = 0

• KeyRefresh(key , σ) : output key ⊕ σ

• CipherCorrelate(c⃗, σ) : modify c⃗[0]← c⃗[0]⊕ ⟨c⃗, σ⟩, and then output c⃗

• CipherEntGen(1κ) : output a uniformly random τ ∈ {0, 1}κ s.t. τ [1] = 0

• CipherRefresh(c⃗, τ) : output c⃗⊕ τ

• KeyCorrelate(key , τ) : modify key [1]← key [1]⊕ ⟨key , τ⟩, and then output key

Figure 2: LROTP key and ciphertext refresh Cryptosystem

3. c⃗′ ← CipherCorrelate(c⃗, σ)

4. π ← CipherEntGen(1κ)

5. c⃗′′ ← CipherRefresh(c⃗′, π)

6. key ′′ ← KeyCorrelate(key ′, π)

The output of the refresh operation is (key ′′, c⃗′′). We treat each step of the key-refresh as a
sub-computation, and so the leakage operates separately on the keys and on the ciphertexts.

Security Properties. The security properties of the refreshing procedures are, first, that a key-
ciphertext pair can be refreshed without ever loading the key and ciphertext into memory at the
same time, i.e. while operating separately on the key and on the ciphertext. We will use this to
argue that an OC leakage adversary learns nothing about the plaintext bit underlying a pair that
is being refreshed (as long as the total amount of leakage is bounded). The second property we use
is that without any leakage, a the refreshed pair is a uniformly random key-ciphertext pair with the
same underlying plaintext bit.

We use these properties to prove security of the Permute procedure which is used in SafeNAND
(see Sections 2.2.1 and 6.2). Permute proceeds in iterations. In each iteration, we refresh a tuple
of key-ciphertext pairs and then permute them using a random permutation. The property of the
refresh procedure that we will use is that without any leakage, even given both the input and the
output of a single iteration of Permute, nothing is leaked about the permutation chosen (beyond
what can be gleaned from the underlying plaintexts). This will then be used to argue that, even
under a bounded amount of leakage from each iteration, the permutation chosen in each iteration
of Permute has (w.h.p.) high entropy. This is later used to prove the security of SafeNAND .

Refresh Forever? It is natural to ask whether key-ciphertext refreshing maintains security of the
underlying plaintext under OC leakage for an unbounded polynomial number of refreshings. If so,
we could hope to do away with the (significantly more complicated) ciphertext banks, replacing the
ciphertexts generated by each bank with a sequence of ciphertexts generated using repeated refresh
calls. Unfortunately, there is an OC attack that exposes the plaintext underlying a key-ciphertext
pair that is refreshed too many times. The attack is outlined below.

23

597
Approved for Public Release; Distribution Unlimited.

We consider a sequence of refresh operations, where the output of the i-th refresh is used as
input for the (i+ 1)-th refresh. During the first refresh, an OC adversary leaks the inner product
(i.e. the product) of the first bit of the output key and the first bit of the output ciphertext. This
requires only one bit of leakage from each. In the second refresh, the adversary will learn the inner
product of the first two bits of the output key and the output ciphertext. To do so, let (key1, c⃗1) be
the inputs to the second refresh. The adversary leaks the second bits of key2 during KeyRefresh,
and of c⃗2 during CipherRefresh. It also keeps track of the change in inner product of the first bit
of key ′1 = (key1 + σ) and of c⃗′1 = CipherCorrelate(c⃗1, σ) using a single bit of leakage: The change
(w.r.t. the inner product of key1 and c⃗1) is just a function of σ and c⃗1, which are loaded into
memory during CipherCorrelate. Similarly, the adversary can keep track of the subsequent change
to the inner product of the first bits of key2 = KeyCorrelate(key ′1, π) and c⃗2 = c⃗′1 ⊕ π, using a
single bit of leakage from KeyCorrelate. Putting these pieces together, the adversary learns the
inner product of the first two bits of key2 and c⃗2. More generally, after the i-th refresh call, the
key point is that if the adversary knows the inner product of the first i bits of the input key and
ciphertext, it can track the change in this inner product for the output key and cipher. Tracking
the change requires only two bits of OC leakage. The adversary uses two additional bits of OC
leakage to expand its knowledge to the inner product of the first (i+ 1) bits.

Continuing the above attack for κ refresh calls, the adversary learns the inner product of the
key and ciphertext obtained, i.e. the underlying plaintext is exposed. Note that this used only
O(1) bits of leakage from each sub-computation. If ℓ bits of leakage from each sub-computation
were allowed, then the underlying plaintext would be exposed after O(κ/ℓ) refresh calls. When
using refresh, we will take care that the total leakage accumulated from a sequence of refresh calls
to a key-ciphertext pair will be well under κ bits. Since refresh operates separately on keys and
ciphertexts, the semantic security of LROTP in the presence of multi-source leakage will guarantee
that the underlying plaintext is hidden.

4.3 “Safe” Homomorphic Computations

The LROTP cryptoscheme supports homomorphic computation on ciphertexts as follows:

Homomorphic Addition. For key and two ciphertexts c⃗1, c⃗2, we can homomorphically add by
computing c⃗′ ← (c⃗1 ⊕ c⃗2). By linearity, the plaintext underlying c⃗′ is the XOR of the plaintexts
underlying c⃗1 and c⃗2.

Homomorphic NAND. LROTP supports safe computation of a masked NAND functionality.
This functionality takes three input key-ciphertext pairs, and outputs the NAND of the first two
underlying plaintexts, XORed with the third underlying plaintext. Moreover, this can be performed
via the SafeNAND procedure, which guarantees that even an OC leakage attacker who gets leakage
on the computation, learns nothing about the input plaintexts beyond the procedure’s output. See
Sections 2.2.1 and 6 for details.

We note that this can be extended to “standard” homomorphic computation of NAND, where
the input is two key-ciphertext pairs, and the output is a “blinded” key-ciphertext pair whose
underlying plaintext is the NAND of the plaintexts underlying the inputs. The details are omitted
(this second property follows from the security of SafeNAND , but is not used in our construction).

24

598
Approved for Public Release; Distribution Unlimited.

5 Ciphertext Banks

In this section we present the procedures for maintaining, utilizing, and simulating banks of secure
ciphertexts. We use these to create fresh secure ciphertexts under leakage attacks. The security
property we want is that, even though the generation of new ciphertexts is done under leakage, a
simulator can create an indistinguishable simulated view with complete and arbitrary control over
these ciphertexts’ underlying plaintexts. See Section 2.3.1 for an overview.

This section is organized as follows. In Section 5.1 we describe the ciphertext bank procedures,
and those of the simulator, and state the security properties that will be used in the main construc-
tion (the profs follow in subsequent sections). These procedures make use of secure procedures for
piecemeal matrix multiplication and for refreshing collections of ciphertexts, which are in section
Section 5.2. In Section 5.3 we define piecemeal attacks on matrices and prove that random matrices
are resilient to piecemeal leakage. In Section 5.4 we state and prove security properties of piece-
meal matrix multiplication. Finally, we use these claims to prove the ciphertext bank’s security.
We conclude with proofs of the ciphertext bank’s security in Section 5.5.

5.1 Ciphertext Bank: Interface and Security

We present a full description of the ciphertext bank procedures and simulator. Recall that (as in
Section 4), keys and ciphertexts are vectors in {0, 1}κ, and the decryption of ciphertext c⃗ under
key is the inner product b = ⟨key , c⃗⟩. We call b the plaintext underlying ciphertext c⃗.

Ciphertext Bank Procedures. The ciphertext bank is used to generate fresh ciphertext-key
pairs. The bank is initialized (without leakage) using a BankInit procedure that takes as input a
bit b ∈ {0, 1}. It can then be accessed (repeatedly) using a BankGen procedure, which produces a
key-ciphertext pair whose underlying plaintext is b. Between generations, the bank’s internal state
is updated using a BankUpdate Procedure. Leakage from a sequence of BankGen and BankUpdate
calls can be simulated. The simulator has arbitrary control over the plaintext bits underlying the
generated ciphertexts. Simulated leakage is statistically close to leakage from the real calls.

In addition, we provide a BankRedraw procedure.The BankRedraw procedure re-draws a uni-
formly random plaintext bit that will underly ciphertexts produced by the bank. The redrawn
plaintext bit looks uniformly random even in the presence of leakage on the BankRedraw procedure
(and on all ciphertext generations).

These functionalities are implemented as follows. The ciphertext bank consists of key and a
collection C of 2κ ciphertexts. We view C as a κ× 2κ matrix, whose columns are the ciphertexts.

In the BankInit procedure, on input b, the keys is drawn uniformly at random, and the columns
of C are drawn uniformly at random s.t their inner product with key is b. This invariant will be
maintained throughout the ciphertext bank’s operation. We sometimes refer to b as the ciphertext
bank’s underlying plaintext bit.

The BankGen procedure outputs a linear combination of C’s columns. The linear combination
is chosen uniformly at random s.t. it has parity 1. This guarantees that it will yield a ciphertext
whose underlying plaintext is b. The linear combination is taken using a secure “piecemeal” matrix-
vector multiplication procedure PiecemealMM .

The BankUpdate procedure injects new entropy into key and into C. We refresh the key using
a (“piecemeal”) key refresh procedure PiecemealRefresh. We refresh C by multiplying it with a

25

599
Approved for Public Release; Distribution Unlimited.

random matrix whose columns all have parity 1. Matrix multiplication is again performed securely
using PiecemealMM .

The BankRedraw procedure adds a uniformly random vector in {0, 1}κ to each column of C
(here key is left unchanged). With probability 1/2, the vector has inner product 1 with key , and the
underlying plaintext bit is flipped. Otherwise, the underlying plaintext bit is unchanged. Adding
the vector to each column of the matrix is performed using a secure PiecemealAdd procedure.

The full ciphertext bank procedures are in Figure 3. The piecemeal matrix multiplication,
addition, and key refresh procedures are below in Section 5.2.

BankInit(1κ, b): initializes a ciphertext bank; No leakage

1. pick key ← KeyGen(1κ)

2. for i← 1, . . . 2κ: C[i]← Encrypt(key , b)

3. output Bank ← (key , C)

BankGen(Bank): generates a new ciphertext; Under leakage

1. pick r⃗ ∈R {0, 1}2κ with parity 1

2. c⃗← PiecemealMM (C, r⃗)

3. output (key , c⃗)

BankUpdate(Bank): updates the bank between generations; Under leakage

1. refresh the key:

(key ′, D)← PiecemealRefresh(key , C)

2. refresh the ciphertexts:

pick R ∈R {0, 1}2κ×2κ s.t. its columns all have parity 1,

C ′ ← PiecemealMM (D,R)

3. Bank ← (key ′, C ′)

BankRedraw(Bank): re-draws the bank’s underlying plaintext bit; Under leakage

1. pick v⃗ ∈R {0, 1}κ, compute C ′ ← PiecemealAdd(C, v⃗)

2. Bank ← (key , C ′)

Figure 3: Ciphertext Bank

Simulated Ciphertext Bank. Next, we provide a simulator for simulating the ciphertext bank
procedure, while arbitrarily controlling the plaintext bits underlying the ciphertexts that are pro-
duced. Towards this end, we maintain a simulated ciphertext bank, consisting of a key and a matrix,
similarly to the real ciphertext bank. These are initialized, without leakage, in a SimBankInit pro-
cedure that draws key and the columns of C uniformly at random from {0, 1}κ. Note that here,
unlike in the real ciphertext bank, the plaintexts underlying C’s columns are independent and uni-

26

600
Approved for Public Release; Distribution Unlimited.

formly random bits (rather than all 0 or all 1). The simulator also keeps track of the plaintexts
bits underlying the columns of C, storing them in a vector x⃗ ∈ {0, 1}2κ.

Calls to BankGen are simulated using SimBankGen. This procedure operates similarly to
BankGen, except that it uses a biased linear combination of C’s columns to control the plaintext
underlying its output ciphertext. We also provide SimBankUpdate and SimBankRedraw procedures.
These operate similarly to BankUpdate and BankRedraw , except that they keep track of changes
to the vector x⃗ of plaintext bits underlying C. The simulation procedures are in Figure 4.

SimBankInit(1κ); No leakage

1. pick key ← KeyGen(1κ), x⃗ ∈R {0, 1}2κ

2. for i← 1, . . .m: C[i]← Encrypt(key , x⃗[i])

3. output Bank ← (key , C); Save also x⃗

SimBankGen(Bank , b)

1. pick r⃗ ∈R {0, 1}2κ with parity 1, and s.t. ⟨x⃗, r⃗⟩ = b

2. run exactly as in BankGen, except in Step 1 use the above “biased” r⃗

leakage is (only) on this operation of BankGen (with the biased r⃗)

SimBankUpdate(Bank)

1. run exactly as in BankUpdate

leakage is (only) on this operation of BankUpdate

2. update x⃗ to contain the new bits underlying the updated C

SimBankRedraw(Bank)

1. run exactly as in BankRedraw

leakage is (only) on this operation of BankRedraw

2. update x⃗ to contain the new bits underlying the updated C

Figure 4: Simulated Ciphertext Bank

Ciphertext Bank Security. We show several security properties of the ciphertext bank. In all
of these security properties, we consider sequences of ciphertext bank generations, real or simulated.
A sequence of real generations starts with a call to BankInit to initialize the ciphertext bank. This
is followed by a sequence of ciphertext generations, each performed via a call to BankGen, and
followed by an update call to BankUpdate. A sequence of simulated generations is similar, except
that initialization is performed using SimBankInit , each generation is performed by specifying
an underlying plaintext bit b and then calling SimBankGen, and each update is performed using
SimBankUpdate.

We also consider sequences of random generations of ciphertext-pairs. A sequence of real ran-
dom generations begins with an initialization call to BankInit with a uniformly random bit value.

27

601
Approved for Public Release; Distribution Unlimited.

This is followed by a sequence of generations as follows. For each item in the sequence, we be-
gin by generating a key and two ciphertexts, c⃗α and c⃗β (both with the same underlying plaintext
bit). Next, we call BankRedraw to redraw the bank’s underlying plaintext bit. Lastly, we up-
date the bank using BankUpdate. This is done repeatedly, yielding a sequence of keys and pairs
of ciphertexts, where the plaintext bit underlying each ciphertext pair is independent and uni-
formly random. A sequence of simulated random generations is performed similarly, except that
BankInit ,BankRedraw ,BankUpdate are replaced by SimBankInit ,SimBankRedraw ,SimBankUpdate,
and each pair of calls to BankGen is replaced by a pair of calls to SimBankGen with some specified
plaintext bit b (we will always use the same plaintext bit b in both generations).

We now describe several security properties for sequences of real and simulated generations
and random generations of pairs. Intuitive description are listed below, and the formal lemma
statements follow.

Real and simulated sequences, identical underlying plaintexts. Consider an OC leakage
attacker’s “real” view, given leakage from a real sequence of generations using a bank initialized
with bit b. Consider also a “simulated” view for the same attacker, given leakage from a simulated
sequence of calls, where all calls to SimBankGen specify the same underlying plaintext bit b. I.e., the
plaintexts underlying the ciphertexts generated in these real and simulated views are all identical.
We show that the distributions of the leakage obtained in these two views, in conjunction with the
explicit list of key-ciphertext pairs produced, are statistically close.

This is stated formally in Lemma 5.1 below. The proof is in Section 5.5.

Two simulated sequences, different underlying plaintexts. Consider an OC leakage at-
tacker’s view, given two simulated sequences of generations. The two sequences each produce the
same number of ciphertexts, but differ in the underlying plaintext bits that are specified.

We show that the distributions of leakage obtained in these two views are statistically close. Note
that, unlike the previous property, here statistical closeness does not hold in conjunction with the
explicit keys and ciphertexts produced (since the underlying plaintexts differ). We note also that,
combining this with the previous property, we conclude statistical closeness of leakage distributions
produced by an OC attack on a real sequence and on a simulated sequence with different underlying
plaintexts (leakage only - without the explicit plaintext and ciphertext produced).

This is stated formally in Lemma 5.2 below. The proof is in Section 5.5.

Single simulated sequence, independence up to orthogonality. Consider an OC leakage
attack on a (single) sequence of simulated generations. We show that, given the leakage in the
attack, the (joint) distribution of keys and ciphertexts produced, is independent up to orthogonality
(see Definition 3.10). Moreover, the underlying distributions on keys and ciphertexts depend only
on the leakage (and the adversary), but not on the sequence of bits given as input to the simulated
generations. Finally, these underlying (conditional) distributions have high entropy on each key
and each ciphertext produced.

Intuitively, this means that the keys and ciphertexts produced will be resilient to subsequent
multi-source leakage. I.e., bounded leakage that operates separately on keys and on ciphertexts will
not be able to distinguish the underlying plaintexts. We note that independence up to orthogonality
holds even given the list of ciphertexts in the bank in all generations and all randomness used by
the ciphertext except the randomness for generating the “target” key and ciphertext.

28

602
Approved for Public Release; Distribution Unlimited.

This is stated formally in Lemma 5.3 below. The proof is in Section 5.5.

Real and simulated sequences of random generations. Consider an OC leakage attacker’s
“real” view, given leakage from a real sequence of random generations of ciphertext pairs. Consider
also a “simulated” view for the same attacker, given leakage from a simulated sequence of calls,
where each pair of calls to SimBankGen specify a uniformly random bit (independent of all other
pairs). In particular, the plaintexts underlying the ciphertexts generated in these real and simulated
views are identically distributed (uniformly random for each pair independently). We show that
the distributions of the leakage obtained in these two views, in conjunction with the explicit list of
keys and ciphertext pairs produced, are statistically close.

This is stated formally in Lemma 5.4 below. This is similar to the guarantee of Lemma 5.1 and
we omit the proof.

Single simulated sequence of random generations, independence up to orthogonality.
Consider an OC leakage attack on a (single) sequence of simulated random generations of pairs of
ciphertexts. We show that, given the leakage in the attack, the (joint) distribution of keys and
ciphertexts produced, is independent up to orthogonality (see Definition 3.10). Moreover, the under-
lying distributions on keys and ciphertexts depend only on the leakage (and the adversary), but not
on the sequence of underlying plaintext bits. Finally, these underlying (conditional) distributions
have high entropy on each key and each ciphertext produced.

Intuitively, this means that the keys and ciphertexts produced will be resilient to subsequent
multi-source leakage. I.e., bounded leakage that operates separately on keys and on ciphertexts
will not be able to distinguish the underlying plaintexts. Moreover, within each pair of ciphertexts,
independence up to orthogonality for the key and each ciphertext separately continues to hold
even if the other ciphertext in the pair is released in its entirety. We note that, as was the case
above, independence up to orthogonality holds even given the list of ciphertexts in the bank in all
generations and all randomness used by the ciphertext except the randomness for generating the
“target” key and ciphertext.

This is stated formally in Lemma 5.5 below. The guarantee is quite similar to that of Lemma
5.3 and we omit the proof.

Lemma 5.1. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any bit b ∈ {0, 1}, security parameter κ ∈ N, execution bound T = poly(κ), and (computa-
tionally unbounded) leakage adversary A:

Let Real and Simulated be as follows, where in Real we begin by running Bank0 ← BankInit(b),

29

603
Approved for Public Release; Distribution Unlimited.

and in Simulated we begin by running Bank0 ← SimBankInit (both without leakage):

Real = A
{
((key0, c⃗0)← BankGen(Bank0))

λ(κ),

(Bank1 ← BankUpdate(Bank0))
λ(κ), key0, c⃗0,

((key1, c⃗1)← BankGen(Bank1))
λ(κ),

(Bank2 ← BankUpdate(Bank1))
λ(κ), key1, c⃗1,

. . .

((keyT−1, c⃗T−1)← BankGen(BankT−1))
λ(κ),

(BankT ← BankUpdate(BankT−1))
λ(κ), keyT−1, c⃗T−1

}
Simulated = A

{
((key0, c⃗0)← SimBankGen(Bank0, b))

λ(κ),

(Bank1 ← SimBankUpdate(Bank0))
λ(κ), key0, c⃗0,

((key1, c⃗1)← SimBankGen(Bank1, b))
λ(κ),

(Bank2 ← SimBankUpdate(Bank1))
λ(κ), key1, c⃗1,

. . .

((keyT−1, c⃗T−1)← SimBankGen(BankT−1, b))
λ(κ),

(BankT ← SimBankUpdate(BankT−1))
λ(κ), keyT−1, c⃗T−1

}
then ∆(Real ,Simulated) = δ(κ).

Lemma 5.2. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any security parameter κ ∈ N, any execution bound T = poly(κ), any vectors b⃗′, b⃗′′ ∈ {0, 1}T ,
and any (computationally unbounded) leakage adversary A:

Let Simulated ′ and Simulated ′′ be the following two distributions, where in both distributions we

30

604
Approved for Public Release; Distribution Unlimited.

begin by running Bank0 ← SimBankInit (without leakage):

Simulated ′ = Aλ(κ)
{
[(key0, c⃗0)← SimBankGen(Bank0, b⃗

′[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1)← SimBankGen(Bank1, b⃗
′[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . .

[(keyT−1, c⃗T−1)← SimBankGen(BankT−1, b⃗
′[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

Simulated ′′ = Aλ(κ)
{
[(key0, c⃗0,Bank1)← SimBankGen(Bank0, b⃗

′′[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1,Bank2)← SimBankGen(Bank1, b⃗
′′[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . .

[(keyT−1, c⃗T−1,BankT)← SimBankGen(BankT−1, b⃗
′′[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

then ∆(Simulated ′,Simulated ′′) = δ(κ).

Lemma 5.3. There exists a leakage bound λ(κ) = Ω(κ), and a probability bound δ(κ) = exp(−Ω(κ)),
s.t. for any κ ∈ N, any execution bound T = poly(κ), any vector b⃗ ∈ {0, 1}T , and any (computa-
tionally unbounded) leakage adversary A, the following holds:

Let Simulated be the following distribution, where we begin by running Bank0 ← SimBankInit
(without leakage):

Simulated = Aλ(κ)
{
[(key0, c⃗0)← SimBankGen(Bank0, b⃗[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1)← SimBankGen(Bank1, b⃗[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . . ,

[(keyT−1, c⃗T−1)← SimBankGen(BankT−1, b⃗[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

For any w in the support of Simulated, and for any i ∈ [T], fixing all ciphertexts except the
i-th pair produced, let Di(w) be the joint distribution of (key i, c⃗i) given w and the remaining T − 1
ciphertexts. There exist distributions Ki(w) and Ci(w) s.t. the following holds:7

The distribution Di(w) is IuO with orthogonality b⃗[i] and underlying distributions Ki(w) and
Ci(w). With all but δ(κ) probability over the choice (by Simulated) of w and of all ciphertexts except
the i-th, the min-entropy of Ki(w) and of Ci(w) is at least κ−O(λ(κ)).

7Note that these distributions do not depend on b⃗i (they depend only on w, on A and on the T − 1 remaining
ciphertexts).

31

605
Approved for Public Release; Distribution Unlimited.

Lemma 5.4. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any security parameter κ ∈ N, execution bound T = poly(κ), and (computationally un-
bounded) leakage adversary A:

Let Real and Simulated be as follows. Choose b⃗ ∈R {0, 1}T . In Real, we begin by running
Bank0 ← BankInit (⃗b[0]). In Simulated we begin by running Bank0 ← SimBankInit:

Real = A
{
((key0, c⃗

α
0)← BankGen(Bank0))

λ(κ), (key0, c⃗
β
0 ← BankGen(Bank0))

λ(κ),

(Bank ′0 ← BankRedraw(Bank0))
λ(κ), (Bank1 ← BankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1)← BankGen(Bank1))

λ(κ), ((key1, c⃗
β
1)← BankGen(Bank1))

λ(κ)

(Bank ′1 ← BankRedraw(Bank1))
λ(κ), (λ(κ)Bank2 ← BankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← BankGen(BankT−1))

λ(κ), ((keyT−1, c⃗
β
T−1)← BankGen(BankT−1))

λ(κ),

(Bank ′T−1 ← BankRedraw(BankT−1))
λ(κ), (BankT ← BankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
Simulated = A

{
((key0, c⃗

α
0)← SimBankGen(Bank0, b⃗[0]))

λ(κ), (key0, c⃗
β
0 ← SimBankGen(Bank0, b⃗[0]))

λ(κ),

(Bank ′0 ← SimBankRedraw(Bank0))
λ(κ), (Bank1 ← SimBankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1)← SimBankGen(Bank1, b⃗[1]))

λ(κ), ((key1, c⃗
β
1)← SimBankGen(Bank1), b⃗[1])

λ(κ)

(Bank ′1 ← SimBankRedraw(Bank1))
λ(κ), (Bank2 ← SimBankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

((keyT−1, c⃗
β
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

(Bank ′T−1 ← SimBankRedraw(BankT−1))
λ(κ), (BankT ← SimBankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
then ∆(Real ,Simulated) = δ(κ).

Lemma 5.5. There exists a leakage bound λ(κ) = Ω(κ), and a probability bound δ(κ) = exp(−Ω(κ)),
s.t. for any κ ∈ N, any execution bound T = poly(κ), any vector b⃗ ∈ {0, 1}T , and any (computa-
tionally unbounded) leakage adversary A, the following holds:

32

606
Approved for Public Release; Distribution Unlimited.

Let Simulated be the following distribution, where we begin by running Bank0 ← SimBankInit:

Simulated = A
{
((key0, c⃗

α
0)← SimBankGen(Bank0, b⃗[0]))

λ(κ), (key0, c⃗
β
0 ← SimBankGen(Bank0, b⃗[0]))

λ(κ),

(Bank ′0 ← SimBankRedraw(Bank0))
λ(κ), (Bank1 ← SimBankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1)← SimBankGen(Bank1, b⃗[1]))

λ(κ), ((key1, c⃗
β
1)← SimBankGen(Bank1), b⃗[1])

λ(κ)

(Bank ′1 ← SimBankRedraw(Bank1))
λ(κ), (Bank2 ← SimBankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

((keyT−1, c⃗
β
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

(Bank ′T−1 ← SimBankRedraw(BankT−1))
λ(κ), (BankT ← SimBankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
For any w in the support of Simulated, and for any i ∈ [T], fixing all ciphertexts except the

i-th pair, let Dα
i (w) and Dβ

i (w) be the joint distribution of (key i, c⃗
α
i) and (key i, c⃗

β
i) (respectively)

given: w, the remaining T − 1 keys and ciphertext pairs, and (respectively) c⃗βi and ⟨key i, c⃗
β
i ⟩, or c⃗αi

and ⟨key i, c⃗αi ⟩. Then there exist distributions Kα
i (w), Cαi (w) and Kβ

i (w), C
β
i (w) s.t. the following

holds:8

The distributions Dα
i (w) and D

β
i (w) are both IuO with orthogonality b⃗[i] and underlying distri-

butions Kα
i (w) and Cαi (w) or Kβ

i (w) and Cβi (w) (respectively). With all but δ(κ) probability over
the choice (by Simulated) of the fixed values, the min-entropies of all these underlying distributions
are at least κ−O(λ(κ)).

5.2 Piecemeal Matrix Computations

Recall that we treat collections of ciphertexts as matrices, where each column of the matrix is
a ciphertext. We refer to the procedures in this section as “piecemeal”, because they access the
matrices by dividing them into “pieces” or “sketches”, and loading each piece (or sketch) into
memory separately. Each piece/sketch is a collection of linear combinations of the matrix’s columns.
We refer to these as pieces (rather than sketches) throughout this section.

We present piecemeal procedures for matrix multiplication, for refreshing the key under which
the ciphertexts in a matrix’s columns are encrypted, and for adding a vector to the columns of a
matrix (we refer to this as matrix-vector addition). We show that these procedures have several
security properties under leakage attacks. In all these procedures, no matrix is ever loaded into
memory in its entirety. Rather, the matrices are only accessed in a piecemeal manner.

As an (important) example for why this facilitates security, consider the rank of a matrix on
which we are computing. If this matrix is loaded into memory in its entirety, then a leakage
adversary can compute its rank. If, however, only “pieces” of the matrix are loaded into memory

8Note that these distributions do not depend on b⃗i (they depend only on w, on A, on the T − 1 remaining
key-ciphertext pairs, and on the additional i-th ciphertext (c⃗βi or c⃗αi respectively).

33

607
Approved for Public Release; Distribution Unlimited.

at any once time, then it is no longer clear how a leakage adversary can compute the rank. In fact,
we will show that (under the appropriate matrix distribution), as long as the matrix is accessed in
a piecemeal fashion, its rank is completely hidden, even from a computationally unbounded leakage
adversary. This fact will be used extensively in our security proofs. See the subsequent sections for
security properties and proofs.

PiecemealMM (A,B): multiplies matrices A ∈ {0, 1}κ×m and B ∈ {0, 1}m×n; Under leakage

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix, and BT = [BT
1 , . . . , B

T
b], where each Bj

is an m× ℓ matrix. Further parse each BT
i = [BT

i,1, . . . , B
T
i,a], where each Bi,j is an ℓ× ℓ matrix.

1. For i← 1, . . . , b:

(a) Set D0 = 0̄

(b) For j ← 1, . . . , a: Dj ← Dj−1 + (Aj × Bi,j); leakage on each tuple (Dj−1, Aj , Bi,j)
separately

(c) Ci ← Da

2. Output the product matrix C = [C1, . . . , Cb]

Figure 5: Piecemeal Matrix Multiplication for κ, ℓ ∈ N

PiecemealRefresh(key , A): refreshes the key for matrix A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix.

1. σ ← KeyEntGen(1κ)

2. for i← 1 . . . a: A′
i ← CipherCorrelate(Ai, σ); leakage on (Ai, σ) for each i separately

3. key ′ ← KeyRefresh(key , σ); leakage on (key , σ)

4. Output key and the refreshed matrix A′ = [A′
1, . . . , A

′
a]

Figure 6: Piecemeal Matrix Refresh for κ, ℓ ∈ N

PiecemealAdd(A, v⃗): adds v⃗ ∈ {0, 1}κ to each column of A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix.

1. for i← 1 . . . a, j ← 1 . . . ℓ: A′
i[ℓ]← Ai[ℓ] + v⃗; leakage on (Ai, v⃗) for each i separately

2. A′ = [A′
1, . . . , A

′
a]

Figure 7: Piecemeal Matrix Addition for κ, ℓ ∈ N

5.3 Piecemeal Leakage Attacks on Matrices and Vectors

In this section, we define “piecemeal leakage attacks” on matrices. In particular, these attacks
capture the leakage that can be computed via a leakage attack on the piecemeal matrix procedures

34

608
Approved for Public Release; Distribution Unlimited.

(multiplication, refresh, and matrix-vector addition). We prove then that random matrices are
resilient to several flavors of such piecemeal attacks.

Attack on a Matrix. A piecemeal leakage attack on a matrix, is a multi-source leakage attack,
where the sources are key and (one or many) “pieces” of the matrix. Recall that each “piece” here
is a collection of linear combinations of the matrix columns. See Definition 5.6 below. We focus
here on the case where the matrix is either independent of key , or has columns orthogonal to key
(as is the case for a ciphertext bank corresponding to underlying plaintext bit 0). The case where
the columns have inner product 1 with key is handled similarly.

We will show that a random matrix M is resilient to piecemeal leakage: the leakage computed
in such an attack is statistically close when (i) the columns of M are all in the kernel of key , (ii) M
is a uniformly random matrix, and (iii) M is a uniformly random matrix of rank κ−1 (independent
of key). Moreover, this statistical closeness holds even if key is later exposed in it’s entirety. We
begin in Section 5.3.1 with a warmup for the case of an attack on a single piece (Lemma 5.8). We
then show security for large number of pieces in Section 5.3.2 (Lemma 5.10).

Definition 5.6 (Piecemeal Leakage Attack on (key ,M)). Take a, κ, λ, ℓ,m ∈ N. Let L⃗in =
(Lin1, . . . ,Lina) be a sequence of (one or more) matrices, where for each Lini, its columns each
specify the coefficients of a linear combination of the rows of M . Thus, for M ∈ {0, 1}κ×m and
Lini ∈ {0, 1}m×ℓ, the matrix piece M×Lini is a collection of ℓ linear combinations of M ’s columns.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several matrices in
{0, 1}κ×ℓ (each matrix is M × Lini for some i). We denote A’s output by:

Aλ
κ,ℓ,m,L⃗in

(key ,M) , Aλ(1κ)[key]{(M × Lin1), . . . , (M × Lina)}

we refer to A as a “piecemeal adversary” operating on (key ,M). We omit κ, λ, ℓ,m and L⃗in when
they are clear from the context.

Attack on a Matrix and Vector. We extend these results further, considering piecemeal leak-
age that operates separately on key , and on pieces of a matrix M (as before), each piece jointly
with a vector v⃗. See Definition 5.7 below.

We show that, for a matrix M with columns in the kernel of key , the leakage computed in such
an attack is statistically close when (i) the vector v⃗ is in the kernel of key , and (ii) the vector v⃗ is
not in the kernel of key . Moreover, this statistical closeness holds even if key is later exposed in its
entirety (as above) and also M is later exposed in its entirety. See Section 5.3.3 and Lemma 5.15.

Definition 5.7 (Piecemeal Leakage Attack on (key , (M, v⃗))). Take a, κ, λ, ℓ,m ∈ N. Let L⃗in =
(Lin1, . . . ,Lina) be a sequence of matrices, where for each Lini, its columns each specify the
coefficients of a linear combination of the rows of M as in Definition 5.6.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several matrices
in {0, 1}κ×ℓ (as in Definition 5.6), each matrix jointly with a vector v⃗ ∈ {0, 1}κ. We denote A’s
output by:

Aλ
κ,ℓ,m,L⃗in

(key , (M, v⃗)) , Aλ(1κ)[key]{((M × Lin1) ◦ v⃗), . . . , ((M × Lina) ◦ v⃗)}

we refer to A as a “piecemeal adversary” operating on (key , (M, v⃗)). We omit κ, λ, ℓ,m and L⃗in
when they are clear from the context.

35

609
Approved for Public Release; Distribution Unlimited.

5.3.1 Piecemeal Leakage Resilience: One Piece

We begin by showing that, for a uniformly random key ∈ {0, 1}κ, and a matrix M , given separate
leakage from key and from a single piece of the matrix, the following two cases induce statistically
close distributions. In the first case, the matrix M is uniformly random with columns in the kernel
of key . In the second case, M is a uniformly random matrix of rank κ − 1 (independent of key).
By a “single piece” of M we mean any (adversarially chosen) collection of ℓ linear combinations of
vectors from M , where here we take ℓ = 0.1κ. This result, stated in Lemma 5.8, is a warm-up for
the results in later sections.

Lemma 5.8 (Matrices are Resilient to Piecemeal Leakage with One Piece). Take κ,m ∈ N where
m ≥ κ. Fix ℓ = 0.1κ and λ = 0.05κ. Let Lin ∈ {0, 1}m×ℓ be any collection of coefficients for ℓ
linear combinations, and A be any piecemeal leakage adversary. Take Real and Simulated to be the
following two distributions:

Real =
(
key ,Aλ

κ,ℓ,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key)

Simulated =
(
key ,Aλ

κ,ℓ,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1

then ∆(Real ,Simulated) ≤ 2m · 2−0.2κ.

Remark 5.9. We note that, without any leakage access to key (i.e. given only leakage from the
chosen piece of M), a qualitatively similar result to Lemma 5.8 can be derived from a Lemma
of Brakerski et al. [BKKV10] on the leakage resilience of random linear subspaces. Their work
focused on the more challenging setting where the leakage operates on vectors that are drawn from
a low-dimensional subspace (e.g. constant dimension). .

Proof of Lemma 5.8. The proof is by a hybrid argument over the matrix columns. For i ∈ {0, . . . ,m},
let Hi be the i-th hybrid, where the view is as above but using a matrix M drawn s.t. the first i
columns of Mi are uniformly random in the kernel of key , and the last m− i columns are uniformly
random s.t. rank(M) = κ− 1. We show that for all i, ∆(Hi,Hi+1) ≤ 2 · 2−0.2κ. The lemma follows
because H0 = Simulated and Hm = Real .

We show that the hybrids are close by giving a reduction from the task of predicting the inner
product of two vectors under multi-source leakage, to the task of distinguishing Hi and Hi+1. Since
the inner product cannot be predicted under multi-source leakage (by Lemma 3.7), we conclude
that the hybrids are statistically close.

To set up the reduction, first fix i. Draw a uniformly random matrix M ∈ {0, 1}κ×m of rank
κ−1. Let v⃗ be the (i+1)-th column of M .Let M−(i+1) be the matrix M with the (i+1)-th column
set to 0. Now draw key ∈ {0, 1}κ s.t key is orthogonal to the first i columns in M−(i+1).

We show a reduction from predicting the inner product ⟨key , v⃗⟩ given multi-source leakage and
(M−(i+1) × Lin), to distinguishing Hi and Hi+1. This is done by running A(key ,M) on key and
on the matrix M drawn above. The reduction computes A’s (multi-source) leakage on key using
multi-source leakage from key . A’s (multi-source) leakage from M ×Lin is computed using leakage
from v⃗ (since Lin and M−(i+1)×Lin are “public”). Note now that the joint distribution of (key ,M)
is exactly as in Hi. If, however, we condition on the inner product of key and v⃗ being 0, we get that
the joint distribution of (key ,M) is exactly as in Hi+1. Thus, if A has advantage δ in distinguishing
Hi and Hi+1, then the reduction has advantage δ in distinguishing the case that the inner product
of key and v⃗ is 0 from the case that there is no restriction on the inner product.

36

610
Approved for Public Release; Distribution Unlimited.

Now observe that, given (M−(i+1)×Lin), the vector key is a random variable with min-entropy
at least κ− ℓ ≥ 0.9κ. This is because key is uniformly random under the restriction that it is in the
kernel of the first i columns of M . The matrix piece (M−(i+1)×Lin) contains only ℓ = 0.1κ vectors,
and so it cannot give more than ℓ bits of information on key . Note also that, given (M−(i+1)×Lin),
the (i+ 1)-th column v⃗ is independent of key , and also v⃗ has min entropy at least (κ− 1) (in fact
v⃗ has high min entropy even given all of M−(i+1).

The reduction uses λ = 0.05κ bits of multi-source leakage, and so by lemma 3.8 with all but
2−0.2κ probability, even given the leakage key and v⃗ are still independent random sources, both
with min entropy at least 0.7κ. When this is the case, by lemma 3.7 we know that, even given key ,
the inner product of key and v⃗ is 2−0.2κ-close to uniform. We conclude that δ ≤ 2 · 2−0.2κ. The
lemma follows.

5.3.2 Piecemeal Leakage Resilience: Many Pieces

In this section, we show our main technical result regarding piecemeal matrix leakage. We show
that random matrices are resilient to piecemeal leakage on multiple pieces of the matrix (operating
separately on each piece). In particular, the leakage is statistically close in the case where the
matrix is one whose columns are all orthogonal to key and in the case where the matrix is uniformly
random. Moreover, this remains true even if key is later exposed in its entirety.

Lemma 5.10 (Matrices are Resilient to Piecemeal Leakage with Many Pieces). Take a, κ,m ∈ N,
where m ≥ κ. Fix ℓ = 0.1κ, and λ = 0.05κ/a. Let L⃗in = (Lin1, . . . ,Lina) be any sequence of
collections of coefficients for linear combinations, where for each i, Lini ∈ {0, 1}m×ℓ has full rank
ℓ. Let A be any piecemeal leakage adversary. Take Real and Simulated to be the following two
distributions:

Real =
(
key ,Aλ

κ,ℓ,m,L⃗in
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key)

Simulated =
(
key ,Aλ

κ,ℓ,m,L⃗in
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1

then ∆(Real ,Simulated) ≤ 5a2 · 2−0.04κ/a.

Proof. For i ∈ {0, . . . , a}, we denote Pi = M ×Lini the matrix “piece” being leaked on/attacked in
the i-th part of the attack. We use wi to denote the leakage accumulated by A up to and including
the i-th attack. We will consider Vi, the conditional distribution on (key,M), drawn as in Real ,
given the leakage wi. Namely, in V0 we have key drawn uniformly at random and M is random
with columns in kernel(key). Note that the random variables key and M , when drawn by Vi, are
not independent. In particular, key and the columns of M are orthogonal. Let Ki andMi be the
marginal distributions of Vi on key and on M .

Hybrids. We will prove Lemma 5.10 using a hybrid argument. For i ∈ {0, . . . , a}, we define
a hybrid distribution Hi. Each hybrid’s output domain will be key ∈ {0, 1}κ and leakage values
computed by A(key ,M).

For each i, we define Hi by drawing (key ,M) ∼ V0, and simulating the piecemeal leakage attack
A(key ,M). We always use key for computing the key leakage in the attack. For leakage on the
j-th matrix piece, however, we use Pj ’s drawn differently for each Hi:

37

611
Approved for Public Release; Distribution Unlimited.

• For j ∈ {1, . . . , i}, we define Pj = (M× Linj).

• For j ∈ {i + 1, . . . a}, re-draw Mj ∼ Mj−1. I.e., we re-draw the matrix from the current
marginal distribution of Vj−1 on M , independently of key . Define Pj = (Mj × Linj).

Clearly, Ha = Real , because in Ha we never compute leakage on a re-drawn matrix Mj . We will
show that H0 = Simulated , see Claim 5.11. Note that this is non-trivial because in H0 the matrix
M is continually re-drawn from Mj (independently of key), whereas in Simulated the matrix M is
never redrawn. Nonetheless, Claim 5.11 below shows that, because the leakage operates separately
on key and on M , these two distributions are identical.

Claim 5.11. H0 = Simulated

Proof of Claim 5.11. Fix leakage wj for the first j attacks on pieces of M . In the distribution H0,
for the (j + 1)-th matrix piece, we use Pj+1 = Mj+1 × Linj+1, where Mj+1 is re-drawn from the
marginal distributionMj .

In the distribution Simulated , on the other hand, we use Pj+1 = M×Linj+1, where M is drawn
fromM′j , the distribution of uniformly random M ’s of rank κ− 1 (independent of key), given that
the multi-source leakage so far was wj .

Other than this difference, the distributions are identical. Thus, it suffices to show that, for
every j and every fixed leakage wj in the first j attacks, we have thatMj =M′j .

The leakage in the first j attacks operates separately on key and on M . Thus, we know that
conditioning the joint distribution V0 on wj , is equivalent to conditioning V0 on (key ,M) falling in
a product set. Let Skey ⊆ {0, 1}κ and SM ⊆ {0, 1}κ×2κ be the sets s.t. for all (key ,M) ∈ Skey×SM ,
the leakage on the first j pieces in a piecemeal attack on (key ,M) equals wj . Now we know that
Mj is exactly equal toM0, conditioned on M falling in the set SM .

Similarly, in Simulated the distributionM′j is the uniform distribution on rank κ− 1 matrices,
conditioned on the leakage wj , i.e. on M falling in the set SM . SinceM0 is uniform on rank κ− 1
matrices, for any wj we get thatMj =M′j . The claim follows.

To complete the proof of Lemma 5.10, we will show that ∆(Hi,Hi+1) ≤ 4m · 2−0.04κ/a. The
lemma follows by a hybrid argument. For this, consider the joint distribution of key , and of
the leakage wi+1 computed on the first (i + 1) pieces. We will show that the joint distribution is
statistically close in both hybrids. This suffices to show that the hybrids themselves are statistically
close, because, for both hybrids, the leakage on pieces ((i + 2), . . . , a), and the remaining leakage
on key , can be computed as a function of (key , wi+1) (the same function for both hybrids).

In both Hi,Hi+1, leakage on the first i pieces is computed in exactly the same way. The
difference is in leakage on the (i+1)-th piece. Fixing the leakage wi on the first i pieces, in Hi+1 we
have Pi+1 computed using dependent (key ,M) ∼ Vi. In Hi we use independent key ∼ Ki,M ∼Mi.
These two different distributions yield different leakage w on the (i+ 1)-th piece.

Piecemeal Leakage from IuO Distributions. key and M drawn (jointly) by Vi are not inde-
pendent. In general, for a dependant distribution Vi on key and M with marginal distributions Ki

andMi, leakage on (key ,M) ∼ Vi could looks very different from leakage on (key ∼ Ki,M ∼Mi).
We will show, however, that piecemeal leakage resilience does hold in a special case where the joint
distribution Vi is independent up to orthogonality (IuO, see Definition 3.10). We will also show it
holds when Vi is statistically close to IuO, as defined below.

38

612
Approved for Public Release; Distribution Unlimited.

Definition 5.12 (Key-Matrix α-Independence up to Orthogonality). Let V be a distribution on
pairs (key ,M), where key ∈ {0, 1}κ,M ∈ {0, 1}κ×2κ and M is always of rank κ − 1. We say that
V is α-independent up to orthogonality, if there exists distribution V ′ that is independent up to
orthogonality and ∆(V,V ′) ≤ α.

We will show that piecemeal leakage on an IuO distribution is statistically close to piecemeal
leakage when key and M are sampled from the independently drawn variant, see Claim 5.13 below.
We also show that Vi is (w.h.p over wi) an IoU distribution, see Claim 5.14. Statistical closeness
of the hybrids Hi and Hi+1 follows.

Claim 5.13. Take a, κ,m, ℓ, λ as in Lemma 5.10. Let V be any distribution over pairs (key ,M),
where key ∈ {0, 1}κ,M ∈ {0, 1}κ×m and M has rank κ− 1. Suppose that V is IuO, with underlying
distributions K andM. Suppose further that V has min-entropy at least (κ+ (κ− 1) · 2κ− 0.15κ).

Let Lin ∈ {0, 1}m×ℓ be a collection of coefficients for linear combinations, specified by a matrix
of rank ℓ. Let A be any piecemeal leakage adversary. Take D and F to be the following distributions:

D = (key , w)(key,M)∼V,w←A(key,M)

F = (key , w)key∼K,M∼M,w←A(key,M)

Take δ = (4ℓ · 2−0.05κ). Then ∆(D,F) ≤ 2δ. Moreover, with all but δ probability over w ∼ D, we
have that ∆((D|A(key ,M) = w), (F |A(key ,M) = w)) ≤ δ.

The proof of Claim 5.13 is below.

Claim 5.14. Take a, κ, ℓ, λ,V, L,A as in Claim 5.13. Suppose here that V: (i) has min-entropy
at least (κ + (κ − 1) · 2κ − 0.15κ) (as in Claim 5.13), and (ii) is α-close to independence up to
orthogonality (see Definition 5.12). Define the distribution:

V(w) = (key ,M)(key,M)∼V:A(key,M)=w

and take δ = (4ℓ · 2−0.05κ). For any 0 < β < 1, with all but (β + δ) probability over w ←
A(key ,M)(key,M)∼V it is the case that V(w) is ((α/β)+δ)-close to independence up to orthogonality.

The proof of Claim 5.14 is below. We now complete the proof of Lemma 5.10:

1. With all but 2−0.05κ probability over wi, for all j ≤ i simultaneously, the min-entropy of Vj
is at least κ + (κ − 1) · 2κ − 0.15κ. This is by Lemma 3.8, because the min-entropy of V0 is
κ+ (κ− 1) · 2κ, and the amount of leakage in the first i ≤ a attacks (leakage from both key
and M) is less than 0.1κ.

2. Take δ = (4ℓ · 2−0.05κ), β = 2−0.04κ/a. We show the following by induction for j ≤ i:

with all but (2−0.05κ + j · (δ + β)) probability over wi, we have that Vj is (2δ/βj)-close to
independence up to orthogonality (and also the min entropy bound of Item 1 holds). The
induction basis follows because V0 is perfectly independent up to orthogonality. The induction
step follows from Claim 5.14 (and the min-entropy bound in Item 1).

Finally, we use Claim 5.13 to conclude that with all but (2−0.05κ + i · (δ + β)) probability over
wi, the hybrids Hi and Hi+1 are (2δ/βi + 2δ)-statistically close. In particular, this implies that

∆(Hi,Hi+1) ≤ (2−0.05κ + i · (δ + β)) + (2δ/βi) + 2δ) ≤ 5a · 2−0.04κ/a

where the second inequality assumes i · β is the largest term in the sum (and using i ≤ a).

39

613
Approved for Public Release; Distribution Unlimited.

Proof of Claim 5.13. The proof is by a hybrid argument. We denote P = M × L. For i ∈ [a+ 1],
take the i-th hybrid Hi to be:

Hi = (key , w)M∼M,P←M×L,key∼(K|P [1],...,P [i]),w←A(key,P)

i.e. the key is drawn from a conditional distribution on K, conditioning on the first i columns of P .
We get thatH0 = F , because key is drawn without conditioning on any columns (i.e. independently
of M). Also Hℓ = D, because key is re-drawn conditioned on all of P , which is the same as just
drawing (key ,M) ∼ V and taking P = M × L.

For each pair of hybrids, we bound ∆(Hi,Hi+1). To do so, consider the following experiment:
draw (P [1], . . . , P [i]) ∼M (as in both Hi and Hi+1). Fixing these draws, in Hi the distribution of
P [i + 1] is an random sample from Pi = (P [i + 1]M∼M|P [1],...,P [i]). Similarly, in Hi we have that
key is a random sample from Ki = (K|P [1], . . . , P [i]). In particular, note that key is independent
of P [i+ 1].

We now examine H+
i , obtained from Hi by including also the inner product of key and P [i+1].

We can also consider HR
i , obtained from Hi by adding a uniformly random bit:

H+
i = (key , ⟨key , P [i+ 1]⟩, w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [ℓ])∼(M|P [1],...,P [i+1])),w←A(key,P)

HR
i = (key , r , w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [ℓ])∼(M|P [1],...,P [i+1])),w←A(key,P),r∈R{0,1}

We will show that ∆(Hi,Hi+1) ≤ 2∆(H+
i ,HR

i). To show this, consider now Hi+1. Again,
P [i+1] is an independent sample from Pi (as in Hi). Here, however, we have that key depends on
P [i+ 1] and is a sample from Ki+1 = (K|w,P [1], . . . , P [i],P[i+ 1]). Since V is independent up to
orthogonality, we have:

Ki+1 = (key , P [1], . . . , P [i], P [i+ 1])(key,M)∼V,P←M×L

= (key , P [1], . . . , P [i], ⟨key ,P[i+ 1]⟩ = 0)(key,M)∼V,P←M×L

given (key , P [1], . . . , P [i + 1]), the marginal distributions of (P [i + 2], . . . , P [ℓ]) and of w in Hi+1

are identical to Hi. Thus, the only difference between Hi and Hi+1 is that in Hi+1 we add an extra
condition on key to be in the kernel of P [i+ 1].

Re-examining H+
i , by definition Hi is the marginal distribution of H+

i on (key , w). We now
conclude also that Hi+1 is the marginal distribution on (key , w) in H+

i conditioned on ⟨key , P [i+
1]⟩ = 0. Thus ∆(Hi,Hi+1) ≤ 2∆(H+

i ,HR
i).

It remains to bound ∆(H+
i ,HR

i). We know that in both these distributions, given (P [1], . . . , P [i])
(without w), we have that key and P [i+ 1] are drawn independently and the joint distribution of
(key , P [i+1]) has entropy at least (1.85κ− i) ≥ 1.75κ. This is simply by the min-entropy of V. By
Lemma 3.8, with all but 2−0.05κ probability over the choice of w, the min-entropy of (key , P [i+1])
given also w (of length at most 0.1κ) is at least 1.6κ.

We conclude, by Lemma 3.7, that with all but 2−0.05κ probability over w ∼ Hi, it is the case
that with all but 2−0.05κ probability over key conditioned on w, the inner product of key and
P [i + 1] (given (key , w)) is 2−0.05κ-close to uniform. In particular, when this is the case, with all
but 2 · 2−0.05κ probability over (key , w) ∼ Hi, we have that the probabilities of (key , w) by Hi and
by Hi+1 differ by at most a exp(1.5 · 2−0.05κ) multiplicative factor. The claim follows.

40

614
Approved for Public Release; Distribution Unlimited.

Proof of Claim 5.14. V is α-close to IuO. Let V ′ be an IuO distribution s.t. ∆(V,V ′) ≤ α. Let K′
andM′ be the marginal distributions of V ′ on key and M (respectively). Now take:

Z ′ , (key ,M,w)(key,M)∼V′, w←A(key,M),

= (key ,M, w)(key,M′)∼V ′, w←A(key,M ′),M∼(M′|key,A(key,M)=w)

Z ′′ , (key ,M, w)key∼K′,M′∼M′,w←A(key,M ′),M∼(M′|key,A(key,M)=w)

Let Z ′(w) and Z ′′(w) be the marginal distributions of Z ′ and Z ′′ (respectively) on (key ,M),
conditioned on A(key ,M) = w. Note that Z ′(w) is also the conditional distribution of V ′ (condi-
tioned on w). By Claim 5.13, we know that with all but δ probability over w ∼ Z ′ we have that
∆(Z ′(w),Z ′′(w)) ≤ δ. Claim 5.13 shows this is true for the marginal distributions on (key , w), but
in Z ′ and Z ′′, the matrix M is just a probabilistic function of (key , w), and so the bound on the
statistical distance holds also when M is added to the output.

We claim that (for any w), the distribution Z ′′(w) is (perfectly) independent up to orthogonality.
This is because in Z ′′, the leakage w is computed as multi-source leakage on independently drawn
key and M . Thus, conditioning Z ′′ on w is conditioning Z ′′ on (key ,M) falling in a product set
Skey × SM . We know that Z ′′ is (perfectly) independent up to orthogonality, and so conditioning
Z ′′ on a product set Skey×SM will also yield a distribution that is independent up to orthogonality.

We conclude that, with all but δ probability over w ∼ Z ′, we have that ∆(Z ′(w),Z ′′(w)) ≤
δ and Z ′′(w) is independent up to orthogonality. Let Wbad be the set of “bad” w’s for which
∆(Z ′(w),Z ′′(w)) > δ. Since ∆(V,V ′) ≤ α, we know that:

Prw∼V [w ∈Wbad] ≤ α+ δ

Prw∼V [∆(V(w),V ′(w)) ≥ (α/β)] ≤ β

where the second equation follows by Markov’s inequality. We conclude (by a union bound, and
since V ′(w) = Z ′(w)), that with all but (α + β + δ) probability over w ∼ V, we have that V(w) is
((α/β) + δ)-close to Z ′′(w) and to independence up to orthogonality.

5.3.3 Piecemeal Leakage Resilience: Jointly with a Vector

In this section, we show further security properties of random matrices under piecemeal leakage.
We focus on piecemeal leakage that operates jointly on (each piece of) a matrix and a vector (and
separately on key). The matrix will always have columns that are (random) in the kernel of key .
We show that the leakage is statistically close in the cases where the vector is and is not in the
kernel. Moreover, this statistical closeness is strong and holds even if the matrix is later released in
its entirety. The proof is based on Lemma 5.10 (piecemeal leakage resilience of random matrices)
and on a “pairwise independence” property under piecemeal leakage, stated separately in Claim
5.16 below.

Lemma 5.15 (Strong Resilience to Matrix-Vector Piecemeal Leakage). Take a, κ,m ∈ N, where
m ≥ κ. Fix ℓ = 0.1κ, and λ = 0.01κ/a2. Let L⃗in = (Lin1, . . . ,Lina) be any sequence of collections
of coefficients for linear combinations, where for each i, Lini ∈ {0, 1}m×ℓ has full rank ℓ. Let A be
any piecemeal leakage adversary. Take Real and Simulated to be the following two distributions:

Real =
(
key ,M,Aλ

κ,ℓ,m,L⃗in
(key , (M, v⃗))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗∈Rkernel(key)

Simulated =
(
key ,M,Aλ

κ,ℓ,m,L⃗in
(key , (M, v⃗))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗∈Rkernel(key)

41

615
Approved for Public Release; Distribution Unlimited.

then ∆(Real ,Simulated) ≤ 3a · 2−0.01κ/a.

Proof. We define the “midpoint” distribution:

D = 1/2 · Real + 1/2 · Simulated = (key ,M,w = A(key , (M, v⃗)))key,M,v⃗∈R{0,1}κ

For fixed (key ,M,w), we consider their bias:

bias(key ,M,w) , Real [key ,M,w]− Simulated [key ,M,w]

D[key ,M,w]

And note that (by definition):

∆(Real ,Simulated) = E(key,M,w)∼D[|bias(key ,M,w)|]/2 (1)

Thus we focus on bounding E(M,w)∼H [|bias(key ,M,w)|]. We will use a “pairwise independence”
property of matrices under piecemeal leakage.

Claim 5.16 (Pairwise Independence under Piecemeal Leakage). Take a, κ,m, ℓ, λ, L⃗in,A as in
Lemma 5.16. Let F and F ′ be the following distributions. In both F and F ′, take key ∈R {0, 1}κ,
a matrix M ∈R {0, 1}κ×m s.t. all of M ’s columns are in the kernel of key. Choose v⃗1, v⃗2 ∈r {0, 1}κ
s.t. A(key , (M, v⃗1) = A(key , (M, v⃗2)).

F = (v⃗1, v⃗2, b1, b2,A(key , (M, v⃗1)))key,M,v⃗1,v⃗2,b1=⟨key,ṽ1⟩,b2=⟨key,ṽ2⟩

F ′ = (v⃗1, v⃗2, b1, b2,A(key , (M, v⃗1)))key,M,v⃗1,v⃗2,b1,b2∈R{0,1}

then ∆(F ,F ′) ≤ δ = 5a2 · 2−0.03κ/a.

The proof of Claim 5.16 is below.
We will show that if E(M,w)∼H [|bias(key ,M,w)|] is too high, then we can predict the inner

products of v⃗1, v⃗2 as above with key and distinguish F and F ′ (a contradiction to Claim 5.16).
We do this by considering a distinguisher DIS that gets (v⃗1, v⃗2, b1, b2, w) (where (v⃗1, v⃗2, w) are
distributed as in both F and F ′), and attempts to distinguish whether b1, b2 ∈ {0, 1} are uniformly
random (distribution F ′), or are the inner products of v⃗1, v⃗2 with key (distribution F). The
distinguisher DIS outputs 1 if b1 = b2 and outputs 0 otherwise. By Claim 5.16, the advantage of
(any distinguisher, and in particular also of) DIS is bounded by δ = 6a2 · 2−0.03κ.

For distribution F ′, the bits b1, b2 are independent uniform bits, and so the probability that
DIS outputs 1 is exactly 1/2. In distribution F , however, if E(M,w)∼D[|bias(key ,M,w)|] is high
then DIS will output 1 with significantly higher probability (this gives a bound on the expected
magnitude of the bias).

To see this, fix (key ,M). For a possible leakage value w ∈ {0, 1}a·λ, denote by pkey,M,w the
probability of leakage w given key and M (for (key ,M, v⃗) ∼ D). Conditioning D on (key ,M),
the probability of identical leakage from uniformly random v⃗1 and v⃗2 is the “collision probability”
cp(key ,M) ,

∑
w∈{0,1}a·λ p

2
key,M,w. Conditioning D on (key ,M) and identical leakage from v⃗1

and v⃗2, the probability that the leakage is some specific value w is exactly p2key,M,w/cp(key ,M).
Conditioning D on (key ,M) and identical leakage w from v⃗1, v⃗2, the probability that the inner
products of v⃗1 and v⃗2 with key are equal and DIS outputs 1 is exactly 1/2 + 2|bias(key ,M,w)|2

42

616
Approved for Public Release; Distribution Unlimited.

(notice that the advantage over 1/2 is always “in the same direction”). Since (by Claim 5.16) the
advantage of DIS is at most δ, we get that:

δ ≥ Ekey,M [DIS’s advantage in outputting 1 given (key ,M)]

= Ekey,M

 ∑
w∈{0,1}a·λ

(p2key,M,w/cp(key ,M)) · 2|bias(key ,M,w)|2

Now because cp(key ,M) ≥ 2−a·λ, we get that:

Ekey,M

 ∑
w∈{0,1}a·λ

p2key,M,w · 2|bias(key ,M,w)|2
 ≤ 2a·λ · δ (2)

We also have that:

2∆(Real ,Simulated) = E(key,M,w)∼H [|bias(key ,M,w)|]

= Ekey,M

 ∑
w∈{0,1}a·λ

pkey,M,w · |bias(key ,M,w)|

≤

√√√√√2a·λ · Ekey,M

 ∑
w∈{0,1}a·λ

p2key,M,w · |bias(key ,M,w)|2

where the last inequality is by Cauchy-Schwartz. Putting this together with Equation 2, we get:

∆(Real ,Simulated) ≤ 2a·λ ·
√
δ < 3a · 2−0.01κ/a

which completes the proof.

Proof of Claim 5.16. Consider the following distribution E , where key is uniformly random, M is
a uniformly random matrix with columns in key ’s kernel, and v⃗1, v⃗2 are uniformly random pair s.t.
A(key , (M, v⃗1)) = A(key , (M, v⃗2)):

E = (key , v⃗1, v⃗2,A(key , (M, v⃗1)))key,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗1,v⃗2

Consider also the distribution H that uses a uniformly random matrix M of rank κ− 1:

H = (key , v⃗1, v⃗2,A(key , (M, v⃗1)))key,M∈R{0,1}κ×m:rank(M)=κ−1,v⃗1,v⃗2

We will show that:

1. ∆(E ,H) < 5a2 · 2−0.03κ/a, this will follow by piecemeal leakage resilience (Lemma 5.10).

2. In H, the advantage in distinguishing (⟨key , v⃗1⟩, ⟨key , v⃗2⟩) from uniformly random unbiased
bits is bounded by 2−0.1κ+3. I.e., in H the inner products of v⃗1 and v⃗2 with key are (close to)
pairwise independent.

The claim will follow from the two items above (we assume 2−0.1κ+3 ≤ a2 · 2−0.03κ/a).

43

617
Approved for Public Release; Distribution Unlimited.

Item 1, E and H are close. Let A be an adversary for which we get ε = ∆(E ,H). Given A, we
show a piecemeal leakage attack A′ on (key ,M) a la Lemma 5.10. We show that if A has advantage
ε in distinguishing E andH, then A′ has advantage ε′ (where ε′ ≥ ε·2−a·λ) in distinguishing whether
M is in key ’s kernel or M is independent of key . By Lemma 5.10, we conclude a bound on ε′ and
(through it) on ε.

The piecemeal leakage attack A′ proceeds as follows. The adversary chooses two uniformly
random vectors v⃗1, v⃗2 ∈R {0, 1}κ. It then computes piecemeal leakage A(key , (M, v⃗1)), and also
computes whetherA(key , (M, v⃗1)) = A(key , (M, v⃗2)) (for the randomly chosen v⃗1, v⃗2). This requires
(λ+ 1) bits of piecemeal leakage from key and (each piece of) M (it takes λ bits to determine the
leakage from each piece v⃗1 and an extra bit to tell whether the leakage on v⃗2 is identical). If the
leakage from v⃗1 and v⃗2 is identical, we output

A′(key ,M) = (v⃗1, v⃗2,A(key , (M, v⃗1))

Otherwise, we output A′(key ,M) =⊥. Observe now that, conditioning on A(key , (M, v⃗1)) =
A(key , (M, v⃗2)), we have that the output of A′ on M with columns in key ’s kernel (together with
key) is exactly the distribution E . The output of A′ on M that is independent of key (conditioned
on identical leakage from v⃗1, v⃗2, and together with key) is distributed exactly as H. In both cases,
when the leakage from v⃗1, v⃗2 is not identical, the output is simply ⊥. We conclude that the statis-
tical distance ε′ between the output of A′ in both cases (M in the kernel and independent M) is
at least ε multiplied by the probability that the leakage on v⃗1 and v⃗2 is identical (say w.l.o.g. we
refer to the “leakage collision” probability for M in the kernel).

For any fixed (key ,M), the probability that we get identical leakage on v⃗1 and v⃗2 chosen
uniformly at random is at least the inverse of the total amount of possible leakage values. I.e. at
least 2−a·λ. This gives a lower bound on ε′ as a function of ε. By Lemma 5.10 we also have an
upper bound on ε′. Putting these together:

ε · 2−a·λ ≤ ε′ ≤ 5a2 · 2−0.04κ

we conclude that:
∆(E ,H) ≤ 5a2 · 2−0.04κ · 2a·λ = 5a2 · 2−0.03κ

Item 2, H is pairwise independent. Consider the piecemeal leakage in H as a multi-source
leakage attack on key and on (v⃗1, v⃗2) (chosen conditioned on v⃗1 and v⃗2 yielding the same leakage).
For any fixed M , the amount of leakage from key in the attack is bounded by 0.01κ/a. In particular,
by Lemma 3.8 we have that, given the leakage, with all but 2−0.1κ probability, key is an independent
sample in a source with min-entropy at least 0.85κ.

We now consider (v⃗1, v⃗2). We claim that (for any fixed (key ,M)) with all but 2−0.1κ probability
over the choice of v⃗1, v⃗2 yielding the same leakage, the set of vectors yielding the same leakage as
v⃗1 and v⃗2 is of size at least 20.85κ. To see this, for a vector v⃗, let S(v⃗) be the set of vectors that
give the same leakage as v⃗. Let Sbad be the set of all vectors v⃗ for which S(v⃗) is of size less than
2−0.85κ. By Lemma 3.8 we get that:

α = Pr
v⃗∈R{0,1}κ

[v⃗ ∈ Sbad] ≤ 2−0.1κ

The probability that v⃗1, v⃗2 drawn s.t. their leakage is identical both land in Sbad is at most
α2 divided by the total probability that the leakage from uniformly random v⃗1, v⃗2 is identical (the

44

618
Approved for Public Release; Distribution Unlimited.

“collision probability”). The total leakage is of bounded length a · λ, so the collision probability is
at least 2−a·λ. We conclude that:

Pr
v⃗1,v⃗2∈R{0,1}κ:A(key,(M,v⃗1))=A(key,(M,v⃗2))

[v⃗1, v⃗2 ∈ Sbad] ≤ α2 · 2a·λ < 2−0.1κ

We conclude that with all but 2 · 2−0.1κ probability, given the leakage, the random variables
key , v⃗1, v⃗2 are independent and each of min entropy at least 0.85κ. By Lemma 3.7, we conclude
that the joint distribution of inner products of v⃗1 and v⃗2 with key is at statical distance 2−0.1κ+3

from uniformly random (or pairwise independent).

5.4 Piecemeal Matrix Multiplication: Security

In this section we use security of random matrices under piecemeal leakage to prove several security
properties for piecemeal matrix multiplication. These will serve as building blocks for proving the
security of the ciphertext bank as a whole (see the lemmas in Section 5.1). The proofs follow from
the lemmas above, and are omitted.

Lemma 5.17. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any piecemeal adversary and A′ any leakage adversary. Let D and F be the following two
distributions, where in both cases we draw key ∈R {0, 1}κ, x⃗ ∈R {0, 1}m and B ∈R {0, 1}m×n s.t.
the columns of B are all in the kernel of x⃗ and with parity 1.

D = (key , C, w ← Aλ
κ,ℓ,m,Lin(key ,A),

A′λ(w, x⃗, B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×m:∀i,⟨key,A[i]⟩=0

F = (key , C, w ← Aλ
κ,ℓ,m,Lin(key ,A),

A′λ(w, x⃗, B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×n:∀i,⟨key,A[i]⟩=x⃗[i]

then ∆(D,F) = exp(−Ω(κ)).
Lemma 5.18. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any (computationally unbounded) leakage adversary. Let D and F be the following two
distributions, where in both distributions key ∈r {0, 1}κ, x⃗ ∈R {0, 1}2κ, A ∈R {0, 1}κ×m s.t. the
i-th column of A has inner product x⃗[i] with key:

D = (key , A, w ← Aλ
κ,ℓ,m,Lin(key , A),

A′λ(w)[key , c⃗← PiecemealMM (A, r⃗)])r⃗∈R{0,1}m×1:(⊕ir⃗[i])=1,⟨x⃗,r⃗⟩=0

F = (key , A, w ← Aλ
κ,ℓ,m,Lin(key , A),

A′λ(w)[key , c⃗← PiecemealMM (A, r⃗)])r⃗∈R{0,1}m×1:(⊕ir⃗[i])=1,⟨x⃗,r⃗⟩=1

then ∆(D,F) = exp(−Ω(κ)).
Lemma 5.19. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any (computationally unbounded) leakage adversary. Let D and F be the following two
distributions, where in both distributions key ∈r {0, 1}κ and A ∈R {0, 1}κ×m:9

D = (key , C,Aλ(key , A)[key , C ← PiecemealMM (A,B)])B∈R{0,1}m×n:∀i,⊕BT [i]=1

F = (key , C,Aλ(key , A)[key , C ← PiecemealMM (A,B)])B∈R{0,1}m×n:rank(B)=m−1,∀i,⊕BT [i]=1

9In both distributions, we give A complete and explicit access to key and A. The piecemeal leakage attack here
is on B, which has different distributions in the two cases.

45

619
Approved for Public Release; Distribution Unlimited.

then ∆(D,F) = exp(−Ω(κ)).

5.5 Ciphertext Bank Security Proofs

We now prove Lemmas 5.1, 5.2, 5.3 , 5.4 and 5.5 from Section 5.1 (Lemma 5.1 is the most technically
involved). These Lemmas consider leakage produced in an attack on a real or simulated sequence
of T ciphertext generations. In proving statistical closeness of the leakage, we will use both the
simulated views and additional hybrid views. We compute these views by running the T generations,
under the leakage attack of A, using biased random coins.

Internal Variables. We will use several internal variables as we run these T generations. For the
t-th generation (where i goes from 0 to T−1): (key i, Ci) denote the bank before the i-th generation,
with underlying plaintexts x⃗i. The randomness used to generate the i-th output ciphertext is r⃗i,
the matrix used to refresh the bank is Ri, and the key refresh value is σi. We use Di to denote the
intermediate ciphertext in the i-th generation after key refresh, but before multiplication with Ri.
The output ciphertext of the i-th generation is c⃗i (the output key is key i).

Proof of Lemma 5.1. We prove here the case that b = 0, the case b = 1 is similar. Recall that Real is
the view of A given “real” generations of ciphertexts, using a bank of ciphertexts whose underlying
plaintexts are 0, and generating ciphertexts whose underlying plaintexts are 0. Simulated is a
view generated using a bank of ciphertexts whose underlying plaintexts are uniformly random, but
choosing plaintexts using biased randomness so that their underlying plaintexts are always 0. The
proof of statistical closeness uses a hybrid argument as follows.

We define hybrid views {Ht} for t ∈ {0, . . . , T + 1}. The output of each hybrid is T tuples,
one for each ciphertext generation, each consisting of a key, a ciphertexts, and a leakage value.
We compute the hybrids views by running the T generations, under the leakage attack of A, using
biased random coins. We specify the distribution of each of the internal variables described above,
and these specify the hybrid view on the outputs and leakage from the T generations.

When generating Ht, for t > 0 we initialize (key0, C0) as in Simulated . In H0 we initialize
(key0, C0) as in Real . We then run T ciphertext generations under A’s leakage attack. The key
refresh value σi is always uniformly random. For the i-th generation, where i ≤ t, we choose r⃗i
uniformly at random s.t. it has odd parity and is in kernel(x⃗i). For i ≥ t, we choose r⃗i to be
uniformly random with odd parity (and no further restrictions). For i ̸= (t−1), we use a uniformly
random Ri whose columns have odd parity. For i = (t− 1), we use a uniformly random Ri whose
columns have odd parity and are in kernel(x⃗i). This completes the hybrids’ specification.

By construction, we get that H0 = Real and HT+2 = Simulated . It remains to show that, for all
t, ∆(Ht,Ht+1) = exp(−Ω(κ)). We show this here for 2 < t < T (the borderline cases are handled
similarly). We use an intermediate distribution H′t, which operates as Ht, except that it chooses
a x⃗t vector uniformly at random (recall that in Ht the columns of Ct are all in kernel(key)). It
then chooses r⃗t and the columns of Rt to be uniformly random with odd parity and in kernel(x⃗t)
(whereas in Ht these were uniformly random with odd parity and no further restriction).

Claim 5.20. ∆(H′t,Ht+1) = exp(−Ω(κ))

Proof. The differences between H′t and Ht+1 are: (i) the distribution of r⃗t−1 and the columns of
Rt−1: they are uniform (with odd parity) in Ht+1, but in H′t they are all in kernel(x⃗t−1), (ii) in
H′t we have that the columns of Ct are orthogonal to key t, whereas in Ht+1 they are uniformly

46

620
Approved for Public Release; Distribution Unlimited.

random, and (iii) the distribution of r⃗t and the columns of Rt: they have odd parity in both Ht+1

and H′t, but in Ht+1 they are orthogonal to x⃗t that has the plaintext bits encrypted in Ct, whereas
in H′t they are orthogonal to a uniformly random x⃗t that is independent of (key t, Ct).

We reduce the security game of Lemma 5.17 to distinguishing these two cases. There, a vector x⃗
is chosen uniformly at random. A matrix A either has columns orthogonal to key , or has uniformly
random columns whose inner products with key equal the bits in x⃗. This A is multiplied by B with
columns in the kernel of x⃗. To reduce the game of Lemma 5.17 to distinguishing H′t and Ht+1, we
put key as key t, A as Ct, x⃗ as x⃗t, and B as Rt.

We begin by showing that leakage from the t-th generation on, together with all keys and
ciphertexts created in all generations, is statistically close in both hybrids. The leakage from the
t-th generation takes as input the keys and ciphertexts produced in prior iterations, and so for
each i ∈ {0, . . . , t− 1}, we pick (key i, c⃗i) uniformly at random (independent of (key t, Ct)) s.t. they
have inner product 0. We also choose a uniformly random correlation value σt. Note that the
distribution of these key-ciphertext pairs, in conjunction with (key t, Ct) set as above, is exactly as
in H′t and Ht+1 (respectively, depending on the distribution of key and A for the security game of
Lemma 5.17).

Using the above reduction, we conclude from Lemma 5.17 that the leakage from the t-th genera-
tion, together with (key t, c⃗t, σt, Ct+1) (and the list of key-ciphertext pairs from earlier generations),
is statistically close when the random variables are drawn as in H′t and Ht+1. We can then use
these to generate the leakage and key-ciphertext pairs for generations (t+1) and up (these are just
a function of (key t, σt, Ct+1)).

We need, however, to also generate the leakage for the ciphertext generations that precede the
t-th. Recall that the (key i, c⃗i) key-ciphertext pairs for all iterations i < t were already chosen and
fixed above. We compute the leakage from these iterations using piecemeal leakage from (key t, Ct).
In fact, for i ∈ {0, . . . , t − 3} the leakage is independent of (key t, Ct): we simply choose all of the
randomness for these generations independently of (key t, Ct). For generations {0, . . . , t − 2}, each
Ci is sampled uniformly at random. The σi values are specified by key i ⊕ σi = key i+1, and these
in turn (together with the Ci’s) specify the Di key-refreshed banks. The Ri matrices are uniformly
random s.t. their columns have odd parity and multiplying Di by Ri yields Ci+1. r⃗i’s are uniformly
random s.t. they have odd parity and Ci × r⃗i = c⃗i. This completely specifies the randomness for
all iterations i ∈ {0, . . . (t− 3)}, and we can compute the leakage from those iterations using these
values, independently of (key t, Ct). Note that the randomness for iterations t − 2 and t − 1 will
depend on (key t, Ct), and so leakage from those iterations is not independent, and will be computed
as follows using piecemeal leakage from (key t, Ct).

For the (t − 1)-th generation, we choose Dt−1 uniformly at random. The variable σt−1 is a
function of key t (can be accessed via leakage) and of key t−1 (which is fixed and public). The
ciphertext bank Ct−1 is a function of Dt−1 and of σt−1. I.e. of public information and of (leakage
from) key t. The variable r⃗t−1 is a function of Ct−1 and c⃗t−1, i.e. of public information and (leakage
from) key t. The only remaining variable which is not specified for iteration t− 1 is Rt−1. We will
show below how to compute the needed (piecemeal) leakage from Rt−1 using Dt−1 and piecemeal
leakage only from Ct. Given this (see below), we conclude that leakage from each sub-computation
in the (t− 1)-th generation can be computed via piecemeal leakage from (key t, Ct).

To compute each piece of Rt−1 used in the piecemeal matrix multiplication, we observe that
it suffices to use explicit access to all of Dt−1 (a “public” uniformly random matrix), together
with piecemeal leakage from Ct. We use here the fact that the pieces of Rt−1 that are needed for

47

621
Approved for Public Release; Distribution Unlimited.

simulating matrix multiplication are all disjoint. Note that, in particular, the distributions of Rt−1
that we will get in the scenarios of Lemma 5.17 are quite different (as they should be).

Finally, we also need to compute leakage from the (t−2)-th generation. Here we need to specify
σt−2, which is a function of key t−2 and key t−1: i.e., we can access is via leakage from key t. This
also specifies Dt−2. Finally, for Rt−2 we use Dt−2 and Ct−1, which can both be accessed via leakage
from key t.

In conclusion, we used a piecemeal attack on (key t, Ct) to generate the key-ciphertext pairs and
leakage up to the t-th generation, and an attack as in Lemma 5.17 to generate the leakage from the
t-th generation on. This yielded the views H′t and Ht+1. By Lemma 5.17 we conclude that these
views must be statistically close.

Claim 5.21. ∆(Ht,H′t) = exp(−Ω(κ))

Proof. The only difference between the hybrids is in the distribution of Rt (in the t-th generation).
We reduce the attack game of Lemma 5.19 to distinguishing the two cases. To do so, we generate
(key i, c⃗i, Ci, wi)i<t identically as in both views. We put key t+1 = key , Dt = A, and Rt = B.

Now consider the t-th matrix update in Ht or H′t, performed via piecemeal multiplication of Dt

with Rt. In Ht we have a uniformly random Rt whose columns have odd parity, and in H′t we place
the additional restriction that the columns are all orthogonal to kernel(x⃗t): i.e. they are all in a
(random) subspace of dimension (2κ − 1). By Lemma 5.19, the leakage obtained, together with
(key t+1, Ct+1), is statistically close in both cases. In both views, we can create the leakage from
later rounds as a function of (key t+1, Ct+1) (the same function in both cases). We can also create
the leakage in the earlier rounds as a function of Ct, key t as in Claim 5.20 (here this is even easier,
because we have explicit access to both).

Proof of Lemma 5.2. We prove here the case that b = 0, the case b = 1 is similar. Recall that
Simulated ′ and Simulated ′′ are two simulated views of A on a sequence of T simulated generations,
both using a bank of ciphertexts whose underlying plaintexts are all uniformly random. The views
differ only in that the plaintexts underlying the ciphertexts that are generated, b⃗′ and b⃗′′, might be
different. The proof of statistical closeness uses a hybrid argument and follows below.

We define hybrid views {Ht} for t ∈ {0, . . . , T}. The output of each hybrid is T leakage values,
one for each ciphertext generation. We compute the hybrids views by running the T generations,
under the leakage attack of A, using biased random coins. We will use the internal variables
described above as we run these T generations. When generating Ht, we initialize (key0, C0) using
SimBankInit (so the ciphertexts in the bank are uniformly random). In Ht, for all i, in the i-th call
to SimBankInit , we use uniformly random σi and Ri whose columns have parity 1. For i < t, we
choose r⃗i uniformly at random s.t. its parity is 1 and the c⃗i produced has inner product b⃗′[i] with
key i. For i ≥ t, we choose r⃗i similarly, except its inner product with key i is b⃗′′[i]. This completes
the specification of the hybrids.

By construction, we get that H0 = Simulated ′′ and HT = Simulated ′. It remains to show that,
for all t, ∆(Ht,Ht+1) = exp(−Ω(κ)). This follows from Lemma 5.18. The Lemma shows that the
leakage obtained in the t-th generation, together with (key t+1, Ct+1), is statistically close in Ht and
Ht+1. In both views, we can create the leakage from later rounds as a function of (key t+1, Ct+1)

48

622
Approved for Public Release; Distribution Unlimited.

(the same function in both cases). We can also create the leakage in the earlier rounds using a
piecemeal leakage attack on (key t, Ct), as done in Claim 5.20 above.

Proof of Lemma 5.3. The distribution D of ((key0, . . . , keyT−1), (c⃗0, . . . , c⃗T−1)) in Simulated (with-

out any leakage) is IuO, with orthogonality b⃗ and underlying distributions K and C on keys and
ciphertexts: each key and ciphertext in the underlying distributions is uniformly and independently
random. Now, observe that the ciphertext banks in Simulated are uniformly random, independent
of the keys and ciphertexts. Thus, we can compute the leakage from all T generations as a (ran-
domized) multi-source function operating on the ciphertext banks and separately on the keys and
separately on each ciphertext. We conclude by Lemma 3.11 that for each i the distribution Di(w)
is indeed IuO, with orthogonality b⃗[i] and with underlying distributions Ki(w) and Ci(w) that do
not depend on b⃗[i]. The entropy bounds on each key and ciphertext (given w) follow by Lemma
3.8.

We note that independence up to orthogonality and high entropy hold even given the explicit
lists of ciphertexts in the bank (in all calls), as these are just uniformly random matrices, and even
given the random coins used to compute leakage from the target generations (given the ciphertext
bank and the target ciphertext).

6 Safe Computations

In this section we present the SafeNAND procedure, see Section 2.2 for an overview. The (simpler)
treatment of duplications gates is omitted.

This section is organized as follows: the SafeNAND procedure and its security properties are
in Section 6.1. This procedure uses a leakage-resilient permutation procedure, Permute, which
is presented and proved secure in Section 6.2. We then use Permute’s security in the proof of
SafeNAND ’s security, which follows in Section 6.3.

6.1 Safe Computations: Interface and Security

In this section we present the procedure for safely computing NAND gates. The full procedure is
in Figure 8. Correctness follows from the description (see the introduction). For security, we show
that a view of the NAND computation can be simulated, given only the output (and the underlying
distributions of the input keys and the input ciphertexts). This is formalized in Lemma 6.1. See
the subsequent sections for details of the Permute procedure and the proof of Lemma 6.1.

Security of SafeNAND. We provide a simulator for producing the leakage on the SafeNAND
procedure, when the inputs to SafeNAND are chosen from an IuO distribution. The simulator
is given ak, and the underlying distributions for the which the SafeNAND inputs were drawn.
It outputs a complete view of the leakage from SafeNAND . This includes the leakage from the
Decrypt operation (which loads keys and ciphertexts into memory simultaneously). The security
claim is below in Lemma 6.1. We note that the SafeNAND simulator is not efficient, its running
time might be exponential in that of the leakage adversary. The descriptions of the underlying
input distributions themselves might already be of exponential size. This does not pose a problem,
because the security of our main construction is statistical, and we never use the SafeNAND

49

623
Approved for Public Release; Distribution Unlimited.

SafeNAND(ai, key i, c⃗i, aj , keyj , c⃗j , keyk, c⃗k): Safe NAND computation

1. Correlate the ciphertexts to a new key. Pick a new key key ← KeyGen(1κ)

σi ← key i ⊕ key , σj ← keyj ⊕ key , σk ← keyk ⊕ key

c′i ← CipherCorrelate(ci, σi), c
′
j ← CipherCorrelate(cj , σj), c

′
k ← CipherCorrelate(ck, σk)

leakage on [(key i, σi), (keyj , σj), (keyk, σk), (c⃗i, σi), (c⃗j , σj), (c⃗k, σk)]

2. c′′i ← c′i ⊕ (ai, 0, . . . , 0), c
′′
j ← c′j ⊕ (aj , 0, . . . , 0)

C ← (c⃗′k, c⃗
′
k ⊕ c⃗′′i , c⃗

′
k ⊕ c⃗′′j , c⃗

′
k ⊕ c⃗′′i ⊕ c⃗′′j ⊕ (1, 0, . . . , 0))

leakage on ciphertexts

3. (K ′, C ′)← Permute(key , C)

leakage from Permute (see below)

4. Decrypt the four ciphertexts in C ′ using the four keys in K ′. If there is one 0 plaintext in
the results, then output ak ← 0. Otherwise, output ak ← 1

leakage on C ′ and K ′ (jointly)

Figure 8: SafeNAND procedure. The Permute procedure is in Figure 9.

simulator for the (efficient) SimEval simulation procedure, only for creating hybrid distributions in
the security proof.

Lemma 6.1. There exist: an exponential time simulator SimNAND, a leakage bound λ(κ) = Ω̃(κ),
and a distance bound δ(κ) = negl(κ) s.t. for every κ ∈ N and leakage adversary A:

Let D be a distribution on two 3-tuples: a key-tuple (key i, keyj , keyk) ∈ {0, 1}3×κ, and a
ciphertext-tuple (c⃗i, c⃗j , c⃗k) ∈ {0, 1}3×κ. Suppose that D is IuO with orthogonality (bi, bj , bk) ∈
{0, 1}3. Let D’s underlying distributions on the key-tuple and on the ciphertext-tuple be K and C.
I.e. D = K ⊥(bi,bj ,bk) C. Suppose further that H∞(K),H∞(C) ≥ 3κ−O(λ(κ)).

For any (ai, aj) ∈ {0, 1}2, take:

Real =
(
Aλ(κ)[ak ← SafeNAND(ai, key i, c⃗i, aj , keyj , c⃗j , keyk, c⃗k)]

)
((keyi,keyj ,keyk),(c⃗i ,⃗cj ,⃗ck))∼D

Simulated = (SimNAND(ai, aj , ak,K, C))ak←(((ai⊕bi) NAND (aj⊕bj))⊕bk)

then ∆(Real ,Simulated) ≤ δ(κ).

6.2 Leakage-Resilient Permutation

The Permute procedure receives as input a key and a 4-tuple of ciphertexts. It outputs a “fresh”
pair of 4-tuples of keys and ciphertexts. The correctness property of the permute procedure is that
the plaintexts underlying the output ciphertexts (under the respective output keys) are a (random)
permutation of the plaintexts underlying the input ciphertexts. The intuitive security guarantee
is that, even to a computationally unbounded leakage adversary, the permutation looks uniformly
random. The procedure is below in Figure 9. Correctness is immediate. Security is formalized by
the existence of a simulator that generates a complete view of the leakage and the output keys and
ciphertexts. The simulator only gets: (i) descriptions of the marginal distribution from which key
and the input ciphertext are drawn, and (ii) a random permutation of the plaintexts underlying the

50

624
Approved for Public Release; Distribution Unlimited.

input ciphertexts. We show that, under the appropriate conditions on the distribution from which
the key and ciphertexts are drawn, the real and simulated joint distributions of leakage and output
from Permute will be statistically close. In particular, on an intuitive level, the joint distribution
of the leakage and the outputs is independent of the permutation that was used. This security
property is stated in Lemma 6.2 below. We note that the simulator is not efficient, and may run
in exponential time (as was the case for the SimNAND simulator, it is only used in the security
proof of our main construction).

Permute(key , C): leakage-resilient permutation for key and a 4-tuple C of ciphertexts

Take K0 ← (key , key , key , key), C0 ← C, and ℓ = polylog(κ)

For i ∈ [ℓ], repeat:

1. for j ∈ [κ], k ∈ [4]: σi[j][k]← KeyEntGen(1κ), Li[j][k]← KeyRefresh(Ki[k], σi[j][k]) leakage
on (Ki, σi)

2. for j ∈ [κ], k ∈ [4]: Di[j][k]← CipherCorrelate(Ci[k], σi[j][k])

leakage on (Ci, σi)

3. for j ∈ [κ], k ∈ [4]: τi[j][k]← CipherEntGen(1κ), D′
i[j][k]← CipherRefresh(Di[j][k], τi[j][k])

leakage on (Di, τi)

4. for j ∈ [κ], k ∈ [4]: L′
i[j][k]← KeyCorrelate(Li[j][k], τi[j][k])

leakage on (Li, τi)

5. pick πi ∈R Sκ
4 , for j ∈ [κ]: L′′

i [j]← πi[j](L
′
i[j]), D

′′
i [j]← πi[j](D

′
i[j])

leakage on [(L′
i, πi), (D

′
i, πi)]

6. pick j∗i ∈R [κ]. Save Ki+1 ← L′′
i [j

∗
i], and Ci+1 ← D′′

i [j
∗
i]

leakage on [(L′′
i [j

∗
i], j

∗
i), (K

′′
i [j

∗
i], j

∗
i)]

Output (Kℓ, Cℓ)

Figure 9: Leakage-Resilient Ciphertext Permutation for κ ∈ N

Lemma 6.2. There exists an exponential-time simulator SimPermute, a leakage bound λ(κ) =
Ω̃(κ), and a distance bound δ(κ) = negl(κ), s.t for any κ ∈ N and leakage adversary A:

Let D be a distribution on key ∈ {0, 1}κ and a ciphertext 4-tuple C ∈ {0, 1}4×κ. Suppose that
D is IuO with orthogonality b⃗ ∈ {0, 1}4. Let K and C be D’s underlying distributions on key and
on C. Suppose further that H∞(K) ≥ κ−O(λ(κ)) and H∞(C) ≥ 3κ−O(λ(κ)).

Take Real and Simulated to be the following views:

Real =
(
K ′, C ′,Aλ(κ)[(K ′, C ′)← Permute(key , C)]

)
(key,C)∼D

Simulated =
(
SimPermute (⃗b′,K, C)

)
µ∈RS4 ,⃗b′←µ(⃗b)

then ∆(Real ,Simulated) ≤ δ(κ).

Proof. We begin by describing the SimPermute Simulator. The proof that Real and Simulated are
statistically close follows.

51

625
Approved for Public Release; Distribution Unlimited.

SimPermute. The simulator samples key ∼ K and C ∼ C, conditioned on the inner product of
key with C being 0⃗ (rather than b⃗[i], as in D). The simulator then runs Permute on (key , C), under
A’s leakage attack, to compute the leakage w. To compute the output (K ′, C ′), the simulator first
samples an input key and randomness r⃗ for Permute, from the conditional underlying distribution of
key and the randomness given leakage w. Note that, as in Lemma 3.11, this conditional distribution
depends only on K (and not on C). Using key and r⃗, the simulator can compute theK ′ that Permute
would output. Similarly, the simulator computes the conditional distribution of C ′, given w and r⃗.
Again, as in Lemma 3.11, this depends only on C (and not on K). The simulator samples C ′ from
this conditional distribution, under the additional condition that the inner products of C ′ with K ′

equal b⃗′. The output is (K ′, C ′, w).

Statistical Closeness of Real and Simulated . We first observe that w is A’s output in a leakage
attack that operates separately on key and on C. Moreover, the leakage on key and on C is of
bounded total length O(ℓ · λ(κ)) << κ. Since the “real” distribution D of (key , C) is IuO, by
Lemma 3.11 the distributions of w in Real and in Simulated are δ(κ)-statistically close.

The more difficult part of the proof is arguing that (w.h.p. over w), the distributions of (K ′, C ′),
conditioned on w, in Real and in Simulated are statistically close. For this, we consider a hybrid
distribution Real ′. To generate Real ′, we compute w as in Simulated , by running A’s leakage
attack on Permute, activated on key and C chosen s.t. their inner products equal 0⃗. Let π be
the composition of the permutations chosen in the ℓ iterations of Permute. In Real ′ we generate
(K ′, C ′) as in Simulated , but conditioning the underlying output distributions on the inner products
of K ′ and C ′ equalling b⃗′ = π(⃗b), rather than b⃗′ which is a uniformly random permutation of b⃗ in
Simulated . We show that Real ′ is statistically close to both Real and Simulated .

Proposition 6.3. ∆(Real ,Real ′) = O(δ(κ))

Proof. We re-cast Real by considering the following procedure for generating it. This alternate
generation operates as Real , except that when drawing the input (key , C) from the underlying
distributions, we condition on the inner products equalling b⃗ (rather than 0⃗). These (key , C) are
used to compute w, and then (K ′, C ′) are drawn (as in Real ′) from their conditional distributions,
conditioned on inner products π(⃗b) (where π is the composition of the permutations used in all ℓ
iterations of Permute). Since the input distribution D used in Real is IuO, this procedure generates
exactly the view Real .

We now show that Real and Real ′ are statistically close. These two distributions differ only in
the joint distribution of (w, π); given w and π, the distributions of (K ′, C ′) derived in Real and
Real ′ are identical. (w, π) are generated via a multi-source leakage attack, operating separately on
key and on C, with a total of O(ℓ · λ(κ)) << κ bits of leakage. Moreover, the distributions of key
and C in Real and Real ′ are both IuO (by construction), and differ only in their orthogonalities (⃗b
or 0⃗ respectively). By Lemma 3.11, we get that the distributions of (w, π) in Real and Real ′ are
δ(κ)-statistically close, and thus so are Real and Real ′ themselves.

Proposition 6.4. ∆(Real ′,Simulated) = negl(κ)

Proof. Recall that the distributions of w in Real ′ and Simulated are identical. The underlying
distributions on K ′ and on C ′ (given w) are also identical. The difference is in the distribution
(given w) of the permutation used to compute b⃗′ from the given vector b⃗ (⃗b′ is then used to jointly
sample (K ′, C ′)). In Real ′ we have b⃗′ = π(⃗b), where π is the composition of permutations chosen

52

626
Approved for Public Release; Distribution Unlimited.

by Permute in its ℓ iterations. In Simulated we have b⃗′ = µ(⃗b), where µ is a uniformly random
permutation in S4, independent of w. We will show that, for any input (key , C), the distribution
of π in Real ′ (conditioned on w), is negl(κ)-close to uniformly random (w.h.p over the leakage w).
It follows that Real ′ and Simulated are negl(κ)-statistically close.

The intuition, loosely speaking, is that for each i ∈ [ℓ], the permutation π∗i = πi[j
∗
i] chosen

in Permute’s i-th iteration, looks “fairly random” even given w. Moreover, these ℓ permutations
are drawn independently from their “fairly random” distributions. The composition, over all ℓ
iterations of Permute, of the permutations chosen in each iteration, is thus statistically close to
uniformly random. We formalize this intuition below, starting with the notion of “well-mixing”
distributions over in S4.

Definition 6.5 (Well-Mixing Distribution on Permutations). A distribution P over S4 is said to
be well-mixing if:

H∞(P) ≥ 0.99 log |S4|

Next, we observe that the composition of a sequence of permutations drawn from well-mixing
distributions is itself very close to uniform.

Claim 6.6. For any sequence P0, . . . , Pℓ−1 of well-mixing distributions, let P be:

P , (π0 ◦ . . . ◦ πℓ−1)π0∼P1,...,πℓ−1∼Pℓ−1

then P is exp(−Ω(ℓ))-close to uniform over S4.

For Permute’s i-th iteration, let wi be the leakage in that iteration. We define Pi to be the
distribution of the permutation π∗i = πi[j

∗
i] chosen in the i-th iteration, conditioned on (w0, . . . , wi)

and also on the keys and ciphertexts (Ki, Ci,Ki+1, Ci+1). We show that in Real ′, with overwhelming
probability over the random coins up to (but not including) the choice of j∗i , with probability at
least 1/2 over Permute’s choice of j∗i , the distribution Pi is well-mixing.

Claim 6.7. For the view Real ′, for any i ∈ [ℓ], and for any (Ki, Ci, (w0, . . . , wi−1)), with all but
O(δ(κ)) probability over Permute’s random choices in iteration i up to Step 6, with probability at
least 1/2 over Permute’s choice of j∗i in Step 6, the distribution Pi is well-mixing.

Proof. Examine the distribution of the vector πi of permutations used in iteration i, conditioned on
(Ki, Ci, (w0, . . . , wi−1)), and conditioned also on (L′′i , D

′′
i) (but without conditioning on the leakage

wi in the i-th iteration or on j∗i). Here the randomness is over (σi, τi, πi). We observe that in
this conditional distribution,the marginal distribution on (πi[0], . . . , πi[κ− 1]) is uniformly random
over Sκ

4 . This is because for each j ∈ [κ], the pair (σi[j], τi[j]) are uniformly random (under the

condition that they maintain the underlying 0 plaintext bits in b⃗i). Thus, σi[j], τi[j] completely
“mask” the permutation πi[j] that was used: all permutations are equally likely. Note that here we
use the fact that the plaintext bits b⃗i underlying (Ki, Ci) in Real ′ are all identical (they all equal
0). Otherwise, since Permute preserves the set of underlying plaintexts (if not their order), there
would be information about each πi[j] in the plaintexts underlying (L′′i [j], D

′′
i [j]).

By Lemma 3.8, since the leakage wi on (σi, τi, πi) is of length at most O(λ(κ)) bits, with all
but δ(κ) probability, the min-entropy of the vector πi given (Ki, Ci, L

′′
i , D

′′
i , (w0, . . . , wi−1, wi))

is at least 0.995 · κ · log |S4|. By an averaging argument, with probability at least 1/2 over
Permute’s (uniformly random) choice of j∗i , we get that the min entropy of π∗i = πi[j

∗
i], given

(Ki, Ci, L
′′
i , D

′′
i , (w0, . . . , wi−1, wi)), is at least 0.99 log |S4|. The claim about Pi follows (in Pi we

53

627
Approved for Public Release; Distribution Unlimited.

condition π∗i on the same information as above, except we replace (L′′i , D
′′
i) with just (Ki+1, Ci+1) =

(L′′i [j
∗
i], D

′′
i [j
∗
i])).

To complete the proof of Proposition 6.4, we examine the composed distribution (π = (π∗0◦, . . .◦
π∗ℓ−1)|w). Each π∗i is drawn from Pi, and these draws are all independent of each other. By Claim
6.7, we get that with all but exp(−Ω(ℓ)) probability over the random coins, fixing the sequence
((K0, C0), . . . , (Kℓ−1, Cℓ−1)) and the leakage w, at least 1/3 of the distributions Pi are well-mixing.
When this happens, by Claim 6.6, the distribution of (π|w) is exp(−Ω(ℓ))-close to uniform, where
ℓ = polylog(κ).

6.3 Proof of SimNAND Security (Lemma 6.1)

Remark 6.8. We will assume throughout this section that the leakage w from SafeNAND includes
Permute’s output in its entirety. This is a strengthening of the leakage adversary (it gets more
leakage “for free”), and so it strengthens our security claim for SafeNAND.

Proof of Lemma 6.1. We begin by describing the SimNAND simulator, and then proceed with a
proof of statistical closeness of Real and Simulated .

SimNAND. Let D× be the independently drawn variant of D (as in Definition 3.10, i.e. with inde-
pendent draws from K and from C). SimNAND samples ((key i, keyj , keyk), (c⃗i, c⃗j , c⃗k)) ∼ D×, and
key ← KeyGen(1κ). It runs Steps 1 and 2 of the SafeNAND procedure, on the keys and ciphertexts
it drew, under A’s leakage attack. Let w1,2 be the leakage generated in this partial execution, and
let σ⃗ = (σi, σj , σk) be the correlation values computed by SafeNAND in this simulated execution.

Next, SimNAND computes KSimPermute and CSimPermute , the conditional distributions of key and
of C in Step 3, given w1,2 and σ⃗. SimNAND proceeds to simulate Step 3 by calling the Permute

simulator, SimPermute (see Lemma 6.2), on input (⃗bSimPermute ,KSimPermute , CSimPermute), where
b⃗SimPermute is a uniformly random permutation of the vector (ak, ak⊕1, ak⊕1, ak⊕1). SimPermute’s
output includes the leakage w3 from Step 3 and an output (K ′, C ′) from Permute. SimNAND
completes the simulation by running Step 4 on (K ′, C ′) under A’s leakage attack, producing leakage
w4. The leakage that SimNAND outputs is the accumulated leakage w = (w1,2 ◦w3 ◦ (K ′, C ′) ◦w4)
from all the simulated steps of SafeNAND (recall from Remark 6.8 that we include (K ′, C ′) in the
leakage).

Statistical closeness of Real and Simulated . We examine the distributions of the leakage w1,2

in Steps 1 and 2 in both views. In both Real and Simulated we have (key i, keyj , keyk) ∼ K and
key ← KeyGen(1κ). These determine the correlation values σ⃗ = (σi, σj , σk) computed in Step
1 of SafeNAND . Note that the correlation values are a function of the keys only (and not the
ciphertexts), and thus they are identically distributed in both Real and Simulated . The difference
is in the conditional distribution of (c⃗i, c⃗j , c⃗k) given (key , σ⃗).

We focus on the joint conditional distribution of (key , (c⃗i, c⃗j , c⃗k)), conditioned on σ⃗. We will
show that this joint distribution, conditioned on σ⃗, is: (i) IuO in Real , and (ii) its independently
drawn variant in Simulated . Given σ⃗, the leakage is a multi-source function of key and of the
ciphertexts. We will conclude, using Lemma 3.11, that: (i) the leakage in Real and in Simulated

54

628
Approved for Public Release; Distribution Unlimited.

is statistically close, and (ii) for a fixed leakage value w1,2 that can occur in Real , the condi-
tional distribution of (key , (c⃗i, c⃗j , c⃗k)) in Real , given (σ⃗, w1,2), will remain IuO. The distribution of
(key , (c⃗i, c⃗j , c⃗k)) in Simulated , given (σ⃗, w1,2), will be the independently drawn variant of the same
distribution in Real . Note that C is a (linear) function of (c⃗i, c⃗j , c⃗k) (and ai, aj), and so we get the
same guarantees for the distributions of (key , C) in Real and Simulated .

It remains to show that the requirements of Lemma 3.11 hold. Namely, that (key , (c⃗i, c⃗j , c⃗k))
in Real , conditioned on σ⃗, is IuO, and that the same distribution in Simulated is its independently
drawn variant. For this, observe first that in Simulated , the distribution of (key , (c⃗i, c⃗j , c⃗k)) given σ⃗
is the product distribution of key given σ⃗, and of C (without any conditioning). The fixed values of
σ⃗ do not effect the marginal distribution on ciphertexts, because (in Simulated) the ciphertexts are
drawn independently of the keys. In Real , on the other hand, the keys and ciphertexts are no longer
drawn independently. However, even in Real , D is IuO. In particular, D’s marginal conditional
distribution on (c⃗i, c⃗j , c⃗k), given key and σ⃗, is equal to C, conditioned on ⟨key ⊕ σi, c⃗i⟩ = bi, on
⟨key ⊕ σj , c⃗j⟩ = bj , and on ⟨key ⊕ σk, c⃗k⟩ = bk. We conclude that in Real , the distribution of
(key , (c⃗i, c⃗j , c⃗k)), conditioned on σ⃗, is also IuO. Moreover, by Lemma 3.8, with all but O(δ(κ))
probability over σ⃗, the min-entropy of (key , (c⃗i, c⃗j , c⃗k)) given σ⃗ is at least 4κ−O(λ(κ)).

By Lemma 3.11, we conclude that the distributions ((key , C)|(σ⃗, w1,2)) in Real and in Simulated

satisfy all the conditions of Lemma 6.2 (security of Permute). By construction, the vector b⃗SimPermute

of plaintext values given as input to the SimPermute simulator in Simulated , is a uniformly random
permutation of the plaintexts underlying (key , C), the input to Permute in Real . By Lemma 6.2,
we conclude that the distributions of (w1,2 ◦ w3 ◦ (K ′, C ′)), in conjunction with σ⃗, are statistically
close in Real and Simulated . Statistical closeness of Real and Simulated follows, because the leakage
w4 from Step 4 is a function of (K ′, C ′).

7 Putting it Together: The Full Construction

In this section we show how to compile any circuit into a secure transformed one that resists OC
side-channel attacks, as per Definition 3.14 in Section 3.4. See Section 2 for an overview of the
construction.

The full initialization and evaluation procedures are presented below in Figures 10 and 11. The
evaluation procedure is separated into sub-computations (which may themselves be separated into
sub-computations of the cryptographic algorithms). Ciphertext bank procedures are in Section 5.
The procedures for safely computing NAND and duplication are in Section 6. Theorem 7.1 states
the security of the compiler.

Theorem 7.1. There exist a leakage bound λ(κ) = Ω̃(κ) and a distance bound δ(κ) = negl(κ),
s.t. for every κ ∈ N, the (Init ,Eval) compiler specified in Figures 10 and 11 is a (λ, δ)-continuous
leakage secure compiler, as per Definition 3.14.

Proof Sketch. We first specify the simulator and then provide a sketch of statistical security.

Simulator. Let A be a (continuous) leakage adversary. The simulator, using SimInit and
SimEval , creates a view of repeated executions of Eval , on different inputs, under a (continu-
ous) leakage attack by A. It mimics the operation of the “real” Eval procedure. The SimInit
procedure starts by initializing all ciphertext banks using SimBankInit . Within the t-th execution,

55

629
Approved for Public Release; Distribution Unlimited.

Initialization Init(1κ, C, y)

1. for every y-input wire i, corresponding to y[j]:

Bank i ← BankInit(1κ, y[j])

2. for the output wire output :

Bankoutput ← BankInit(1κ, 0)

3. for the internal wires:

Bank internal ← BankInit(1κ, b), where b ∈R {0, 1}

4. output: state0 ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 10: Init procedure, to be run in an offline stage on circuit C and secret y.

with input xt and output C(y, xt), the simulator picks all of the (ai, bi) shares for each wire i in
advance. To do so, the simulator first evaluates C (⃗0, xt) and takes v′i to be the bit value on wire
i in this evaluation. For y-input wires, the simulator sets ai = bi = 0. For internal wires, the ai
shares are uniformly random, and each bi is set so that ai ⊕ bi = v′i. For the output wire out , the
simulator sets aout = C(y, xt), and bout = v′out ⊕ aout .

Once the (ai, bi) values are picked, the simulator generates the ciphertexts c⃗i so that the plaintext
underlying c⃗i is indeed bi. This is done using the SimBankGen simulation procedures, which gives
the simulator control over the plaintext underlying the ciphertext that it generates. The rest of
the simulator’s operation follows the Eval procedure on the generated ciphertexts, and the leakage
is generated as it would be from an execution of Eval . The SimInit and SimEval procedures are
specified below in Figures 12 and 13.

Statistical Security (Sketch). The intuition for security is that the “public” ai shares in the
simulated execution are distributed exactly as they are in the real execution. The “private” bi
shares differ between the real and simulated execution, but these shares are in protected LROTP
encrypted form (key i, c⃗i), where the key and ciphertext are never loaded into memory together.

The full proof that Real and Simulated are statistically close uses several hybrids:

Real to HybridReal : replacing real generations with simulated ones. The first hybrid
is HybridReal . It is obtained from Real by replacing each “real” generation with a “simulated”
generation that produces a key-ciphertext pair with the same underlying plaintext. In particular,
we replace each BankInit(bi) call for an output or y-input wire i, with a SimBankInit call, and we
replace the BankInit call for Bank internal with a SimBankInit call. We then replace each BankGen
call for an output or y-input wire i with a call to SimBankGen(bi), where bi is the appropriate
private share for wire i. We replace each pair of BankGen calls to Bank internal with a pair of calls
to SimBankGen(b), where b is independent and uniformly random in {0, 1}. Finally, we replace
each call to BankUpdate and BankRedraw with a call to SimBankUpdate and SimBankRedraw
(respectively). Other than these changes to the ciphertext bank calls, we run exactly as in Real .

56

630
Approved for Public Release; Distribution Unlimited.

Evaluation Eval(statet−1, xt)

statet−1 = (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

1. Generate keys and ciphertexts for all circuit wires:

(a) y input wire i:

(key i, c⃗
in
i)← BankGen(Bank i)

Bank i ← BankUpdate(Bank i)

(b) output wire output :

(keyoutput , c⃗
out
output)← BankGen(Bankoutput)

Bankoutput ← BankUpdate(Bankoutput)

(c) each internal wire i (in sequence):

(key i, c⃗
in
i)← BankGen(Bank internal)

(key i, c⃗
out
i)← BankGen(Bank internal)

Bank internal ← BankRedraw(Bank internal)

Bank internal ← BankUpdate(Bank internal)

(d) xt-input wire i: key i ← KeyGen(1κ), c⃗ini ← Encrypt(key i, 0)

2. Compute the public shares on all wires.

For the input wires: for each y-input wire i, ai ← 0. For each x-input wire i corresponding
to xt[j], ai ← xt[j].

Proceed layer by layer (from input to output) to compute the remaining public shares:

(a) for each NAND gate with input wires i, j and output wire k, compute:

ak ← SafeNAND(ai, key i, c⃗
in
i , aj , keyj , c⃗

in
j , keyk, c⃗

out
k)

(b) for each duplication gate with input wire i and output wires j, k, compute:

aj ← SafeDup(ai, key i, c⃗
in
i , keyj , c⃗

out
j)

ak ← SafeDup(ai, key i, c⃗
in
i , keyk, c⃗

out
k)

(c) output aoutput

3. the new state is: statet ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 11: Eval procedure performed on input xt, under OC leakage. See Section 5.1 for ciphertext
bank procedures, Section 6.1 for SafeNAND ,SafeDup.

The two views Real and HybridReal differ only in that in Real we have calls to BankInit ,
BankGen, BankUpdate, BankRedraw , whereas in HybridReal we have calls to the corresponding
simulated procedures. Note that the bi values given as input to SimBankGen in HybridReal are
distributed identically to the plaintexts underlying the ciphertexts generated in the corresponding
calls to BankGen in Real : for y-input wire i, corresponding to the j-th bit of y, bi is equal to y[j]
in both views. For each internal wire i, bi is an independently uniformly random bit in both views.
For the output wire output , boutput equals 0 in both views. By Lemmas 5.1 and 5.4, we get that the

57

631
Approved for Public Release; Distribution Unlimited.

Simulator Initialization SimInit(1κ, C)

1. for every y-input wire i, corresponding to y[j]:

Bank i ← SimBankInit(1κ)

2. for the output wire output :

Bankoutput ← SimBankInit(1κ)

3. for the internal wires:
Bank internal ← SimBankInit(1κ)

4. output: state0 ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 12: Simulator Initialization SimInit

Simulator SimEval(statet−1, xt, C(y, xt))

The simulator first computes v′i values for each wire i in the circuit by evaluating C (⃗0, xt).
For each circuit wire i, choose shares (ai, bi) for each wire:

xt input wire corresponding to xt[j]: ai ← xt[j], bi ← 0
y-input wire: ai, bi ← 0
internal wire: ai ←R {0, 1}, bi ← v′i ⊕ ai
output wire: aoutput ← C(y, xt), boutput ← v′output ⊕ aoutput

After the ai, bi shares have been computed for each wire, simulate Eval as follows:

• in Step 1, for each wire i, replace each call to BankGen for wire i with a call to SimBankGen
with bi. Replace each call to BankUpdate and BankRedraw with a call to SimBankUpdate
or SimBankRedraw (respectively).

• in Step 2, for each NAND gate with input wires i, j and output wire k, compute:

ak ← SafeNAND(ai, key i, c⃗
in
i , aj , keyj , c⃗

in
j , keyk, c⃗

out
k)

for each duplication gate with input wire i and output wires j, k, compute:

aj ← SafeDup(ai, key i, c⃗
in
i , keyj , c⃗

out
j)

ak ← SafeDup(ai, key i, c⃗
in
i , keyk, c⃗

out
k)

• as in Eval , the new state is statet ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 13: Sim procedure performed on input xt and circuit output C(y, xt)

joint distributions of the leakage in all of these calls, together with all keys and ciphertexts produced,
are statistically close in Real and in HybridReal . We can complete the generation of the view in
both cases (the leakage from SafeNAND and SafeDup) as a function of the keys and ciphertexts
produced, and we conclude that the two views are statistically close.

58

632
Approved for Public Release; Distribution Unlimited.

HybridReal to HybridReal ′ and Simulated to Simulated ′: replacing safe computations with
simulated leakage. Next, we obtain HybridReal ′ from HybridReal by replacing the SafeNAND
calls, in each execution and for each internal and output wire i, with calls to the SimNAND
simulator from Lemma 6.1, using HybridReal ’s ak public shares and the underlying distributions
on keys and ciphertexts (the underlying distributions are a function of the leakage values in prior
computations).

Similarly, we obtain a hybrid Simulated ′ from Simulated by replacing the SafeNAND calls with
calls to the SimNAND simulator, using SimEval ’s ai public shares and its underlying distributions
on keys and ciphertexts.

Note that, in particular, HybridReal ′ and Simulated ′ can no longer be generated efficiently
(because the SafeNAND simulator is not efficient). By Lemmas 5.3 and 5.5, the conditions of
Lemma 6.1 all hold for each replacement of SafeNAND by SimNAND in both views (given the
leakage in prior computations). In particular, the keys and ciphertexts involved in each SafeNAND
come from IuO distributions whose underlying distributions have high entropy (w.h.p.). This is
where we use the fact that, for each internal wire i, even given the leakage, the i-th wire’s ciphertexts
c⃗outi and c⃗ini are independent up to having the same orthogonality w.r.t. key . We conclude that
HybridReal and HybridReal ′ are statistically close, as are Simulated and Simulated ′.

Closeness of HybridReal ′ and Simulated ′. HybridReal ′ and Simulated ′ are both obtained as a
function of leakage from a sequence of SimBankGen calls: the leakage from these generations is
then used to compute the leakage for SimNAND calls (the leakage from the generations specifies
the underlying distributions used by SimNAND). In particular, the actual keys and ciphertexts
generated are never again accessed after their generation. The same post-processing is performed on
the leakage from the generations in both cases: namely, calls to SimNAND on the same underlying
distributions, and with identically distributed ai values. The two sequences of generations differ
only in the orthogonalities of the underlying plaintexts that are generated in the SimBankGen calls
for the output and the y-input wires (the plaintexts for internal wires are identically distributed).
By Lemma 5.2, we conclude that the leakage from the generations is statistically close in both
cases, and so HybridReal ′ and Simulated ′ are also statistically close.

References

[Ajt11] Miklos Ajtai. Secure computation with information leaking to an adversary. In STOC,
2011.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In ASIACRYPT, pages
722–739, 2011.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
pages 1–18, 2001.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty
computation secure against continual leakage. In STOC, 2012.

59

633
Approved for Public Release; Distribution Unlimited.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. In FOCS, pages 501–510, 2010.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryp-
tography against continuous memory attacks. In FOCS, pages 511–520, 2010.

[DLWW11] Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel Wichs. Storing secrets on
continually leaky devices. Cryptology ePrint Archive, Report 2011/369, 2011.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293–302, 2008.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT, pages 523–540,
2004.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In TCC, pages 343–360, 2010.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
EUROCRYPT, pages 135–156, 2010.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, pages 308–326,
2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In CRYPTO, pages 39–56, 2008.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In CRYPTO, pages 59–79, 2010.

[Imp10] Russel Impagliazzo. Personal communication, 2010.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In CRYPTO, pages 463–481, 2003.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leak-
age. In CRYPTO, pages 41–58, 2010.

60

634
Approved for Public Release; Distribution Unlimited.

[LLW11] Allison Lewko, Mark Lewko, and Brent Waters. How to leak on key updates. In
STOC, 2011.

[LRW11] Allison Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage resilience
through dual system encryption. In TCC, 2011.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In TCC, pages 278–296, 2004.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
CRYPTO, pages 18–35, 2009.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages
462–482, 2009.

[Rao07] Anup Rao. An exposition of bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), 14(034), 2007.

[Rot12] Guy N. Rothblum. How to compute under ac0 leakage without secure hardware. In
Manuscript, 2012.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

nc1. In FOCS, pages 554–567, 1999.

61

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

635
Approved for Public Release; Distribution Unlimited.

Multiparty Computation Secure Against
Continual Memory Leakage

Elette Boyle
MIT

eboyle@mit.edu

Shafi Goldwasser∗†
MIT and Weizmann

shafi@mit.edu

Abhishek Jain
UCLA

abhishek@cs.ucla.edu

Yael Tauman Kalai
Microsoft Research
yael@microsoft.com

ABSTRACT
We construct a multiparty computation (MPC) protocol
that is secure even if a malicious adversary, in addition to
corrupting 1-ε fraction of all parties for an arbitrarily small
constant ε > 0, can leak information about the secret state
of each honest party. This leakage can be continuous for
an unbounded number of executions of the MPC protocol,
computing different functions on the same or different set of
inputs. We assume a (necessary) “leak-free” preprocessing
stage.

We emphasize that we achieve leakage resilience without
weakening the security guarantee of classical MPC. Namely,
an adversary who is given leakage on honest parties’ states,
is guaranteed to learn nothing beyond the input and output
values of corrupted parties. This is in contrast with pre-
vious works on leakage in the multi-party protocol setting,
which weaken the security notion, and only guarantee that a
protocol which leaks ` bits about the parties’ secret states,
yields at most ` bits of leakage on the parties’ private in-
puts. For some functions, such as voting, such leakage can
be detrimental.

Our result relies on standard cryptographic assumptions,
and our security parameter is polynomially related to the
number of parties.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General;
F.0 [Theory]: General

∗Supported under NSF Contract CCF-1018064.
†This material is based on research sponsored by the
Air Force Research Laboratory under agreement number
FA8750-11-2-0225. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the Air Force Research Laboratory or the U.S.
Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

Keywords
Cryptography, secure multiparty computation, leakage re-
silience.

1. INTRODUCTION
The notion of secure multiparty computation (MPC), in-

troduced in the works of Yao [Yao82] and Goldreich, Mi-
cali and Wigderson [GMW87], is one of the cornerstones in
cryptography. Very briefly, an MPC protocol for computing
a function f allows a group of parties to jointly evaluate f
over their private inputs, with the property that an adver-
sary who corrupts a subset of the parties does not learn
anything beyond the inputs of the corrupted parties and
the output of the function f . Over the years, MPC proto-
cols have found numerous applications, such as in protocols
for auctions, electronic voting, private information retrieval,
and threshold and proactive cryptography.

The definition of security for MPC assumes that an adver-
sary sees the messages sent and received by honest parties,
but their internal state is perfectly secret. However, over the
last two decades, it has become increasingly evident that in
the real world, attackers can gain various additional infor-
mation about the secret states of the honest parties via vari-
ous side-channel attacks (see [Koc96, AK96, QS01, GMO01,
OST06, HSH+08] and references therein).

In this work, we study MPC in the setting where an
adversary, who corrupts an arbitrary subset of parties in
the protocol, can also leak information about the entire se-
cret state of each honest party throughout the protocol ex-
ecution (except during a designated leak-free preprocessing
stage). Leakage is modeled by allowing the adversary to
query leakage functions, as follows. Each leakage function is
computed by an arbitrary poly-size circuit, with bounded
output-length, which is applied to the secret state of an
honest processor. The adversary may choose the leakage
functions adaptively, based on the entire history of commu-
nication, previous leakage, and internal state of corrupted
processors.

The security guarantee we aim for and will achieve, is
that any adversary in the above leakage model, does not
learn anything beyond the inputs of the corrupted parties and
output values of the functions computed by the MPC pro-
tocol. This is formalized via the standard real/ideal world
paradigm. In the ideal world, parties do not interact directly,
but rather send their inputs to an “ideal functionality”, who
computes the function for them, and sends them the output.
There is no leakage in the ideal world. An MPC protocol
is said to be secure, if for every “real world” leakage adver-

636
Approved for Public Release; Distribution Unlimited.

sary A (as above) there exists an “ideal world” simulator S,
such that the output of all the parties (including the adver-
sary) in the real world, is computationally indistinguishable
from the output of all the parties (including the simulator)
in the ideal world.

Weakly Leakage-Resilient MPC.
We note that recently there have been several results that

consider the problem of constructing leakage-resilient proto-
cols [GJS11, BCH11, DHP11, BGG+11]. However, in con-
trast to the security guarantee we consider here, all these
results give a weak security guarantee (though, they do not
rely on a leak-free preprocessing stage). They guarantee that
an adversary that runs the protocol and leaks ` bits about
the honest parties’ secret state, does not learn more than the
output of the function being computed, and an additional `
bits about the private inputs of the honest parties. We note
that leakage of ` bits on the private inputs of the honest par-
ties could be detrimental to the security of the entire MPC
protocol. For example, say the function to be computed by
the MPC protocol is to tally up the binary votes of the par-
ties. Then, the ` bits can be exactly the complete ` votes of
any ` honest parties, rendering the protocol useless.

Moreover, this weak security notion allows the adversary
to learn ` bits about the joint view of all the honest parties.
Thus, another instructive example is to think of the function
being computed as a threshold decryption function, where
each party has a secret-share of the decryption key. In this
case, the weak security guarantee allows the leakage of `
bits from the decryption key, which for some decryption al-
gorithms could entirely compromise security.

Interestingly, we use the result in [BGG+11], which con-
structs an MPC protocol with the weak security guarantee,
as a building block to construct a leakage-resilient MPC pro-
tocol with the classical (strong) security guarantee.

Security Against Continual Leakage.
We further remark that the weaker security notion previ-

ously achieved cannot be extended meaningfully to continual
leakage in the MPC setting. That is, it cannot address the
setting where the n users do not just perform a one-shot
MPC protocol, but rather engage in an unbounded num-
ber of MPC protocols for many functions, and during each
MPC invocation the adversary leaks ` bits from each of the
honest party’s internal state. This is obvious, as allowing
the repeated leakage of new ` bits of information on the
honest parties’ inputs would eventually leak the honest par-
ties’ inputs in their entirety. For example, in the setting
where a set of parties jointly compute a threshold decryp-
tion function (as described above), they may want to carry
out many decryption computations, where leakage happens
repeatedly. Since each ` bits of leakage corresponds to `
bits of leakage on the decryption key, the decryption key
may eventually be completely leaked! Nonetheless, we use
the result of [BGG+11] as a building block to achieve our
stronger continual leakage security guarantee.

1.1 Our Result: Continual Leakage-Resilient
MPC

In this work, we construct a leakage-resilient MPC proto-
col for any function f , without weakening the security guar-
antee. We consider a continual setting, where parties over
time compute many functions on their inputs. Our security

guarantee is that an adversary does not learn anything be-
yond the inputs of the corrupted parties and the output of
the functions computed, even if he continually leaks informa-
tion about the honest parties’ secret states throughout the
protocol executions. Parties’ secret states are periodically
updated via an update procedure, during which the adver-
sary can continue to leak information. We allow each of the
adversary’s leakage functions to be an arbitrary (shrinking)
polynomial time computable function of the entire secret
state of each honest party (separately), and these leakage
functions can be chosen adaptively on all information the
adversary has seen thus far.

Theorem (Informal).
Under (standard) intractability assumptions, for every con-

stant ε > 0 there exists an MPC protocol for computing an
unbounded number of functions among n parties of which
at least ε fraction are honest. The protocol is secure against
continual leakage, assuming a one-time leak-free preprocess-
ing stage in which the inputs are shared, and where the se-
curity parameter is polynomially related to the number of
parties n.

A few remarks about our result statement are in order.

“Leak-free” Preprocessing.
We assume the existence of a leak-free preprocessing stage.

We stress that this is a necessary assumption to obtain our
strong security guarantee, since otherwise an adversary can
simply leak ` bits about an honest party’s secret input, be-
fore the MPC even commences. More generally, we note that
such a leak-free preprocessing stage is a necessary step in the
construction of any leakage resilient cryptographic primitive
which receives a secret input, and where the security guaran-
tee is that the secret input does not leak. This is the case, for
example, in the compilers of [ISW03, FRR+10, JV10, GR10,
GR12], which transform algorithms with a secret state into a
functionally equivalent leakage-resilient variant of the same
algorithm.

We remark that our preprocessing stage in fact has the
nice property that it can be decomposed into two parts,
namely, (a) an interactive preprocessing phase that is inde-
pendent of the parties’ inputs and the functions to be com-
puted, and (b) a non-interactive input dispersal phase. We
stress that the first phase is run only once in the beginning
of time, before the parties know what their inputs are or
what functions they wish to compute. The second (non-
interactive) phase is run whenever the parties choose a set
of inputs.

While both of these parts are assumed to be “leak-free”,
we do allow leakage between them. We refer the reader to
Section 3 for a formal description of our model.

Multi-function MPC and Continual Leakage.
We note that in the standard (leak-free) MPC literature,

one typically considers a one-shot MPC protocol, as opposed
to considering the setting where the parties compute an un-
bounded (polynomial) number of functions. The reason we
focus on the latter setting, is to emphasize that we need
to run the leak-free preprocessing stage only once, and then
the parties can compute any unbounded number of functions
f1, . . . , f` in a leaky environment.

We further emphasize that we allow the adversary to leak

637
Approved for Public Release; Distribution Unlimited.

continuously on the secret states of the parties during the
unbounded computations; the only (necessary) requirement
is that the secret states of the parties are periodically up-
dated (since otherwise they will eventually be completely
leaked). However, the adversary is allowed to leak even dur-
ing each update procedure. We do not bound the total num-
ber of bits that the adversary leaks, but rather only bound
the leakage rate: i.e., the number of bits leaked between up-
dates.

Extending to Multi-Input MPC.
We stated our theorem for the case of computing many

functions on a single set of inputs. However, our construc-
tion is easily extended to the many-input case. Whenever a
party chooses a new input, the (leak-free) non-interactive in-
put phase described above can be repeated. Namely, party
Pi on new input xi performs a local computation on xi,
sends a message to the other parties, and erases xi. One
may think of this model as a “hot potato” model, where the
parties never store their inputs for very long (since they are
concerned with leakage), but rather immediately share their
input (as if it were a “hot potato”).

Number of Parties vs. Security Parameter.
Notice that in our theorem, the security parameter is poly-

nomially related to the number of parties. Namely, the se-
curity increases with the number of parties. Therefore, this
theorem is meaningful only when the number of parties in
the MPC protocol is large. One may ask whether this re-
striction on the number of parties being large, or the re-
striction that an ε-fraction is honest, is inherent, or whether
it is simply an artifact of our techniques. Unfortunately,
it turns out that this restriction cannot be removed alto-
gether. In particular, one can prove that there does not
exist a secure leakage-resilient two-party computation pro-
tocol in our model.1 Similarly, one can show that there
does not exist a secure leakage-resilient MPC protocol if all
the parties except one are malicious. Moreover, jumping
ahead, in Section 1.4 we show that proving this theorem for
constant number of parties, implies an “only computation
leaks (OCL) compiler”(without leak-free hardware) that has
only a constant number of sub-computations (or“modules”),
which is an interesting open problem on its own. We refer
the reader to Section 1.4 for details.

Assumptions.
In our construction, we rely on several underlying crypto-

graphic primitives, including a fully homomorphic encryp-
tion (FHE) scheme [Gen09, BGV11], a non-interactive zero-
knowledge (NIZK) proof-of-knowledge system [FLS90], a stan-
dard MPC protocol [GMW87], an equivocal commitment
scheme [FS89], a weakly leakage-resilient MPC protocol [BGG+11],

1The reason is the following: Assume the adversary controls
party P1. In this case, he knows the entire secret state s1

of P1, and can choose his leakage function L to depend on s1:
i.e., L=Ls1 . Note that L takes as input the secret state s2

of P2, and thus the adversary can leak any (shrinking) func-

tion g(s1, s2) by setting Ls1(s2) , g(s1, s2). But, recall that
from the secret states (s1, s2) the parties can compute any
function of the original inputs (x1, x2). Therefore, the func-
tion leaked can be an arbitrary function of the original in-
puts. Clearly, such leakage cannot be simulated in the ideal
world.

and an LDS compiler [BCG+11] (which can be thought of as
a stronger version of an OCL compiler as in [JV10, GR10,
GR12]). These primitives have been shown to exist under
various standard computational intractability assumptions,
and we refer the reader to Section 2 for details on these prim-
itives, and the corresponding assumptions. We note however
that all these primitives, excluding FHE, can be based on
the DDH assumption.

The use of FHE in our construction is in order to ensure
the number of parties required will be independent of the
complexity of the functions computed by the MPC proto-
col.2

Applications.
We demonstrate the application of our result to the prob-

lem of delegating multi-party computation to outside servers.
Generally, the setting is of a large set of parties who need to
perform a joint computation, and they would like a service
(such as Amazon) to do the computation for them. How-
ever, they do not trust any one server, and further believe
that any server can be leaked upon.

Usually, MPC provides a solution around the trust prob-
lem by using several servers, as follows: Each party secret
shares her input, and gives one share to each server; then
the servers carry out the desired computation by running
an MPC protocol; finally, one argues that if there are suf-
ficiently many honest parties, then security is guaranteed.
However, if an adversary can obtain leakage information
from the honest servers, then this is no longer true. To ar-
gue security in the leaky setting, the servers will need to run
a leakage-resilient MPC protocol. Moreover, if the servers
compute many functions on the secret inputs, then they will
need to run an MPC protocol that is secure against con-
tinual leakage. Let us demonstrate three examples of this
setting.

• Electronic election: Say an electronic election among
many voters is to be held. Clearly running an MPC
protocol among all voters is prohibitive, since it re-
quires interaction between every two voters. Instead,
the MPC protocol is run by a proxy of n servers. Since
these servers compute on very sensitive information,
attackers may try to employ various side-channel at-
tacks to learn this information. Thus, to ensure the
secrecy of the individual votes, the servers should run
a leakage-resilient MPC protocol.

• Medical Data: One may envision a huge database which
contains the medical data of every patient in the US.
To compute any global statistic on this data, one would
not want to put complete trust in any single database.

2We emphasize that, while FHE immediately solves the re-
lated problem of computing on encrypted data, FHE does
not suffice for our purposes. To illustrate, suppose the par-
ties collectively generate a public key pk for the FHE scheme,
so that they each hold a secret share of the correspond-
ing secret key, and then each publish an encryption of their
input xi. Then for any efficiently computable function f ,
they can easily produce an encryption of the desired output,
Encpk(f(~x)). However, the challenge is (even for a one-shot
function computation) how to enable the parties to collec-
tively decrypt this ciphertext and reveal f(~x) itself, while
simultaneously ensuring that the adversary (who can cor-
rupt nearly all of the parties, and leak on all the rest) is not
able to learn any information on the xi’s.

638
Approved for Public Release; Distribution Unlimited.

Instead, it is distributed to n different databases. Each
time they need to compute statistics on this data, they
engage in an MPC protocol. As in the voting example,
since these databases contain very sensitive informa-
tion, an adversary may try to obtain this information
via a leakage attack. Thus, to ensure security, the
databases must run an MPC protocol that is secure
against continual leakage.

• Differential Privacy: In the area of differential privacy,
great care is taken to ensure that the data of individ-
uals is protected. However, usually it is assumed that
there is an honest curator, and that the people in the
database hand their secret data to this curator. How-
ever, it seems likely that people may not trust any
single curator with highly sensitive information (such
as whether they do or do not have a disease which may
scare off life insurance providers). Thus, as in the pre-
vious examples, this trusted curator can be replaced
by a multitude of parties of which only a small frac-
tion is assumed to be honest. Moreover, if these par-
ties compute on the database using a leakage-resilient
MPC protocol, then security is guaranteed even if all
the honest parties are leaked upon (as long as some
ε-fraction of the honest parties are not fully leaked
upon).

1.2 Related Work

Leakage-Resilient Non-Interactive Primitives.
There has been an extensive amount of research on leakage-

resilient cryptography in the past few years. Most prior
works construct specific leakage-resilient non-interactive prim-
itives, such as leakage-resilient encryption schemes and leakage-
resilient signature schemes [DP08, AGV09, Pie09, DKL09,
ADW09, NS09, KV09, DGK+10, FKPR10, ADN+10, KP10,
GR10, JV10, BG10, BKKV10, DP10, DHLW10a, DHLW10b,
LRW11, MTVY11, BSW11, LLW11, DLWW11, BCG+11].

Weakly Leakage-Resilient Interactive Protocols.
There has also been prior work on the problem of con-

structing leakage-resilient interactive protocols [GJS11, BCH11,
BGK11, DHP11, BGG+11]. Garg et. al. [GJS11] present
a leakage-resilient zero-knowledge proof system. Bitansky
et. al. [BCH11] present leakage-resilient protocols for various
functionalities (such as secure message transmission, obliv-
ious transfer, and commitments) which are secure against
semi-honest adversaries, and also zero knowledge, in the UC
framework. Boyle et. al. [BGK11] present a leakage-resilient
multi-party coin tossing protocol. D̊amgard, Hazay, and Pa-
tra [DHP11] present a general leakage-resilient two-party se-
cure function evaluation protocol for NC1 functions in the
semi-honest setting. In their model, they further place a
restriction that the adversary must leak on the input and
randomness of an honest party’s secret state independently.
Finally, very recently Boyle et. al. [BGG+11] constructed a
general leakage-resilient MPC protocol that is secure in the
UC setting.

However, all the results in the interactive setting men-
tioned above offer a weak security guarantee, that an adver-
sary that leaks ` bits in the real world, gains at most ` bits
of secret information about the secret inputs of the parties.
(An exception is the work of [BGK11] that considered the

specific coin-tossing functionality, where the parties do not
have any secret inputs.) Moreover, the ` bits of secret in-
formation gained is an arbitrary (poly-size) function of the
joint inputs x1, . . . , xn.

Only Computation Leaks Model.
Finally, we mention that various leakage models have been

considered in the literature that restrict the leakage func-
tions in different ways. Most notable is the only computa-
tion leaks (OCL) model of Micali and Reyzin [MR04]. The
axiom of this model is that secret information that is merely
stored in memory does not leak, but any information that
is used during a computation may leak.

Several results prove security for specific cryptographic
primitives in the OCL leakage model [DP08, Pie09, FKPR10].
More generally, it is known how to convert any circuit into
one that is secure in the OCL model [GR10, JV10, GR12].
In particular, a recent work of Goldwasser and Rothblum
[GR12] shows how to do this unconditionally, making no
intractability assumptions, and without resorting to secure
leak-free hardware, unlike the previous works. Specifically,
Goldwasser and Rothblum construct an efficient compiler
that takes any circuit (with some secret values hard-wired)
and converts it into a leakage-resilient one, consisting of sev-
eral modules, each of which performs a specific sub-computation.
The security guarantee is that an adversary, who at any
point of time throughout the computation obtains bounded
leakage from the “currently active” module, does not learn
any more information than having black-box access to the
circuit. We will use a variant of this result (namely, an LDS
compiler; see Section 2.5) to construct our leakage-resilient
MPC scheme. In particular, we use [GR12] as a building
block in our construction. See Section 1.3 for details.

We stress that our result does not use the OCL assump-
tion, and we allow the adversary to compute leakage func-
tions on everything held in the memory of each party (except
during the preprocessing phase and during the input phase).

1.3 Overview of Our Construction

Starting point – OCL Compiler.
As discussed earlier, it is known how to convert any circuit

into one that is secure in the only computation leaks (OCL)
model (without assuming secure hardware) [GR12]. In light
of this result, a natural first idea toward realizing our goal
of constructing leakage-resilient MPC protocols, is the fol-
lowing. Let P1, . . . , Pn denote the set of all parties, and let
U~x be a universal circuit that has the secret input vector ~x
of all the parties hard-wired into it and on input a circuit f
outputs U~x(f) = f(x). Then, very roughly, the candidate
MPC protocol works as follows. First, in the “leak free”
preprocessing phase, apply the OCL compiler of [GR12] on
circuit U~x to obtain a set of modules Sub1, . . . , Subn such
that on any input f , the “compiled” circuit (consisting of
Sub1, . . . , Subn) outputs U~x(f) = f(~x). Next, in the com-
putation phase, in order to securely compute a function f ,
each party Pi emulates the module Subi (such that the com-
putation of Subi is performed by party Pi), where the input
of Sub1 is f , and the output of Subn is the protocol out-
put f(~x). Finally, in the update phase, the parties update
their respective modules by running the update algorithm
of the OCL compiler.

Now, assuming that we can reduce (independent) leakage

639
Approved for Public Release; Distribution Unlimited.

on each party to (independent) leakage on its correspond-
ing module, one may hope that the above MPC protocol
achieves the desired security properties: in particular, pri-
vacy of the inputs that were “encoded” in the preprocessing
phase. Unfortunately, as we explain below, this is not the
case. Nevertheless, as will be evident from the forthcom-
ing discussion, the above approach serves as a good starting
point toward realizing our goal.

OCL Compiler vs. LR-MPC.
There are two main differences between the setting of

leakage-resilient MPC (LR-MPC) and an OCL compiler.

1. The first difference is perhaps best illustrated by the
fact that an OCL compiler only guarantees security
against an external adversary who can obtain leakage
from the modules. In contrast, in the setting of LR-
MPC, we wish to guarantee security against an inter-
nal adversary, who may also corrupt a subset of the
parties.

More concretely, recall that the security of the OCL
compiler crucially relies on the assumption that an ex-
ternal adversary can only obtain bounded, independent
leakage on each module. Further, in order for the cor-
rectness of the compiled circuit to hold, each module
must perform its computation as specified. As a result,
the above approach, at best, yields an MPC protocol
that is secure when all the parties are honest (not even
semi-honest) but can be leaked upon by an external
adversary. Specifically, note that if an internal adver-
sary can corrupt some of the parties, then we can no
longer guarantee correctness of computation, and even
worse, an adversary may be able to obtain joint leak-
age on multiple modules, and learn the entire secret
state of modules corresponding to corrupted parties,
thus violating both of the above stated requirements.

2. The second difference between the OCL compiler and
the leakage-resilient MPC setting is that in the OCL
setting, the communication between the modules is as-
sumed to be private (but may be leaked), and leakage
is assumed to happen “in order”; i.e., only a module
which is currently computing can be leaked upon. On
the other hand, in the leakage-resilient MPC setting,
the entire communication is to be known to the adver-
sary, and moreover, leakage on any party can happen
at any time.

Emulating Modules via Weakly LR-MPC.
Our key idea to circumvent the first problem stated above

is to emulate each Subi by a designated set of parties Si =
{Pi1 , . . . , Pi`}, instead of a single party Pi. More concretely,
we secret share Subi between Pi1 , . . . , Pi` , who then run a
specific MPC protocol Π to jointly emulate the (function-
ality of) module Subi. Now, note that as long as at least
one of the parties in the designated set Si is honest, the
emulation of Subi will be “correct”, and if leakage on each
honest party is bounded, then we can expect the leakage on
the module Subi to be bounded as well. Furthermore, if all
of the designated sets Si for the modules Subi are disjoint
(i.e., no party is contained within two different sets), then
the leakage on each module will be independent, as required.
However, note that since we are in the setting of leakage, in

order for the above idea to work, we need the MPC protocol
Π to satisfy some form of leakage-resilience. Thus, a priori,
it seems that we haven’t made any progress at all.

Our next crucial observation is that protocol Π in fact
only needs to a satisfy a weaker form of leakage-resilience.
Specifically, we only require that leakage on the secret state
of each party Pi` executing protocol Π (to emulate Subi)
can be “reduced” to leakage on the module Subi. (This suf-
fices since the OCL compiler allows bounded leakage on each
module.) More generally, this translates to constructing an
MPC protocol such that the leakage on the secret states of
the honest parties in the real world can be reduced to leak-
age on the inputs of the honest parties in the ideal world.
Fortunately, an MPC protocol (for any poly-size function f)
satisfying the above (weak) form of leakage-resilience was
recently constructed by Boyle et al. [BGG+11]. Thus, we
are able to employ their construction here.3

However, the result of Boyle et al. is only for determinis-
tic functions, whereas the modules in the OCL construction
compute randomized functions. Thus, we need to extend the
weakly leakage-resilient MPC to hold for randomized com-
putations. See Section 2.6 (and Section 2.6.1 in particular)
for further details.

Using an LDS Compiler Instead of an OCL Compiler.
Our key idea to circumvent the second problem stated

above is to use an LDS compiler instead of an OCL compiler.
The LDS (leaky distributed system) model was introduced
in [BCG+11], and it strengthens the OCL model in two ways
(which are exactly the strengthenings we need). First, in the
OCL model, leakage occurs in a certain ordering (based on
the order of computation). The LDS model strengthens the
power of the adversary, by allowing him to leak from the
sub-computations in any order he wishes. Moreover, he can
leak a bit from Subi, then leak a bit from Subj , and based
on the leakage values, leak again on Subi. So, the adversary
controls which Subi he wishes to leak from. In addition,
in the LDS model, the adversary can view and control the
entire communication between the modules. We refer the
reader to Section 2.5 for details on the LDS compiler.

By using an LDS compiler, as opposed to an OCL compiler,
we get around the second problem mentioned above.

Reducing Number of Parties via FHE.
An important issue that was overlooked in the previous

discussion is the following. The only known OCL compiler
that does not rely on leak-free hardware [GR12], and thus
the only known LDS compiler without leak-free hardware,
suffers from the drawback that the number of modules in
the “compiled” circuit is linear in the size of the original
circuit. As a result, when we apply the LDS compiler on U~x,
whose size grows with |~x|, the number of resultant modules
is more than the number of parties! Thus, a priori, it is not
even clear how to realize the above approach.

3At this point, an advanced reader may question whether
the result of Boyle et al. [BGG+11], in conjunction with
a leakage-resilient secret sharing scheme, directly yields a
leakage-resilient MPC protocol in our model. Unfortunately,
this is not the case since the simulator of Boyle et al. requires
joint leakage on the honest party inputs, even when the real
world adversary makes disjoint leakage queries on the secret
states of honest parties. We refer the reader to Section 1.4
for more details.

640
Approved for Public Release; Distribution Unlimited.

In order to resolve this above problem, we make crucial
use of fully homomorphic encryption (FHE) in the following
manner. Instead of simply applying the LDS compiler to
U~x, we now first compute a key pair (pk, sk) for an FHE
scheme, and then apply the LDS compiler to the decryption
circuit Decsk(·) with the secret key sk hardwired. Note that
the number of resultant modules is now independent of the
number of parties. Now, in a non-interactive input phase
(that is also “leak-free”), the parties Pi each encrypt their
respective inputs xi under the public key pk, and publish
the resulting ciphertexts x̂i. Then, whenever the parties
wish to compute a functionality f over their inputs, they
homomorphically evaluate ŷf , Evalpk((x̂1, ..., x̂n), f), and
collectively evaluate the compiled decryption circuit on the
value ŷf in the manner described above.

We note that the use of FHE allows us to obtain the de-
sired property that the preprocessing phase is independent
of the inputs and functions to be computed, since in this
phase a key pair (pk, sk) is generated and the LDS compiler
is applied to the corresponding decryption circuit Decsk(·).
In addition, the input phase is non-interactive, since in this
phase the parties simply compute and send an encryption of
their inputs.

Missing Pieces.
A few technical issues still remain undiscussed. For exam-

ple, it is not immediately clear how to choose the designated
sets of parties Si such that at least one of the parties in
each set Si is honest, and each set Si is independent. Very
roughly, to address this problem, we employ (an adapted
version of) the committee election protocol of Feige [Fei99]
to divide the parties into several committees, one for each
module. Then, by a careful choice of parameters, we are
able to obtain the desired guarantees. We refer the reader
to the technical sections for more details.

1.4 Future Directions

LR-MPC for Constant Number of Parties.
Perhaps the most interesting open question left from this

work is to construct a leakage-resilient MPC protocol for
constant number of parties. We note that such a result (even
if we only consider adversaries that leak, but do not corrupt
any party) will imply the following interesting corollary: The
existence of an efficient compiler that converts any circuit
into a leakage-resilient circuit that is secure in the “only
computation leaks” (OCL) model with constant number of
modules (and without assuming leak-free hardware). We
refer the reader to Section 2.5 for details.

To see this implication, consider such a leakage-resilient
MPC protocol. Let (an arbitrary) party P1 take as his se-
cret input the secret circuit C to be compiled, and the other
parties take no inputs. After the leak-free preprocessing
stage (and the leak-free input stage), each party Pi holds a
secret state si. We think of each party Pi as being a mod-
ule Subi in the compiled circuit. To evaluate the circuit C
on (public) input x, the modules carry out a leakage-resilient
MPC computation of the universal function Ux, that on in-
puts {si}, which form some sort of secret-sharing of C, out-
puts C(x). Since the OCL model allows leakage on each
module separately, this corresponds to allowing leakage on
each party separately, which according to our definition of

security gives no information about the secret C beyond the
output value C(x).

Weakly Leakage-Resilient MPC with Disjoint Leak-
age.

Another interesting open question is to construct a leakage-
resilient MPC protocol without assuming any leak-free stages,
and requiring the following weakened security definition: For
each “real world” adversary that makes ` leakage queries,
where each leakage query is applied to the secret state of
a single honest party, there exists a simulator in the “ideal
world” that makes at most ` leakage queries, where each
leakage query is applied to the input of a single honest party.

We note that the recent result of [BGG+11] allowed the
adversary in the “real world” to make leakage queries on the
joint secret state of all the parties, and allowed the simu-
lator in the “ideal world” to make leakage queries that are
a function of all the inputs of the honest parties. Unfortu-
nately, their simulator requires joint leakage on the honest
party’s inputs even in the case where the adversary only
makes disjoint leakage queries.

We next show that such a leakage-resilient MPC protocol,
where the leakage in the real world and in the ideal world is
made on each party separately, would imply a result similar
to ours, which allows a leak-free preprocessing stage, but
considers a strong security guarantee. Intuitively, in the
leak-free preprocessing stage, the parties will secret share
their inputs via a secret sharing scheme that is resilient to
continual leakage. Such a scheme was recently presented by
Dodis et. al. [DLWW11]. Then, any time the parties wish
to compute a function f of their secret inputs, they will run
the weak leakage-resilient MPC protocol. Security follows
from the fact that the adversary only gains leakage from the
secret share of each party separately, and from the fact that
the secret-sharing scheme is resilient to continual leakage on
each of its shares.

LR-MPC with Non-Interactive Preprocessing.
Finally, an interesting open question that is left by this

work, is to construct a leakage-resilient MPC protocol with-
out the initial leak-free preprocessing stage, but only with
the leak-free non-interactive input stages.

2. PRELIMINARIES

2.1 Non-Interactive Zero Knowledge

Definition 2.1. [FLS90, BFM88, BSMP91]:
Π = (Gen,P,V,S = (Scrs,Sproof)) is an efficient adaptive
NIZK proof system for a language L ∈ NP with witness
relation R if Gen,P,V,Scrs,Sproof are all ppt algorithms, and
there exists a negligible function µ such that for all k the
following three requirements hold.

• Completeness: For all x,w such that R(x,w) = 1,
and for all strings crs← Gen(1k),

V(crs, x,P(x,w, crs)) = 1.

• Adaptive Soundness: For all adversaries A, if crs←
Gen(1k) is sampled uniformly at random, then the prob-
ability that A(crs) will output a pair (x, π) such that
x 6∈ L and yet V(crs, x, π) = 1, is at most µ(k).

641
Approved for Public Release; Distribution Unlimited.

• Adaptive Zero-Knowledge: For all ppt adversaries
A, ∣∣Pr[ExpA(k) = 1]− Pr[ExpSA(k) = 1]

∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AP(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = Sproof(crs, trap, x).

We next define the notion of a NIZK proof of knowledge.

Definition 2.2. Let Π = (Gen,P,V,S = (Scrs,Sproof)) be
an efficient adaptive NIZK proof system for an NP language
L ∈ NP with a corresponding NP relation R. We say that Π
is a proof-of-knowledge if there exists a ppt algorithm E
such that for every ppt adversary A,

Pr[A(crs) = (x, π) and E(crs, trap, x, π) = w∗

s.t. V(crs, x, π) = 1 and (x,w∗) /∈ R] = negl(k),

where the probabilities are over (crs, trap) ← Scrs(1k), and
over the random coin tosses of the extractor algorithm E.

Lemma 2.3 ([FLS90]). Assuming the existence of en-
hanced trapdoor permutations, there exists an efficient adap-
tive NIZK proof of knowledge for all languages in NP.

2.2 Equivocal Commitments
Informally speaking, a bit-commitment scheme is equivo-

cal if it satisfies the following additional requirement. There
exists an efficient simulator that outputs a fake commit-
ment such that: (a) the commitment can be decommitted
to both 0 and 1, and (b) the simulated commitment and
decommitment pair is indistinguishable from a real pair.
We now formally define the equivocability property for bit-
commitment schemes in the CRS model.

The following definition is adapted from [FS89, CIO98].

Definition 2.4. A non-interactive bit-commitment scheme
(Gen,Com,Rec) in the CRS model is said to be an equivo-
cal bit-commitment scheme in the CRS model if there exists
a PPT simulator algorithm S = (Scrs,Scom) such that Scrs

takes as input the security parameter 1k and outputs a CRS
and trapdoor pair, (crs, trap); and Scom takes as input such
a pair (crs, trap) and generates a tuple (c, d0, d1) of a com-
mitment string c and two decommitments d0 and d1 (for 0
and 1), such that the following holds.

1. For every b ∈ {0, 1} and every (c, d0, d1)← Scom(crs, trap),
it holds that

Rec(crs, c, db) = b.

2. For every b ∈ {0, 1}, the random variables

{(crs, c, d) : crs← Gen(1k), (c, d)← Com(crs, b)}

and

{(crs, c, db) : (crs, trap)← Scrs(1k),

(c, d0, d1)← Scom(crs, trap)}

are computationally indistinguishable.

Reusable CRS.
Note that the simulator algorithms Scrs and Scom are de-

scribed as separate algorithms in the Definition 2.4 to high-
light that it is not necessary to create a separate CRS for
every equivocal commitment, i.e., the CRS is reusable. In
this case, Definition 2.4 can be extended in a straightfor-
ward manner to consider indistinguishability of an honestly
generated tuple consisting of a crs and polynomially many
commitment-decommitment pairs, from a simulated tuple.

Lemma 2.5 ([CLOS02]). Assuming the existence of one-
way functions, there exists an equivocal bit commitment in
the (reusable) CRS model.

String Equivocal Commitments.
For our purposes, we actually use string equivocal com-

mitment schemes. Note that such a scheme can be easily
constructed by simply repeating the above bit commitment
scheme in parallel. More specifically, a commitment to a
string of length n is a vector (c1, ..., cn), with corresponding
decommitment vector (d1, ..., dn). The simulator algorithm
Scom produces a commitment vector and a pair of decommit-
ment vectors d0 = (d0

1, ..., d
0
n), d1 = (d1

1, ..., d
1
n). A decom-

mitment to any particular bit string a = (a, ..., an) can be
formed by selecting the appropriate decommitment values
(da11 , . . . , dann). We denote this vector as da.

2.3 The Elect Protocol
As part of our protocol, we elect disjoint committees, and

need the guarantee that (with overwhelming probability in
k) the number of parties in each committee is of the correct
approximate size, and that a constant fraction of each com-
mittee is honest. Such a protocol can be obtained using the
technique of Feige’s lightest bin committee election protocol
[Fei99].

Feige’s protocol selects a single committee of approximate
size k out of n parties by having each party choose and
broadcast a random bin in

[
n
k

]
.4 The elected committee E

consists of the parties in the lightest bin. Feige demonstrated
that no set of malicious parties M ⊂ [n] of size (1 − ε)n
can force a committee E to be elected for which |E ∩M | is
significantly greater than (1−ε)k, by using a Chernoff bound
to argue that each bin contains nearly εk honest parties.

Suppose we wish to elect m disjoint committees, each of
size approximately k, where k is the security parameter,
and where the number of parties n is at least n ≥ mk2. We
consider the following protocol, Elect. Each party samples
a random value xi ←

[
n
k

]
. The resulting committees are

precisely the m lightest bins. Namely, suppose the lightest
bin is `1, the second lightest bin is `2, etc. Then Ej = {Pi :
xi = `j}, for j = 1, ...,m.

4In Feige’s original work [Fei99], he considered the specific
case of k = logn. For our purpose, we need to elect com-
mittees whose size depends on the security parameter (to
achieve negligible error), and thus we consider general k.

642
Approved for Public Release; Distribution Unlimited.

Lemma 2.6. Let n ≥ mk2, and let M ⊂ [n] be any sub-
set of corrupted parties of size (1 − ε)n. Then the protocol
Elect yields a collection of m disjoint committees {Ej}mj=1

such that the following properties simultaneously hold with
probability ≥ 1− e−Θ(k):

1. ∀j, ε
2
k ≤ |Ei| ≤ (1 + o(1))k,

2. ∀j, |Ej∩M||Ej |
< 1− ε

3
.

The proof of Lemma 2.6 is very similar to that of the
disjoint committee election protocol of [BGK11]. We refer
the reader to the full version for a complete analysis.

We remark that a constant fraction of honest parties in
the elected committees will be needed for the weakly leakage-
resilient MPC for randomized functionalities (see discussion
in Section 2.6.1).

2.4 Fully Homomorphic Encryption
A fully homomorphic public-key encryption scheme (FHE)

consists of algorithms (Gen,Enc,Dec,Eval). The first three
are the standard key generation, encryption and decryption
algorithms of a public key scheme. The additional algorithm
Eval is a deterministic polynomial-time algorithm that takes
as input a public key pk, a ciphertext x̂ ← Encpk (x) and
a circuit C, and outputs a new ciphertext c = Evalpk (x̂, C)
such that Decsk (c) = C (x), where sk is the secret key corre-
sponding to the public key pk. It is required that the size of
c depends polynomially on the security parameter and the
length of the output C (x), but is otherwise independent of
the size of the circuit C.

Several such FHE schemes have been constructed, start-
ing with the seminal work of Gentry [Gen09]. Recently, new
schemes were presented by Brakerski, Gentry and Vaikun-
tanathan [BV11, BGV11] that achieve greater efficiency and
are based on the LWE assumption. We note that in these
schemes, the size of the public key depends linearly on the
depth of the functions being evaluated. As a result, the com-
plexity of our preprocessing phase depends on the maximum
depth of functions that we would like to compute. This is-
sue can be avoided altogether if we assume that the schemes
of [BV11, BGV11] are circular secure.

For our construction, we need an FHE scheme with the
following additional property, which we refer to as certifia-
bility. Loosely speaking, an FHE scheme is said to be cer-
tifiable, if there is an efficient algorithm that takes as input
a random string r and tests whether it is “good” to use r
as randomness in the encryption algorithm Enc. More pre-
cisely, a certifiable FHE scheme is associated with a set R,
which consists of all the“good”random strings, such that (1)
a random string is in R with overwhelming probability; and
(2) The Eval algorithm and the decryption algorithm Dec
are correct on ciphertexts that use randomness from R to
encrypt. A formal definition follows.

Definition 2.7. A FHE scheme is said to be certifiable if
there exists a subset R ⊆ {0, 1}poly(k) of possible randomness
values for which the following hold.

1. Pr[r ∈ R] = 1 − negl(k), where the probability is over

uniformly sampled r ← {0, 1}poly(k).

2. There exists an efficient algorithm AR such that AR(r) =
1 for r ∈ R and 0 otherwise.

3. We have

Pr
pk,sk

∀b1, ..., bn ∈ {0, 1}, ∀r1, ..., rn ∈ R,
∀ poly-size circuits f : {0, 1}n → {0, 1}
Decsk(Evalpk(f, c1, ..., cn)) = f(b1, ..., bn),

where ci = Encpk(bi; ri)

= 1− negl(k).

We note that this property holds, for example, for the
schemes of [BV11, BGV11]. For the readers who are familiar
with these constructions, the set of “good” randomness R
corresponds to encrypting with sufficiently “small noise.”

2.5 Leaky Distributed Systems
One of the tools in our construction is a compiler that

converts any circuit C (with secrets) into a collection of sub-
computations (or “modules”) Sub1, ..., Subm, whose sequen-
tial evaluation evaluates the circuit C, and which is secure in
the leaky distributed systems (LDS) model, a model recently
introduced by Bitansky et. al. [BCG+11].

Before we describe this model and compiler, let us re-
call prerequisite prior works [JV10, GR10, GR12], which
construct such a compiler in the “only computation leaks”
(OCL) model. In particular, these works demonstrate a
compiler that takes a circuit C and converts it into a cir-
cuit C′ consisting of m disjoint, ordered sub-computations
Sub1, . . . , Subm, where the input to sub-computation Subi
depends only on the output of earlier sub-computations.
Each of these sub-computations Subi is modeled as a non-
uniform randomized poly-size circuit, with a “secret state.”
It was proven that no information about the circuit C is
leaked, even if each of these sub-computations is leaky. More
specifically, the adversary can request to see a bounded-
length function of each Subi (separately), and these leakage
functions may be adaptively chosen.

These works also consider the continual leakage setting,
where leakage occurs over and over again in time. In this
setting, the secret state of each Subi must be continually
updated or refreshed. To this end, after each computation,
all the Subi’s update their secret state by running a ran-
domized protocol Update. We stress that leakage may occur
during each of these update protocols, and that such leakage
may be a function of both the current secret state and the
randomness used by the Update procedure.

In this work, we use such a compiler which is secure in
the LDS model [BCG+11]. The LDS model strengthens the
OCL model in two ways. First, in the LDS model, the adver-
sary is allowed to view and control the entire communication
between modules; in contrast, the OCL model assumes the
communication between modules is kept secret from the ad-
versary, and that the messages are generated honestly. Sec-
ond, in the LDS model, the adversary may leak adaptively
on each module in any order. For instance, the adversary
may leak a bit from Subi, then a bit from Subj , and based
on the results, leak again on Subi. In contrast, the OCL
model only allows the adversary to request leakage infor-
mation from the module that is currently computing. In
particular, this restricts the adversary to leak on modules in
order (i.e., first leak from Sub1, then from Sub2, etc.).

Remark 2.8. For the sake of simplicity of notation, we
assume (without loss of generality) that the module Subi only

sends messages to Subi+1 (where we define Subm+1 , Sub1).

643
Approved for Public Release; Distribution Unlimited.

Moreover, we assume for simplicity that during each com-
putation, where C is evaluated on some input v, each mod-
ule Subi sends a single message to Subi+1, and that Subm
does not send a message to any module, and simply out-
puts C(v). This assumption indeed holds for the LDS com-
piler of [BCG+11] which is based on [GR12]. We note that
this assumption is not needed for our result to be correct, but
it simplifies the notation.

At the end of each time period, the modules“refresh”their
inner state by applying a (possibly distributed) Update pro-
cedure, after which they erase their previous state. As with
the rest of the computation, the Update procedure is also
exposed to leakage, and the adversary controls the exchange
of messages during the update.

Definition 2.9 (Leaky Distributed Systems (LDS)).
In a λ-bounded LDS attack, a PPT adversary A interacts
with modules (Sub1, ..., Subm) by adaptively performing any
sequence of the following actions:

• Interact(j,msg): For j ∈ [m], send the message msg to
the j’th submodule, Subj, and receive the corresponding
reply. Note that the modules are message-driven: they
become activated when they receive a message from the
attacker, at which point they compute and send the
result, and then wait for additional messages.

• Leak(j, L): For j ∈ [m] and a poly-size leakage func-
tion L : {0, 1}∗ → {0, 1}, if strictly fewer than λ
queries of the form Leak(j, ·) have been made so far, A
receives the evaluation of L on the secret state of the
j’th submodule, Subj. Otherwise, A receives ⊥.

In a continual λ-LDS attack, the adversary A repeats a λ-
bounded LDS attack polynomially many times, where between
every two consecutive attacks the secret states of the modules
are updated. The update is done by running a distributed
Update protocol among all the modules. We also allow A to
leak during the Update procedure, where the leakage function
takes as input both the current secret state of Subj and the
randomness it uses during the Update procedure.

We denote by time period t of submodule Subj the time
period between the beginning of the (t−1)’st Update procedure
and the end of the t’th Update procedure in that submodule
(note that these time periods are overlapping).5 We allow
the adversary A to leak at most λ bits from each Subj during
each (local) time period.

We refer to such an adversary A as an λ-LDS adver-
sary, and denote the output of A in such an attack by A[λ :
Sub1, ..., Subm : Update].

We say that the collection of modules (Sub1, ..., Subm) is
λ-secure in the LDS model if for any λ-LDS adversary A
interacting with the modules as described above, there exists
a PPT simulator who simulates the output of A.

Definition 2.10 (LDS-Secure Circuit Compiler).
We say that (C,Update) is a λ-LDS secure circuit compiler if
for any circuit C and (Sub1, ..., Subm)← C(C), the following
two properties hold:

5Intuitively, time period t is the entire time period where the
t’th updated secret states can be leaked. Note that during
the t’th Update procedure, both the (t − 1)’st and the t’th
secret state may leak, which is why the time periods are
overlapping.

1. Correctness: The collection of modules (Sub1, ..., Subm)
maintain the functionality of C when all the messages
between them are delivered intact.

2. Secrecy: For every PPT λ-LDS adversary A there
exists a PPT simulator S, such that for any ensemble
of poly-size circuits {Cn} and any auxiliary input z ∈
{0, 1}poly(n):{
A(z)[λ : Sub1, ..., Subm : Update]

}
n∈N,C∈Cn

≈c
{
SC(z, 1|C|)

}
n∈N,C∈Cn

,

where S only queries C on the inputs A sends to the
first module, Sub1.

Theorem 2.11 ([BCG+11]). Assuming the existence of
a non-committing encryption scheme and a λ-OCL circuit
compiler which compiles a circuit C to m(|C|) modules, there
exists a λ-LDS secure circuit compiler (C,Update) for which
C(C) has the same number of modules, m(|C|).

We note that there are known constructions of non-committing
encryption schemes based on standard cryptographic as-
sumptions, such as the DDH assumption and the RSA as-
sumption. Moreover, a very recent work of Goldwasser and
Rothblum [GR12] constructs a λ-OCL circuit compiler (un-
conditionally) with the following properties.

Theorem 2.12 ([GR12]). For any security parameter
k, there (unconditionally) exists a λ-OCL secure circuit com-

piler for λ = Ω̃(k), that takes any circuit C into a collection
of O(|C|) modules, each of size O(k3).

Remark 2.13 (Folklore). If one additionally assumes
the existence of a fully homomorphic encryption (FHE) scheme,
then there exists a λ-LDS secure circuit compiler (C,Update)
such that for every poly-size circuit C, the number of out-
put sub-computations Sub1, ..., Subm generated by C is poly-
nomial in the security parameter of the FHE scheme and
independent of the size of C.

2.6 Weakly Leakage-Resilient MPC
Our construction of a leakage-resilient MPC protocol in

the preprocessing model (defined in Section 3.2), uses as a
building block an MPC protocol that is leakage-resilient with
respect to a weaker notion of secrecy (where the ideal world
is weakened), as was recently constructed in [BGG+11]. For
lack of a better name, we call it weakly leakage-resilient
MPC. Below, we recall the security model from [BGG+11].

Very briefly, the security definition in [BGG+11] follows
the ideal/real world paradigm. They consider a real-world
execution without a leak-free preprocessing stage, though
they do assume the existence of an honestly generated CRS.6

The adversary, in addition to corrupting a number of par-
ties, can obtain leakage information on the joint secret states
of the honest parties at any point during the protocol execu-
tion. Leakage queries may be adaptively chosen based on all
information received up to that point (including responses
to previous leakage queries), and are computed on the joint
secret states of all the honest parties.

6The CRS is simply a truly random string, and thus, could
be generated in a leaky environment.

644
Approved for Public Release; Distribution Unlimited.

Note that one cannot hope to realize the standard ideal
world security in the presence of such leakage attacks.To this
end, [BGG+11] consider an ideal world experiment where in
addition to learning the output of the function evaluation,
the simulator is also allowed to request leakage on the inputs
of all the honest parties jointly. Below, we describe the
ideal and real world experiments and give the formal security
definition from [BGG+11].

Ideal World.
We first describe the ideal world experiment, where n par-

ties P1, . . . , Pn interact with an ideal functionality for com-
puting a function f . An adversary may corrupt any subset
M ⊂ P of the parties. As in the standard MPC ideal world
experiment, the parties send their inputs to the ideal func-
tionality and receive the output of f evaluated on all inputs.
The main difference from the standard ideal world experi-
ment is that the adversary is also allowed to make leakage
queries on the inputs of the honest parties. Such queries are
evaluated on the joint collection of all parties’ inputs. The
ideal world execution proceeds as follows.

Inputs: Each party Pi obtains an input xi. The adversary
is given auxiliary input z and selects a subset of parties
M ⊂ P to corrupt.

Sending inputs to trusted party: Each honest party Pi
sends its input xi to the ideal functionality. For each
corrupted party Pi ∈M , the adversary may select any
value x′i and send it to the ideal functionality.

Trusted party computes output: Let x′1, . . . , x
′
n be the

inputs that were sent to the ideal functionality. The
ideal functionality computes f(x′1, . . . , x

′
n).

Adversary learns output: The ideal functionality first sends
the evaluation f(x′1, ..., x

′
n) to the adversary. The ad-

versary replies with either continue or abort.

Honest parties learn output: If the message is abort, the
ideal functionality sends ⊥ to all honest parties. If the
adversary’s message was continue, then the ideal func-
tionality sends the function evaluation f(x′1, . . . , x

′
n) to

all honest parties.

Leakage queries on inputs: The adversary may send (adap-
tively chosen) leakage queries in the form of efficiently
computable functions Lj (described as a circuit). On
receiving such a query, the ideal functionality com-
putes Lj(x

′
1, . . . , x

′
n) and returns the output to the ad-

versary.

Outputs: Honest parties output their inputs and the mes-
sages they obtained from the ideal functionality. Mali-
cious parties may output an arbitrary PPT function of
their initial input (auxiliary input and random-tape)
and the message it has obtained from the ideal func-
tionality.

An ideal world adversary S who obtains a total of λ bits
of leakage is referred to as a λ-leakage ideal adversary. The
overall output of the ideal-world experiment consists of all
the inputs and values received by honest parties from the
ideal functionality, together with the output of the adver-
sary, and is denoted by W-IDEALfS,M (1k, ~x, z).

Real World.
The real-world experiment begins by first choosing a com-

mon random string crs. Then, each party Pi receives an in-
put xi and the adversary A receives auxiliary input z. These
values can depend arbitrarily on the crs, but need to be ef-
ficiently computable given the crs. However, for the sake
of simplicity of notation, throughout this section we assume
that these values are independent of the crs.

The adversary A selects any arbitrary subset M ⊂ P of
the parties to corrupt. Each corrupted party Pi ∈M hands
over its input to A. The parties P1, . . . , Pn now engage in
an execution of a real n-party protocol Π. The adversary A
sends all messages on behalf of the corrupted parties, and
may follow an arbitrary polynomial-time strategy. In con-
trast, the honest parties follow the instructions of Π. Fur-
thermore, at any point during the protocol execution, the
adversary may make leakage queries of the form L and learn
L(stateP\M), where stateP\M denotes the concatenation of
the protocol states statei of each honest party Pi. We allow
the adversary to choose the leakage queries adaptively.

Honest parties have the ability to toss fresh coins at any
point in the protocol, and at that point these coins are added
to the state of that party. At the conclusion of the protocol
execution, each honest party Pi generates an output accord-
ing to Π. Malicious parties may output an arbitrary PPT
function of the view of A.

An adversaryA who obtains at most λ bits of leakage is re-
ferred to as a λ-leakage real adversary. Let Genw denote the
CRS generation algorithm. Further, let W-REALΠ

A(1k, crs, ~x, z)
be the random variable that denotes the values output by the
parties at the end of the protocol Π (using crs← Genw(1k) as
the CRS). Then, the overall output of the real-world experi-
ment is defined as the tuple (crs,W-REALΠ

A,M (1k, crs, ~x, z)).
We now state the formal security definition.

Definition 2.14 (λ-Weakly Leakage-Resilient MPC).
A protocol Π evaluating a functionality f is a λ-weakly leakage-
resilient MPC protocol if for every PPT λ-leakage real ad-
versary A, there exists a λ-leakage ideal adversary S =
(Scrs,Sexec), corrupting the same parties as A, such that for
every input vector ~x, every auxiliary input z ∈ {0, 1}∗, and
every subset M ⊂ P, it holds that the distribution{

crs,W-IDEALfSexec(crs,trap),M (1k, ~x, z)
}
k∈N

is computationally indistinguishable from the distribution{
crs′,W-REALΠ

A,M (1k, crs′, ~x, z)
}
k∈N

,

where (crs, trap)← Scrs(1k), and crs′ ← Genw(1k).

Theorem 2.15 ([BGG+11]). Based on the DDH as-
sumption, for every poly-size function f , for every leakage
bound λ ∈ N, and any number of parties and corrupted par-
ties, there exists a protocol Π in the common random string
model for computing f that is λ-weakly leakage resilient as
per Definition 2.14.

Remark 2.16. We note that Theorem 2.15 holds even if
we allow the input vector ~x and the auxiliary input z to be ar-
bitrary poly-time computable functions of the crs. We elimi-
nated this dependency from Definition 2.14 only for the sake
of simplicity of notation.

645
Approved for Public Release; Distribution Unlimited.

Remark 2.17 (Standalone vs. UC Security). The
main result in [BGG+11] actually achieves a stronger notion
of universally composable (UC) security, at the cost of addi-
tionally relying on the decisional linear assumption over bi-
linear groups. Indeed, their UC-secure WLR-MPC construc-
tion relies on a leakage-resilient UC-NIZK system, whose
only known construction [GJS11, GOS06] is based on the
decisional linear assumption in the bilinear groups setting.

However, for the present paper, it suffices to obtain a
“standalone” secure construction of WLR-MPC. Thus, it is
possible to replace the UC-NIZK system with a standalone
secure interactive weakly leakage-resilient ZKPoK system.
This, in turn, can be based on the DDH assumption. The
resulting WLR-MPC achieves standalone security based on
only the DDH assumption in the CRS model.

Security against disjoint leakage.
In Definition 2.14, the real-world adversary A is allowed

to obtain joint leakage on the secret states of the honest par-
ties. In the present work, we consider a weaker adversarial
model, in which the leakage on each honest party in the real
world is disjoint (i.e., A is not allowed to leak on the joint
secret states of the honest parties). Theorem 2.15 clearly
still applies to this setting. However, we note that the ideal
world guarantee does not become stronger when we consider
this set of restricted adversaries: that is, even to simulate
such adversaries, the simulator S needs joint leakage on the
inputs of all the honest parties.7

2.6.1 Security for randomized functions
We note that Theorem 2.15 holds for deterministic func-

tions. In this work, we need to use a weak leakage re-
silient protocol for randomized functions (since the modules
in the OCL leakage resilient circuit compute randomized
functions). We show that in our setting, where leakage in the
real world is disjoint, the number of parties is polynomially
related to the security parameter, and a constant fraction of
the parties are honest, then we can construct weak leakage
resilient protocols for randomized functions.

Theorem 2.18 (informal). Theorem 2.15 holds also
for randomized functions if we restrict the adversaries to
leak on the honest parties disjointly, when the number of
parties is polynomially related to the security parameter, and
ε-fraction of them are honest for some constant ε > 0.

Due to lack of space we defer the proof of this theorem to
the final version.

3. OUR MODEL
In this section, we present the MPC model and the secu-

rity definition considered in this paper. We start by giving a
brief overview of our model and then proceed with a formal
description.

Overview. We consider the setting of n parties P = {P1, ..., Pn}
within a synchronous point-to-point network with authenti-
cated broadcast channel [DS83] who wish to jointly compute
7As mentioned in Section 1.4, if we could simulate real-world
adversaries that obtain only disjoint leakage queries, with a
simulator that obtains only disjoint leakage queries, then
this would almost immediately give us a result similar to
ours: An MPC protocol with preprocessing that is secure
against continual leakage.

any ppt function over their private inputs. Specifically, we
consider the case where the parties wish to perform arbitrar-
ily many evaluations of functions of their choice. We refer
to a protocol that allows computation of multiple functions
(over a given set of inputs) as a multi-function MPC proto-
col. Unlike the standard MPC setting, we consider security
of a multi-function MPC protocol against“leaky”adversaries
that may (continuously) leak on the secret state of each hon-
est party during the protocol execution.

To formally define security, we turn to the real/ideal paradigm.
Very briefly, we consider a real-world execution where an
adversary, who corrupts any arbitrary number of parties in
the system, may additionally obtain arbitrary bounded, in-
dependent leakage on the secret state of each honest party.
However, unlike the recent works on leakage-resilient interac-
tive protocols [GJS11, BCH11, BGK11, DHP11, BGG+11],
we consider the standard ideal world model, where the ad-
versary does not learn any information on the honest party
inputs.

Note that if we do not put any restriction on the real-
world adversary, and in particular, if he is allowed to ob-
tain leakage throughout the protocol execution, then it is
impossible to realize the standard ideal world model, since
the adversary may simply leak on the inputs of the honest
parties, while this information cannot be simulated in the
ideal world. With this in mind, we (necessarily) allow for
a “leak-free” one-time preprocessing stage that happens at
the beginning of the real-world execution. Furthermore, to
withstand continual leakage attacks, we (necessarily) allow
for periodic updates of the secret values of the parties. We
allow leakage to occur during this update procedure as usual.

We now proceed to give a formal description of our model
in the remainder of this section. In Section 3.1, we describe
the ideal world experiment. In Section 3.2, we describe the
real world experiment. Finally, in Section 3.3, we present
our security definition.

Throughout this work, we assume that the functions to be
evaluated give the same output to all parties. This is for sim-
plicity of exposition, since otherwise, if the output itself is a
secret value (given to an honest party) then this value can
be leaked. This can be handled by complicating our security
guarantees, and, indeed, one can tweak our construction to
ensure that the adversary learns only leakage information on
such outputs. However, for the sake of simplicity, we choose
to avoid this issue in this manuscript.

3.1 Ideal World
In the ideal world, each party Pi sends her input xi to

a trusted third party. Whenever the adversary A sends
a poly-size circuit f to the trusted party, it sends back
f(x1, . . . , xn). Since we consider the case of dishonest ma-
jority, we can only obtain security with abort: i.e., the ad-
versary first receives the function output f(x1, . . . , xn), and
then chooses whether the honest parties also learn the out-
put, or to prematurely abort. The adversary can query the
trusted party many times with various functions fj . More-
over, these functions can be adaptively chosen, based on the
outputs of previous functions. The ideal world model is for-
mally described below.

Inputs: Each party Pi obtains an input xi. The adversary
is given auxiliary input z. He selects a subset of the

646
Approved for Public Release; Distribution Unlimited.

parties M ⊂ P to corrupt, and is given the inputs x`
of each party P` ∈M .

Sending inputs to trusted party: Each honest party Pi
sends its input xi to the ideal functionality. For each
corrupted party Pi ∈M , the adversary may select any
value x′i and send it to the ideal functionality.

Trusted party computes output: Let x′1, ..., x
′
n be the

inputs that were sent to the trusted party. Then, the
following is repeated for any (unbounded) polynomial
number of times:

• Function selection: The adversary chooses a
poly-size circuit fj , and sends it to the ideal func-
tionality.

• Adversary learns output: The ideal function-
ality sends the evaluation fj(x

′
1, ..., x

′
n) to the ad-

versary. The adversary replies with either continue
or abort.

• Honest parties learn output: If the adver-
sary’s message was abort, then the trusted party
sends ⊥ to all honest parties and the experiment
concludes. Otherwise, if the adversary’s message
was continue, then it sends the function output
fj(x

′
1, ..., x

′
n) to all honest parties.

Outputs: Honest parties output all the messages they ob-
tained from the ideal functionality. Malicious parties
may output an arbitrary PPT function of the adver-
sary’s view.

The overall output of the ideal-world experiment consists
of the outputs of all parties. For any ideal-world adversary
S with auxiliary input z ∈ {0, 1}∗, any input vector ~x, any
set of functions {fj}pj=1 chosen by the adversary, and secu-
rity parameter k, we denote the output of the corresponding
ideal-world experiment by

IDEALS,M
(

1k, ~x, z, {fj}pj=1

)
.

Note that this is a slight abuse of notation since the functions
{fj}pj=1 may be chosen adaptively.

3.2 Real World
The real world execution begins by an adversary A se-

lecting any arbitrary subset of parties M ⊂ P to corrupt.
The parties then engage in an execution of a real n-party
multi-function MPC protocol Π = (ΠPre,Πinput,ΠOnline) that
consists of three stages, namely, (a) a preprocessing phase,
(b) an input phase, and (c) an online phase, as described be-
low. We assume that honest parties have the ability to toss
fresh coins at any point. Throughout the execution of Π, the
adversary A sends all messages on behalf of the corrupted
parties, and may follow an arbitrary polynomial-time strat-
egy. In contrast, the honest parties follow the instructions of
Π. Furthermore, at any point during the protocol execution
(except during the preprocessing and the input phases), the
adversary may leak on the entire secret state of each honest
parties, via an MPC leakage query, defined as follows.

Definition 3.1. An MPC leakage query is defined by
Leak(i, L), where i ∈ [n] and L : {0, 1}∗ → {0, 1} is a
poly-size circuit. When an adversary sends a leakage query
Leak(i, L), he receives the evaluation of L on the entire secret
state of party Pi.

We now formally describe the different phases in the pro-
tocol.

Preprocessing phase: This phase is interactive and leak-
free, and is run only once. It is independent of the
inputs of the parties, and is independent of the func-
tions that will later be evaluated. Thus, this phase
can be run in the beginning of time, before the parties
even know what their inputs are, or what functions
they would like to evaluate.

We assume that no leakage occurs during the run of
this preprocessing phase, but we do allow leakage to
occur as soon as the preprocessing phase ends. At the
end of this phase each party Pi has an (initial) secret

state statePi
1 .

Input phase: This phase is non-interactive and leak-free,
and depends only on the inputs x1, ..., xn (independent
of the functions to be computed). Whenever a party
Pi gets (or chooses) a secret input xi, she does some
local computation which may depend on her secret in-
put xi and on her secret state statePi

1 . She then sends
a message to all parties, and erases her secret input xi.
One may think of this as a “hot potato” model, where
the parties never store their inputs for very long (since
they are concerned with leakage), but rather immedi-
ately share their input as if it were a “hot potato”.

We assume that the party Pi is not leaked upon during
the execution of this phase. However, leakage may
occur between the preprocessing phase and the input
phase, and leakage may occur immediately after the
input phase.

We emphasize that each party can change her input
as often as she wants by simply re-running the input
phase with the new input.8

Online phase: This phase takes place in a leaky environ-
ment. During this phase, the parties carry out an un-
bounded number of function evaluations on their in-
puts, and update their respective secret states. At
any point during this phase, A may make adaptively-
chosen leakage queries, as per Definition 3.1, in the
manner as described below.

Whenever A wishes to compute a function fj (repre-
sented as a poly-size circuit), all parties execute the
function evaluation protocol ΠComp, described below.
Whenever A wants the honest parties to update their
secret states, all parties execute the update protocol
ΠUpdate, described below. We let ΠOnline = (ΠComp,ΠUpdate).
We begin at leakage time period ` = 1; after each up-
date procedure, ` is incremented.

• Computation procedure:

1. All parties execute protocol ΠComp(fj), where
honest parties Pi act in accordance with in-
put statePi

` . Note that the secret state of par-
ties may change during the execution of this
protocol, as dictated by ΠComp.

8For simplicity, in the security proof in Section 5, we assume
that the parties run the input phase only once, however the
proof extends readily to the case that the parties rerun the
input phase many times with different inputs.

647
Approved for Public Release; Distribution Unlimited.

2. At the conclusion of the computation phase,
each honest party Pi outputs his final mes-
sage of the protocol (which should correspond
to the evaluation of fj). Malicious parties
may output an arbitrary PPT function of the
view of A.

• `th Update procedure:

1. All parties execute protocol ΠUpdate, where
honest parties Pi act in accordance with in-
put statePi

` .

2. At the conclusion of the update phase, each
honest party Pi sets statePi

`+1 to be Pi’s output

from ΠUpdate. Each honest Pi erases statePi
` .

3. Increment `← `+ 1.

Leakage: Initialize each leaked` to 0. Each leakage query
(i, L) made byA during the `th time period is answered
as follows.

• During the computation phase: if leaked` ≥ λ,
then A receives ∅. Otherwise, A receives the eval-
uation of L on the current secret state of party Pi,
and leaked` ← leaked` + 1.

• In `th update phase: if either leaked` ≥ λ or
leaked`+1 ≥ λ, then A receives ∅. Otherwise, A
receives the evaluation of L on the current secret
state of party Pi, and both leaked` ← leaked` + 1
and leaked`+1 ← leaked`+1 + 1.

We emphasize that the A’s leakage queries may be
made on any party, adaptively chosen based on all
information received up to that point (including re-
sponses to previous leakage queries). The only re-
striction is that the number of bits leaked between
the execution of any two consecutive update protocols
is bounded. Note that the leakage queries made dur-
ing the `’th update phase (where parties transition be-
tween their `’th and (`+1)’st secret states) are counted
against both the `’th and (`+ 1)’st time period, where
the `’th time period is the time period where the party
stores her `’th secret state. The reason for this “dou-
ble counting” is that during the `’th update phase, the
adversary can leak both on the `’th secret state and
on the `+ 1’st secret state of the party.

We refer to an adversary who corrupts t parties M ⊂ P
and makes up to λ leakage queries in each time period
as a (t, λ)-continual leakage adversary.

For any adversary A with auxiliary input z ∈ {0, 1}∗,
any inputs {xi}ni=1, any set of functions {fj}pj=1 chosen
(adaptively) by the adversary, and any security parameter
k, we denote the output of the multi-function MPC protocol
Π = (ΠPre,Πinput,ΠOnline) by

REALΠ
A,M

(
1k, ~x, z, {fj}pj=1

)
.

Loosely speaking, we say that a protocol Π is a leakage-
resilient multi-function MPC protocol if any adversary, who
corrupts a subset of parties, receives leakage information as
described above, and runs the protocol with honest parties
on any (unbounded) sequence of functions f1, ..., fp, gains no
information about the inputs of the honest parties beyond
the output of the functions fj(x1, ..., xn) for j = 1, ..., p. We
formalize this in the next subsection.

3.3 Security Definition
In what follows, we formally define our model of security;

i.e., what it means for a real-world protocol to emulate the
desired ideal world.

Definition 3.2 (Leakage-Resilient MPC). A multi-
function evaluation protocol Π = (ΠPre,Πinput,ΠOnline) is said
to be λ-leakage-resilient against t malicious parties if for ev-
ery PPT (t, λ)-continual leakage MPC adversary A in the
real world, there exists a PPT adversary S corrupting the
same parties in the ideal world such that for every input
vector ~x, every auxiliary input z, and any (adaptively cho-
sen) set of functions {fj}pj=1 where p = poly(k), it holds
that

IDEALS,M
(

1k, ~x, z, {fj}pj=1

)
≈c REALΠ

A,M

(
1k, ~x, z, {fj}pj=1

)
.

Note that we do not allow the simulator to request leakage
on honest parties’ inputs in the ideal world, as was done
in [BCH11, DHP11, BGG+11], and thus model a stronger
notion of secrecy than what was achieved in prior works.9

4. OUR CONSTRUCTION
In this section, we construct a leakage-resilient multi-function

MPC protocol, as defined in Section 3. Our construction
uses the following ingredients:

1. (C,Update): a λ-LDS secure circuit compiler, as in
Theorem 2.11. Recall for a circuit C, the compiler
C : C 7→ (Sub1, ..., Subm) yields a collection of modules
whose sequential execution evaluates C, and which are
secure in the LDS model (see Section 2.5 for details).

2. Elect: a public-coin protocol for electing m disjoint
committees (where m is the number of modules from
above), each of size approximately k, as in Lemma 2.6.

3. (Geneq,Com,Rec,Seq = (Scrs
eq ,Scom

eq)): a crs-based equiv-
ocal commitment scheme, as in Lemma 2.5.

4. (Gen,Enc,Dec,Eval): a fully homomorphic public-key
encryption (FHE) scheme that is certifiable with re-

spect to an efficiently testable set R ⊆ {0, 1}poly(k), as
described in Section 2.4.

5. (Gennizk,P,V,Snizk = (Scrs
nizk,Sproof

nizk)): a non-interactive
zero-knowledge (NIZK) proof of knowledge (as in Lemma
2.3) for the NP language

L = {(pk, x̂) : ∃ (x, r) s.t. r ∈ R, x̂ = Encpk(x; r)},
(1)

where R ⊆ {0, 1}poly(k) is the set for which the FHE
scheme is certifiable.

6. MPC(F): a standard multiparty computation protocol
for evaluating a function F , with no leakage resilience
guarantees, such as [GMW87].

7. (Genw,MPCw(F)): a λ-weakly leakage-resilient multi-
party computation (WLR-MPC) protocol for evaluat-
ing a function F in the common random string model,
as given by Theorem 2.18.

9With the (necessary) addition of a one-time leak-free pre-
processing phase.

648
Approved for Public Release; Distribution Unlimited.

Theorem 4.1. Fix any constants ε, δ > 0. Then, assum-
ing the existence of the ingredients 1 - 7 listed above (where
the LDS circuit compiler and WLR-MPC protocol are secure
with leakage parameter λ), there exists a λ-leakage-resilient
multi-function evaluation MPC protocol Π = (ΠPre,Πinput,ΠUpdate)
for n ≥ kδ parties, tolerating t = (1− ε)n corrupted parties.

Remark.
The reason we need the number of parties to be polyno-

mially related to the security parameter is two-fold. First,
in the preprocessing phase, the protocol ΠPre elects commit-
tees E1, . . . , Em, and security of the protocol relies on the
fact that these committees are disjoint and each committee
contains a constant fraction of honest parties. Thus, if n is
a constant, then the resulting security guarantee is that the
advantage of any PPT distinguisher in the security game is
bounded (from below) by a constant. More generally, the
advantage is ≥ 2−εn (see Lemma 2.6).

The second reason we the number of parties must be large
is that the number m of disjoint committees E1, . . . , Em we
need to elect is large. This is because the number of com-
mittees is exactly the number of modules generated by the
LDS compiler, when applied to the decryption circuit Decsk
of the underlying FHE scheme. Since the only LDS com-
piler we know (that does not use secure hardware) requires
m = O(|Decsk|), the number of modules must be at least the
security parameter of the underlying FHE scheme (which we
can set to be kδ).

We now present the protocol Π = (ΠPre,Πinput,ΠOnline),
where ΠOnline = (ΠComp,ΠUpdate). At a high level, Π is defined
as follows:

Preprocessing phase ΠPre: In the preprocessing phase, the
parties run a (standard) MPC to collectively generate
a key pair (pk, sk) for the FHE scheme, and to secret
share sk in such a way that (a) learning the shares
of corrupted parties, and leakage on each remaining
share, does not damage the security of the FHE, but
(b) collectively, the shares can be used to evaluate the
decryption circuit in a leaky environment. More specif-
ically, shares are generated by running the LDS com-
piler on the decryption circuit Decsk(·) (with sk hard-
wired) to obtain a sequence of modules Sub1, ..., Subm;
the parties elect corresponding (disjoint) committees
E1, ..., Em, and secret share each Subj among parties in
Ej , using a standard secret sharing scheme (e.g., the
simple xor scheme). To ensure that parties provide the
correct secret shares of the Subj ’s in future computa-
tions, within the MPC the parties collectively generate
and publish commitments to each correct share.

In addition, the preprocessing phase is used to gen-
erate crs setup information for subsidiary tools used
throughout the protocol. This is also done via a (stan-
dard) MPC.

(Note that the preprocessing procedure is independent
of parties’ secret inputs and functions to be evaluated.)

Input phase Πinput: Each time a party Pi wishes to sub-
mit a new secret input xi, she computes and publishes
an encryption x̂i of xi under the FHE scheme (specif-
ically, under the public key pk for the FHE that was

generated during the preprocessing phase). To ensure
that malicious parties do not send malformed cipher-
texts, which could ruin the correctness of homomor-
phic evaluation later down the line (and potentially
damage security), each party accompanies her pub-
lished ciphertext x̂i with a NIZK proof of knowledge
that the ciphertext is properly formed.

Online phase ΠOnline: The online phase consists of two parts:
the computation phase, in which parties collectively
evaluate a queried function f on all inputs, and the
update phase, in which parties collectively refresh their
secret states.

Computation phase ΠComp: Each time the adver-
sary requests the evaluation of a function f on all par-
ties’ inputs, two steps take place. First, each party
(individually) homomorphically evaluates the function
f on the encrypted vector of inputs x̂ = (x̂1, ..., x̂n).
Note that the result, ŷf , is an encryption of the de-
sired value f(~x). Next, the parties jointly decrypt,
using their shares of sk from the preprocessing phase.
Namely, the parties execute the sequence of modules
Sub1, ..., Subm obtained by the LDS compiler applied
to Decsk(·), where the input to the first module Sub1

is ŷf . To emulate the execution of each module Subj ,
the parties of committee Ej run a WLR-MPC protocol
among themselves. Within the WLR-MPC, the par-
ties of Ej combine their secret shares Subj,i (checking
first to make sure each party’s share agrees with the
corresponding published commitment) and execute the
computation dictated by Subj . Communication be-
tween modules is performed by having all parties of
committee Ej send the appropriate message to all par-
ties of the next committee, Ej+1. The output of the
final module, Subm, is the evaluation f(~x).

Update phase ΠUpdate: Each time the adversary re-
quests that parties update their secret states, the par-
ties execute the update procedure of the LDS compiler,
where each module computation is performed via a
WLR-MPC among the parties of the corresponding
committee, as above. The only difference here is that
the secret state Subj of each module is also changing.
Thus, during each execution of a module Subj , the cor-
responding committee must also generate fresh secret
shares for its parties, and new commitment and de-
commitment information for each share. To provide
the required correctness and secrecy guarantees, this
process takes place as part of the committee’s WLR-
MPC execution.

The formal descriptions of ΠPre,Πinput,ΠComp, and ΠUpdate

appear in Figures 1, 2, 3, and 4, respectively.

Remark 4.2. Throughout the protocol description (as well
as throughout the proof), we define abort to be the action of
broadcasting the message “abort” to all parties. At any point
in which a party receives an “abort” message, he runs abort
and exits the protocol.

5. PROOF OF SECURITY
Proof of Theorem 4.1. Let A be any real-world PPT

adversary for Π. Denote by M ⊂ P the set of parties cor-
rupted by A.

649
Approved for Public Release; Distribution Unlimited.

Preprocessing Phase:
Input: 1k. No leakage allowed.

1. The parties elect m disjoint committees Ej of size ap-
proximately k′ by running Elect. Here, k′ is the secu-
rity parameter for the FHE scheme and m = poly(k′)
is the number of modules produced by the LDS com-
piler when run on the decryption circuit Decsk for this
security parameter. We take k′ = kΘ(1) as large as
possible while maintaining m · k′2 ≤ n.

2. All parties engage in an execution of the (stan-
dard) MPC protocol MPC(Fcrs) to compute the
(randomized) functionality Fcrs described as fol-
lows. Functionality Fcrs does not take any inputs
and computes the following: (a) a CRS crsw ←
Genw(1k) for the weakly leakage-resilient MPC proto-
col (Genw,MPCw(F)), (b) a CRS crsieq ← Geneq(1

k)
for each party Pi for the equivocal commitment
scheme (Geneq,Com,Rec,Seq), and (c) a CRS crsinizk ←
Gennizk(1

k) for each party Pi for the NIZK proof of
knowledge system (Gennizk,P,V,Snizk). Denote by crs
the tuple ({crsieq, crsinizk}ni=1, crsw).

3. All parties engage in an execution of the (standard)
MPC protocol MPC(FE1,...,Em,crs) to collectively com-
pute the randomized functionality FE1,...,Em,crs (that
does not take any inputs) defined as follows:

The (randomized) function:

Generate a key pair (sk, pk) ← Gen(1k
′
) for the

FHE scheme.

Evaluate the LDS circuit transformation on the
decryption circuit for sk:

(Sub1, ..., Subm)← C(Decsk).

(We abuse notation and denote by Subj both
the computation of the submodule and the secret
state corresponding to the submodule.)

For each j ∈ [m], secret share Subj = Subj,1 ⊕
· · · ⊕ Subj,|Ej | among the parties in the j’th com-
mittee, Ej .
For each share Subj,i generated in the previ-
ous step, compute a commitment (cj,i, dj,i) ←
Com(crsαeq, Subj,i), where Pα is the i’th party in
Ej (i.e., the party that receives the share Subj,i).

Output: The outputs are as follows.

All parties: pk, {cj,i}j∈[m],i∈[|Ej |]
Party i of Ej : Subj,i, dj,i

4. Each party erases all intermediate values of the MPC
executions.

(Note that Steps 2 and 3 can be combined into a single
multi-party computation execution, but have been split into
two separate executions for ease of explanation and proof).

Figure 1: Protocol ΠPre: Preprocessing phase.

Input Phase: Party Pi wishes to submit a new private
input, xi. No leakage allowed.
Public inputs: pk, {crsinizk}ni=1.
Private input: xi, held by party Pi.

Party Pi performs the following steps:

1. Sample a value ri ← R ⊆ {0, 1}poly(k) via rejection
sampling. Recall the FHE scheme is certifiable with
respect to the set R ⊆ {0, 1}poly(k) (see Definition 2.7).

2. Encrypt x̂i = Encpk(xi; ri).

3. Compute a NIZK proof of knowledge that (pk, x̂i) ∈ L
using witness (xi, ri) and CRS crsinizk. (See Equa-
tion (1) above for the definition of L). That is,
πi ← P(crsinizk, (pk, x̂i), (xi, ri)).

4. Send the pair (x̂i, πi) to all parties.

(It suffices to send it to parties in E1.)

5. Erase initial input xi, together with all intermediate
values of the input phase.

Figure 2: Protocol Πinput: Input phase.

We construct an adversary S in the ideal world who sim-
ulates the real-world view of A by simulating the honest
parties in the real world experiment. We do so by a se-
quence of intermediate steps, where we show how to sim-
ulate these values given less and less information, eventu-
ally given only the function evaluations f(x1, ..., xn), as in
the ideal-world experiment. More explicitly, we consider the
following sequence of hybrid experiments. We note that all
ideal functionalities in the hybrid experiments are implic-
itly with abort : i.e., the ideal functionality first outputs to
only the adversary, who decides whether outputs are also
delivered to honest parties, or whether the protocol ends in
abort.

In what follows we describe all of our hybrid experiments.
We defer the construction of the corresponding simulator
and the proof of indistinguishability to the full version. For
each hybrid, we include (in the parentheses) the primary
reason why Hybrid i can be simulated from Hybrid i− 1.

Hybrid 0. The real world: i.e., the adversary interacts with
honest parties in the real-world experiment running Π.

Hybrid 1. (Elect protocol) The same as the real-world ex-
periment, except that if any of the committees E1, ..., Em
elected during the preprocessing phase has fewer than
ε
2
k parties, or if the fraction of honest parties in any

committee is less than ε
3
, the experiment immediately

concludes with output fail. We assume for simplicity
of notation (later on) that, if the experiment does not
fail, the first party of each committee Ej is honest.

Hybrid 2. (MPC security) The same as Hybrid 1, except
instead of collectively generating the CRS values (for
the equivocal commitment scheme, the WLR-MPC,
and the NIZK proof system) via an MPC protocol
during the preprocessing phase, we assume a setup
model where these values are (honestly) generated be-
forehand, and all parties run with these CRS values

650
Approved for Public Release; Distribution Unlimited.

Computation Phase:
Public inputs: f , pk, x̂ = (Encpk(x1), ...,Encpk(xn)), crs =
({crsieq, crsinizk}ni=1, crsw), E1, ..., Em, {cj,i}j∈[m],i∈[|Ej |].
Private inputs: (Subj,i, dj,i), held by party i of Ej .

1. All parties homomorphically evaluate f on the en-
crypted input vector: ŷ = Evalpk(x̂, f).

(It suffices that only parties in E1 compute ŷ.)

2. The parties execute the Decryption Cascade with
input1 = ŷ.

Decryption Cascade:

1. For j = 1, ...,m:

The parties in Ej engage in an execution of the λ-
weakly leakage-resilient MPC protocol MPCw(Fj) us-
ing CRS crsw to compute the (randomized) function-
ality Fj defined as follows:

Input: (Subj,i, dj,i, inputj), held by party i of Ej .
The function Fj :

(a) If any of the inputj ’s are inconsistent, or
Subj,i 6= Rec(crsαeq, cj,i, dj,i) for any i, where
Pα is the i’th party in committee Ej (i.e.,
if any party’s share does not agree with the
corresponding published commitment), then
abort.

(b) Otherwise, let Subj =
⊕|Ej |

i=1 Subj,i.

(c) Evaluate the j’th module on inputj : that is,
inputj+1 := Subj(inputj).

Output: All parties learn inputj+1.

At the conclusion of the WLR-MPC execution, each
party in Ej erases all intermediate values generated
during the WLR-MPC, keeping only (Subj,i, dj,i).

Each party in Ej sends the value of inputj+1 to all par-
ties in Ej+1 (where Em+1 := P the set of all parties).

If any party in Ej+1 receives disagreeing values of
inputj+1 from parties in Ej , then abort.

2. Output inputm+1 as the desired evaluation f(x).

Figure 3: Protocol ΠComp: Compute phase.

Update Phase:
Public inputs: E1, ..., Em, crs = ({crsieq, crsinizk}ni=1, crsw),
{cj,i}j∈[m],i∈[|Ej |].
Private inputs: (Subj,i, dj,i), held by party i of Ej .

All parties run the Update protocol of the LDS compiler, as
follows.

1. Each time the parties in committee Ej , who are sim-
ulating submodule Subj , receive a message msgj from
the parties in committee Ej−1, who are simulating sub-
module Subj−1, they compute the function G that
would have been computed by Subj upon receiving
the message inputj when running the Update protocol.

(The parties in committee E1 start with msg1 , ⊥).

The computation of G is done by running an execution
of the λ-weakly leakage-resilient MPC protocol using
crsw to collectively execute the following (randomized)
function:

Input: (Subj,i, dj,i,msgj), held by party i of Ej ,
crs, {cj,i}i∈[|Ej |], held by all parties.

The (randomized) function:

(a) If any of the msgj ’s are inconsistent, or
Subj,i 6= Rec(crsαeq, cj,i, dj,i) for any i, where
Pα is the i’th party in committee Ej (i.e.,
if any party’s share does not agree with the
corresponding published commitment), then

abort. Otherwise, let Subj =
⊕|Ej |

i=1 Subj,i.

(b) Evaluate (Sub′j ,msgj+1) ← G(Subj ,msgj).

Here, Sub′j denotes an updated version of the
submodule information, and msgj+1 denotes
the message to be sent to submodule j+ 1 as
dictated by Update.

(c) Secret share the new value Sub′j = Sub′j,1 ⊕
· · · ⊕ Sub′j,|Ej | into |Ej | shares using the xor

secret sharing scheme.

(d) For each share Sub′j,i generated in the pre-
vious step, compute a new commitment
(c′j,i, d

′
j,i) ← Com(crsαeq,Sub

′
j,i), where Pα is

the i’th party in committee Ej .
Output: The outputs are as follows.

All parties: msgj+1, {c′j,i}i∈[|Ej |]
Party i of Ej : Sub′j,i, d

′
j,i

At the conclusion of the WLR-MPC execution, each
party in Ej erases all intermediate values generated
during the WLR-MPC, keeping only (Subj,i, dj,i).

2. All the parties of Ej send msgj+1 to all parties in Ej+1.

3. Each party in Ej sends all new commitments
{c′j,i}i∈[|Ej |] to every party. If any disagreeing values
are sent by parties in Ej , then abort.

At the conclusion of the update phase, each party erases
their initial input together with all intermediate values of
the update phase.

Figure 4: Protocol ΠUpdate: Update phase.

651
Approved for Public Release; Distribution Unlimited.

as shared common knowledge. We denote this ideal
functionality by crs.

Ideal functionalities in Hybrid 2: crs.

Hybrid 3. (CRS simulation) The same as Hybrid 2, except
that some of the CRS values are generated using the
simulation algorithms. More specifically,

• For the first party in each committee, its crs for
the equivocal commitment scheme is generated
using the simulator; i.e., for each such party Pi,
(crsieq, trap

i)← Scrs
eq (1k).

• For each malicious party P`, we generate its crs for
the NIZK proof of knowledge using the simulator,
by computing (crs`nizk, trap

`)← Scrs
nizk(1

k).

• The crs for the WLR-MPC protocol is simulated
by computing (crsw, trapw)← Scrs

w (1k).

The remaining crs values are generated honestly, as be-
fore. We denote this new ideal functionality by crsSim.

Ideal functionalities in Hybrid 3: crsSim.

Hybrid 4. (MPC security) The same as Hybrid 3, except
that the second MPC in the preprocessing phase (which
generates a key pair for the FHE scheme, runs the LDS
transformation, etc) is replaced by the corresponding
ideal (randomized) functionality FPre. Note that FPre

takes no inputs.

Overall, this hybrid is the same as the real world, ex-
cept that the preprocessing phase consists only of the
execution of Elect and one-time oracle access to crsSim
and FPre.

Ideal functionalities in Hybrid 4: crsSim, FPre.

Hybrid 5. (WLR-MPC security) The same as Hybrid 4,
except each underlying weakly leakage-resilient MPC
execution in the decryption cascade is replaced with
the ideal functionality Fj that accepts inputs from all
parties in Ej and replies with the evaluation of Fj on
these inputs (as described in Figure 3). Similarly, each
WLR-MPC execution in the update phase is replaced
with the ideal functionality Gj that accepts inputs
from parties and replies with the evaluation of Gj on
these inputs (as described in Figure 4).

The adversary no longer makes leakage queries of the
form Leak(i, L), as he did in all previous hybrids. In-
stead, leakage queries are of the form Leak(L), and are
made directly to the ideal functionalities {Fj}, {Gj}.
The corresponding ideal functionality evaluates the queried
function L on the collection of received inputs from
parties. As before, leakage time periods span from the
beginning of one Update procedure to the end of the
next, and the adversary may make no more than λ
leakage queries in any time period.

Ideal functionalities in Hybrid 5: crsSim, FPre, {Fj}, {Gj}.

Hybrid 6. (Equivocal commitments) Same as Hybrid 5, ex-
cept that the ideal functionality FPre is replaced by a
slightly modified functionality F ′Pre. Loosely speaking,
F ′Pre is the same as FPre, except that for the first party
in each committee (which is assumed to be honest),
F ′Pre generates a simulated commitment to the party’s
secret share.

Explicitly, F ′Pre has a trapdoor trapj , for the first party
of each committee Ej , hardwired into it. Just as FPre,
the functionality F ′Pre takes no inputs; it samples a key
pair for the FHE scheme, evaluates the LDS trans-
formation of the circuit Decsk(·), and generates secret
shares Subj,i for each of the resulting secret modules.
Further, F ′Pre honestly generates a commitment

(cj,i, dj,i)← Com(1k, Subj,i)

to Subj,i as usual for the secret share of all but the
first party in each committee. For the first party in
each committee (which is assumed to be honest), F ′Pre
generates a simulated commitment

(c̃j,1, d̃
0
j,1, d̃

1
j,1)← Scom

eq (crsjeq, trap
j),

and sets dj,1 = d̃
Subj,1
j,1 .

Ideal functionalities in Hybrid 6: crsSim, F ′Pre, {Fj}, {Gj}.

Hybrid 7. (Equivocal commitments) Same as Hybrid 6, ex-
cept that the ideal functionalities {Gj} are modified
in the same fashion as the step above. Namely, we re-
place each Gj with a new ideal functionality G′j with

the following differences. G′j has a trapdoor trapj , for
the first party of each committee Ej , hardwired into
it. G′j accepts the same inputs as Gj , and carries out
the same computation as Gj , with the following excep-
tion: For the first party in each committee, instead of
honestly generating a commitment to the secret share
Subj,1, the functionality G′j generates a simulated com-

mitment (c̃j,1, d̃
0
j,1, d̃

1
j,1) ← Scom

eq (crsjeq, trap
j), and sets

dj,1 = d̃
Subj,1
j,1 . (Note that the ideal functionalities {Fj}

in the decryption cascade do not generate new secret
shares and thus do not need to be modified in this
fashion).

Ideal functionalities in Hybrid 7: crsSim, F ′Pre, {Fj}, {G′j}.

Hybrid 8. (Binding of Com) Similar to Hybrid 7, except
that all secret shares are eliminated, and committees
interact directly with the m modules (Sub1, ..., Subm).
More specifically, the following changes are made:

• The ideal functionality crsSim is replaced by a
slightly modified functionality crsSim′, which ex-
ecutes exactly as crsSim, but in addition sends to
the adversary all trapdoors for simulated equivo-
cal commitment crs values (for the first party in
each committee).

• The ideal functionality F ′Pre is replaced by a sim-
ple ideal functionality Fpk that takes no inputs,
generates a key pair (pk, sk) for the FHE scheme,
and publishes pk.

• The sequence of ideal functionalities {Fj}, {G′j},
as introduced in the previous steps, are replaced
by the corresponding (LDS model) interactions
with the m modules (Sub1, ..., Subm) generated
by the LDS compiler:

(Sub1, ..., Subm)← C(Decsk(·)).

Namely,

– The decryption cascade takes place as follows.
For each j = 1, ...,m, beginning with E1 and

652
Approved for Public Release; Distribution Unlimited.

input1 = ŷ, all parties in committee Ej send
inputj to the corresponding module Subj . If
all inputj ’s are consistent, they receive back
inputj+1 ← Subj(inputj). The parties of Ej
then send inputj+1 to all parties in the next
committee Ej+1, who (if the received values
are consistent) repeat the same process. At
the conclusion of the decryption cascade, the
parties of the final committee Em send the
resulting value inputm+1 (which is supposedly
f(~x)) to all parties.

– The update procedure is similar to the de-
cryption cascade. The modules execute the
LDS update procedure, interacting with each
other via the committees E1, ..., Em.

Instead of making leakage queries to the ideal function-
alities {Fj}, {Gj}, the adversary now makes queries of
the form Leak(j, L), and receives the evaluation of L
on the secret state of the jth module, Subj . As before,
leakage time periods span from the beginning of one
Update procedure to the end of the next, and the ad-
versary may make no more than λ leakage queries in
any time period.

Ideal functionalities in Hybrid 8: crsSim′, Fpk, {Subj}.

Hybrid 9. (LDS security) Same as Hybrid 8, except that
all modules Subj are removed. Instead, parties inter-
act with an ideal decryption functionality Decsk, as de-
scribed below.

In the preprocessing phase, the parties execute Elect,
and are given pk and crs values (where some of the crs
values are generated with trapdoors, as described in
Hybrid 3). The input phase takes place as usual. In
the online phase, for each function f that is queried
by the adversary, the parties homomorphically com-
pute the corresponding ciphertext ŷ = Evalpk(x̂, f).
All parties in the first committee, E1, send ŷ to the
ideal decryption functionality Decsk(·) with abort. If
all received ŷ’s are consistent, the ideal functionality
responds by sending the resulting decryption Decsk(ŷ)
to the adversary, where sk is the decryption key that
was generated by Fpk. If the adversary allows, Decsk(ŷ)
is also sent to all honest parties; otherwise, the exper-
iment concludes in abort. The update phase no longer
takes place. No leakage queries are allowed at any
point of the experiment.

Ideal functionalities in Hybrid 9: crsSim′, Fpk,Decsk.

Hybrid 10. (Soundness/PoK of NIZK, certifiability of FHE)
Differs from Hybrid 9 in the following ways:

• The ideal functionalities crsSim′, FPre, and the ex-
ecution of Elect, are removed from the preprocess-
ing phase.

• The input phase no longer takes place.

• The ideal decryption functionality Decsk is replaced
by the ideal-world functionality Evaluate, which
takes input xi from each party and evaluates func-
tions f queried by the adversary on the set of all
parties’ inputs ~x, as defined in Section 3.1.

• In addition, the adversary is given as auxiliary
input

z′ :=
(
pk, {x̂i, crsinizk, πi}i/∈M

)
,

where (pk, sk) ← Gen(1k), and for each honest
party Pi, the triple (crsinizk, x̂i, πi) is computed us-
ing the real input xi of Pi. That is, the values in
the triple are computed by crsinizk ← Gennizk(1

k); ri ←
R; x̂i = Encpk(xi; ri); πi ← P(crsinizk, (x̂i, pk)(xi, ri)).

Overall, Hybrid 10 is the following.

Parties begin by submitting their inputs to the ideal
functionality Evaluate. More specifically, each honest
party Pi submits his input xi. The adversary is given
the corresponding auxiliary input z′, computed as a
function of the honest parties’ inputs {xi}i/∈M . Upon
receiving z′, the adversary submits the inputs of ma-
licious parties to Evaluate.

The preprocessing and input phases no longer take
place. During the online phase, for each function f
that is queried by the adversary, Evaluate responds by
sending the adversary the evaluation of f on the set
of all submitted inputs (x1, ..., xn). If the adversary
allows, the evaluation is also sent to all honest parties;
otherwise, the experiment concludes in abort.

Note that Hybrid 10 is nearly the ideal-world experi-
ment. Indeed, the only difference is that the adversary
is given the auxiliary input z′.

Ideal functionalities in Hybrid 10: Evaluate.

Hybrid 11. (Security of FHE, ZK of NIZK) The ideal world:
i.e., the adversary only receives f(x1, ..., xn) for each f
selected to be computed. Note that this is the same as
Hybrid 10, except that the adversary no longer receives
the auxiliary input. (See Section 3.1 for the detailed
experiment).

The output of each hybrid experiment consists of the out-
puts of all parties, where honest parties output in accor-
dance with the dictated protocol, and malicious parties may
output any efficiently computable function of the view of
the adversary. For every adversary A` with auxiliary input
z ∈ {0, 1}∗ running in hybrid experiment ` with initial in-
puts ~x, we denote the output of the corresponding hybrid `
experiment by

HYB`
(
A`, 1k, z, {xi}ni=1

)
.

It remains to prove that for every ` = 0, ..., 10 and for
every adversary A` running in Hybrid `, there exists an ad-
versary A`+1 running in Hybrid (`+ 1) such that

HYB`
(
A`, 1k, z, {xi}ni=1

)
≈c HYB`+1

(
A`+1, 1

k, z, {xi}ni=1

)
.

Note that once we show this, the theorem will follow, as
this will imply that for each adversary A in the real-world
experiment (Hybrid 0), there is an adversary A11 in the
ideal-world experiment (Hybrid 11), such that

HYB0

(
A, 1k, z, {xi}ni=1

)
≈c HYB11

(
A11, 1

k, z, {xi}ni=1

)
as desired. We defer these indistinguishability proofs to the
full version of this manuscript.

653
Approved for Public Release; Distribution Unlimited.

6. REFERENCES

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil
Segev, Shabsi Walfish, and Daniel Wichs.
Public-key encryption in the
bounded-retrieval model. In EUROCRYPT,
pages 113–134, 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel
Wichs. Leakage-resilient public-key
cryptography in the bounded-retrieval model.
In CRYPTO, pages 36–54, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod
Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In
TCC, pages 474–495, 2009.

[AK96] Ross Anderson and Markus Kuhn. Tamper
resistance: a cautionary note. In WOEC’96:
Proceedings of the 2nd conference on
Proceedings of the Second USENIX Workshop
on Electronic Commerce, pages 1–11, 1996.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser,
Shai Halevi, Yael Tauman Kalai, and Guy N.
Rothblum. Program obfuscation with leaky
hardware. In ASIACRYPT, 2011.

[BCH11] Nir Bitansky, Ran Canetti, and Shai Halevi.
Leakage tolerant interactive protocols.
Cryptology ePrint Archive, Report 2011/204,
2011.

[BFM88] Manuel Blum, Paul Feldman, and Silvio
Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In STOC,
pages 103–112, 1988.

[BG10] Zvika Brakerski and Shafi Goldwasser.
Circular and leakage resilient public-key
encryption under subgroup
indistinguishability - (or: Quadratic
residuosity strikes back). In CRYPTO, pages
1–20, 2010.

[BGG+11] Elette Boyle, Sanjam Garg, Shafi Goldwasser,
Abhishek Jain, Yael Tauman Kalai, and Amit
Sahai. Leakage-resilient multiparty
computation. Manuscript, 2011.

[BGK11] Elette Boyle, Shafi Goldwasser, and Yael
Tauman Kalai. Leakage-resilient coin tossing.
In DISC, 2011.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod
Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. ECCC,
Report 2011/111, 2011.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai,
Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key
cryptography resilient to continual memory
leakage. In FOCS, pages 501–510, 2010.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio
Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput.,
20(6):1084–1118, 1991.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs.
Fully leakage-resilient signatures. In
EUROCRYPT, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan.

Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, 2011.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and
Rafail Ostrovsky. Non-interactive and
non-malleable commitment. In STOC, pages
141–150, 1998.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail
Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure
computation. In STOC, pages 494–503, 2002.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser,
Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption
schemes with auxiliary inputs. In TCC, pages
361–381, 2010.

[DHLW10a] Yevgeniy Dodis, Kristiyan Haralambiev,
Adriana López-Alt, and Daniel Wichs.
Cryptography against continuous memory
attacks. In FOCS, pages 511–520, 2010.

[DHLW10b] Yevgeniy Dodis, Kristiyan Haralambiev,
Adriana López-Alt, and Daniel Wichs.
Efficient public-key cryptography in the
presence of key leakage. In ASIACRYPT,
pages 613–631, 2010.

[DHP11] Ivan Damgard, Carmit Hazay, and Arpita
Patra. Leakage resilient two-party
computation. Cryptology ePrint Archive,
Report 2011/256, 2011.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and
Shachar Lovett. On cryptography with
auxiliary input. In STOC, pages 621–630,
2009.

[DLWW11] Yevgeniy Dodis, Allison Lewko, Brent Waters,
and Daniel Wichs. Storing secrets on
continually leaky devices. In FOCS, 2011.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak.
Leakage-resilient cryptography. In FOCS,
pages 293–302, 2008.

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak.
Leakage-resilient pseudorandom functions and
side-channel attacks on feistel networks. In
CRYPTO, pages 21–40, 2010.

[DS83] Danny Dolev and H. Raymond Strong.
Authenticated algorithms for byzantine
agreement. SIAM J. Comput., 12(4):656–666,
1983.

[Fei99] Uriel Feige. Noncryptographic selection
protocols. In Proceedings of the 40th Annual
Symposium on Foundations of Computer
Science, 1999.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof
Pietrzak, and Guy N. Rothblum.
Leakage-resilient signatures. In TCC, pages
343–360, 2010.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir.
Multiple non-interactive zero knowledge
proofs based on a single random string
(extended abstract). In FOCS, pages 308–317,
1990.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin,
Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the

654
Approved for Public Release; Distribution Unlimited.

computationally-bounded and noisy cases. In
EUROCRYPT, pages 135–156, 2010.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge
proofs of knowledge in two rounds. In
CRYPTO, pages 526–544, 1989.

[Gen09] Craig Gentry. Fully homomorphic encryption
using ideal lattices. In STOC, pages 169–178,
2009.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai.
Leakage-resilient zero knowledge. In
CRYPTO, pages 297–315, 2011.

[GMO01] Karine Gandolfi, Christophe Mourtel, and
Francis Olivier. Electromagnetic analysis:
Concrete results. In CHES, pages 251–261,
2001.

[GMW87] Oded Goldreich, Silvio Micali, and Avi
Wigderson. How to play any mental game or a
completeness theorem for protocols with
honest majority. In STOC, pages 218–229,
1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai.
Perfect non-interactive zero knowledge for np.
In EUROCRYPT, pages 339–358, 2006.

[GR10] Shafi Goldwasser and Guy N. Rothblum.
Securing computation against continuous
leakage. In CRYPTO, pages 59–79, 2010.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How
to compute in the presence of leakage.
Electronic Colloquium on Computational
Complexity (ECCC), 19, 2012.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia
Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten.
Lest we remember: Cold boot attacks on
encryption keys. In USENIX Security
Symposium, pages 45–60, 2008.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner.
Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481,
2003.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting
cryptographic keys against continual leakage.
In CRYPTO, pages 41–58, 2010.

[Koc96] Paul C. Kocher. Timing attacks on
implementations of diffie-hellman, rsa, dss,
and other systems. In CRYPTO, pages
104–113, 1996.

[KP10] Eike Kiltz and Krzysztof Pietrzak. Leakage
resilient elgamal encryption. In ASIACRYPT,
pages 595–612, 2010.

[KV09] Jonathan Katz and Vinod Vaikuntanathan.
Signature schemes with bounded leakage
resilience. In ASIACRYPT, pages 703–720,
2009.

[LLW11] Allison Lewko, Mark Lewko, and Brent
Waters. How to leak on key updates. In
STOC, 2011.

[LRW11] Allison Lewko, Yannis Rouselakis, and Brent
Waters. Achieving leakage resilience through
dual system encryption. In TCC, 2011.

[MR04] Silvio Micali and Leonid Reyzin. Physically
observable cryptography (extended abstract).
In TCC, pages 278–296, 2004.

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis,
and Moti Yung. Signatures resilient to
continual leakage on memory and
computation. In EUROCRYPT, 2011.

[NS09] Moni Naor and Gil Segev. Public-key
cryptosystems resilient to key leakage. In
CRYPTO, pages 18–35, 2009.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran
Tromer. Cache attacks and countermeasures:
The case of aes. In CT-RSA, pages 1–20, 2006.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode
of operation. In EUROCRYPT, pages
462–482, 2009.

[QS01] Jean-Jacques Quisquater and David Samyde.
Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In
E-smart, pages 200–210, 2001.

[Yao82] Andrew C. Yao. Theory and applications of
trapdoor functions. In Proc. 23rd FOCS,
pages 80–91, 1982.

655
Approved for Public Release; Distribution Unlimited.

ABE Attribute Based Encryption Scheme

BDD Bounded Distance Decoding Assumption

CPRF Constrained Pseudorandom Functions

CRS Common Reference String

CVP Closest Vector Problem

DDH Decisional Diffe-Hellman

FE Functional Encryption Scheme

FHE Fully Homomorphic Encryption

F-PRFs Functional Pseudorandon Functions

GCD Greatest Common Divisors

HE Homomorphic Encryption

HELib Homomorphic Encryption Library

IO Indistinguishable Obfuscation

Leveled FHE FHE Evaluation of Circuits of a-priori Bounded Depth

LWE Learning with Errors

MPC Multi Party Computation

Multikey FHE Fully Homomorphic Encryption utilizing multiple, unrelated keys

NTRU N-th Order Truncated Ring Encryption Scheme

PE Predicate Encryption Scheme

PI Principle Investigator

PRFs Pseudorandon Functions

PROCEED Programming Computation on Encrypted Data

Ring LWE Ring Learning with Errors

RLWE Ring Learning with Errors

SHE Somewhat Homomorphic Encryption

SIMD Single Instruction / Multiple Data

SIS Short Integer Solution

SKI Symmetric Key Infrastructure

SSS Sparse Subset Sum Assumption

SVP Shortest Vector Problem

Glossary of Terms

656
Approved for Public Release; Distribution Unlimited.

	Summary
	Introduction
	Methods, Assumptions and Procedures
	Results and Discussion
	Results: Fully Homomorphic Encryption
	Second Generation FHE: Simpler, Faster, Stronger
	Third Generation FHE: Best Possible Assumptions
	Multi-key FHE and On-the-Fly Multiparty Computation
	Practical HE: Machine Learning on Encrypted Data

	Results: Functional Encryption
	Attribute-based Encryption
	Bounded-Key Functional Encryption
	Succinct Functional Encryption and Reusable Garbled Circuits
	Multi-Input Functional Encryption

	Results: Large-Scale Multiparty Computation
	Results: Leakage-Resilient Computation
	Goldwasser-Rothblum Leakage-Resilience Compiler
	Leakage-Resilient Multiparty Computation

	Results: Functional Signatures and Pseudorandom Functions
	Functional Signatures and Pseudorandom Functions
	Constrained PRFs for Arbitrary Circuits from LWE
	Aggregate Pseudo-random Functions and Connections to Learning Theory

	Conclusions and Recommendations
	Table of Contents (Continued)
	Appendix - Published Papers
	Effciient Fully Homomorphic Encryption from (Standard) LWE
	Introduction
	Preliminaries
	Gaussians and Discrete Gaussians
	Learning With Errors (LWE)
	Vector Decomposition and Key Switching
	Partial Randomization Using LWE
	Homomorphic Encryption and Bootstrapping

	Our FHE Scheme
	The Basic Encryption Scheme
	Proto-Homomorphic Operations
	Homomorphic Evaluation of Circuits
	Achieving Fully Homomorphic Encryption

	Successive Dimension-Modulus Reduction
	Dimension-Modulus Reduction (Revisited)
	A Bootstrappable Scheme

	331.pdf
	Introduction
	Related work
	Privacy-preserving training
	Privacy-preserving classification
	Work related to our building blocks

	Background and preliminaries
	Classification in machine learning algorithms
	Cryptographic preliminaries
	Cryptosystems
	Cryptographic assumptions
	Adversarial model

	Notation

	Building blocks
	Comparison
	Comparison with unencrypted inputs (Row 1)
	Comparison with encrypted inputs (Rows 2, 3)
	Reversed comparison over encrypted data (Row 4, 5)
	Negative integers comparison and sign determination

	`39`42`"613A``45`47`"603Aargmax over encrypted data
	Changing the encryption scheme
	XOR with Paillier.

	Computing dot products
	Dealing with floating point numbers

	Private hyperplane decision
	Secure Naïve Bayes classifier
	Preparing the model
	Protocol

	Private decision trees
	Polynomial form of a decision tree
	Private evaluation of a polynomial
	Formal description

	Combining classifiers with AdaBoost
	Implementation
	Evaluation
	Using our building blocks library
	Building a multiplexer classifier
	Viola and Jones face detection

	Performance evaluation setup
	Building blocks performance
	Comparison protocols
	`39`42`"613A``45`47`"603Aargmax
	Consequences of the latency on performances

	Classifier performance
	Comparison to generic two-party tools

	Conclusion
	Comparison protocols
	Comparison with unencrypted inputs
	Reversed encrypted comparison

	Preliminaries for proofs
	Secure two-party computation framework
	Modular Sequential Composition
	Cryptographic assumptions

	Proofs
	Comparison protocols
	Argmax

	Changing the encryption scheme
	Computing dot products
	Classifiers

	521.pdf
	Introduction
	Our Results
	Overview of Our Constructions
	Functional Encryption for NC1 Circuits
	A Bootstrapping Theorem and Functional Encryption for P

	Definitions of Functional Encryption
	A Perspective: Bounded-Use Garbled Circuits

	Preliminaries
	Functional Encryption
	Shamir's Secret Sharing
	Public Key Encryption.
	Decomposable Randomized Encoding

	Security of Functional Encryption against Bounded Collusions
	Background Constructions
	Adaptive, Singleton
	Adaptive, ``Brute Force''
	One-Query General Functional Encryption from Randomized Encoding

	A Construction for NC1 circuits
	Our Construction
	Correctness

	Setting the Parameters
	Proof of Security

	A Bootstrapping Theorem for Functional Encryption
	Correctness
	Proof of Security

	Yet Another Bootstrapping Theorem Using FHE
	Correctness and Security

	Relations between Definitions of Functional Encryption
	A Simulation-based Definition
	An Indistinguishability-Based Definition
	Relations Between Definitions

	Probabilistic Proofs
	Small Pairwise Intersection
	Cover-Freeness

	337.pdf
	Introduction
	Our Contributions
	Attribute-based encryption
	New Framework: TOR
	Applications
	Related Work

	Preliminaries
	Attribute-Based Encryption
	Learning With Errors (LWE) Assumption
	Trapdoors for Lattices and LWE

	Two-to-One Recoding Schemes
	Definition of TOR
	Simple Applications of TOR

	TOR from LWE
	Analysis

	Attribute-Based Encryption for Circuits
	Construction from TOR
	Correctness
	Security

	Attribute-Based Encryption for Branching Programs
	Weak TOR
	Weak TOR from LWE
	Weak TOR from Bilinear Maps
	Attribute-Based Encryption from weak TOR
	Correctness
	Selective Security

	Extensions
	Outsourcing Decryption
	Extending Secret Keys

	356.pdf
	Introduction
	Building an ABE for arithmetic circuits with short keys

	Preliminaries
	Attribute-Based Encryption
	Background on Lattices
	Multilinear Maps

	Fully Key-Homomorphic PKE (FKHE)
	An ABE and FKHE for arithmetic circuits from LWE
	Evaluation Algorithms for Arithmetic Circuits
	Evaluation algorithms for gates
	Evaluation algorithms for circuits
	ABE with Short Secret Keys for Arithmetic Circuits from LWE

	Extensions
	Key Delegation
	A delegatable ABE scheme from LWE

	Polynomial gates
	Example applications for polynomial gates

	ABE with Short Ciphertexts from Multi-linear Maps
	Our Construction
	Correctness
	Security Proof

	Applications and Extensions
	Single-Key Functional Encryption and Reusable Garbled Circuits

	Conclusions and open problems

	733.pdf
	Introduction
	Our Results
	Main Application: Reusable Garbled Circuits
	Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility Results
	Computing on Encrypted Data in Input-Specific Time
	Publicly Verifiable Delegation with Secrecy

	Technique Outline

	Preliminaries
	Notation
	Background on Learning With Errors (LWE)
	Fully Homomorphic Encryption (FHE)
	Background on Garbled Circuits
	Attribute-Based Encryption (ABE)
	Two-Outcome Attribute-Based Encryption

	Functional Encryption (FE)
	Security of Functional Encryption

	Our Functional Encryption Scheme
	Construction
	Proof

	Reusable Garbled Circuits
	Construction
	Proof
	Impossibility of Public-Key Reusable Garbled Circuits

	Token-Based Obfuscation
	Definition
	Scheme

	Computing on Encrypted Data in Input-Specific Time
	Construction
	Results
	Input-Dependent Output Size

	Detailed Background on Learning With Errors (LWE)
	Construction of Two-Outcome Attribute-Based Encryption
	Homomorphic Encryption for Turing Machines: Definitions and Proofs
	Proof

	727.pdf
	Introduction
	This paper
	Indistinguishability-based Security
	Simulation-based security
	Extensions and Applications
	Our Techniques

	Related Works
	Organization

	Multi-Input Functional Encryption
	Syntax
	Security for Multi-Input Functional Encryption
	Indistinguishability-based Security
	Simulation-based Security

	Preliminaries
	Indistinguishability Obfuscation
	Non-Interactive Proof Systems
	Commitment Schemes

	A Construction from Indistinguishability Obfuscation
	Proving sel-IND Security
	Proving SIM Security

	A Construction from Differing-Inputs Obfuscation
	Multi-Input Functional Encryption Implies Obfuscation
	Impossibility Results for SIM secure MI-FE

	Extension to Randomized Functionalities
	Completing sel-IND Security Proof for FEI
	Completing SIM Security Proof for FEI
	Proving IND Security for FEII
	NA-SIM-secure MI-FE

	615.pdf
	Introduction
	Overview of our results and techniques

	Model, Definitions and Building Blocks
	Reliable Communication in the Locality Model
	Static security
	Adaptively secure RMT

	Secure Multiparty Computation with Low Communication
	Getting Rid of the SKI
	Almost-Everywhere Protocols
	Proof of Theorem 9 (Adaptively secure RMT)

	038.pdf
	Introduction
	Our Results: Aggregate Pseudo Random Functions
	Related Work to Aggregate PRFs

	Our Results: Augmented PRFs and Computational Learning
	Constrained PRFs and limits on Restriction Access learnability
	New Learning Models Inspired by the Study of PRFs

	Aggregate PRF
	A General Security Theorem for Aggregate PRFs
	Impossibility of Aggregate PRF for General Sets

	Constructions of aggregate PRF
	Generic Construction for Interval Sets
	Bit-Fixing Aggregate PRF from DDH
	Construction

	Decision Trees
	Read-once formulas
	Construction

	Connection to Learning
	Preliminaries
	Membership queries with restriction access
	MQRAlearning
	Constrained PRFs
	Hardness of restriction access Learning

	Learning with related concepts
	RKA PRFs
	Hardness of related concept learning

	Learning with Aggregate Queries
	Hardness of aggregate query learning
	Acknowledgements

	Simple Positive Results
	Related-concept
	Aggregate queries

	032.pdf
	Introduction
	Overview of Our Construction
	Preliminaries
	Constrained Pseudorandom Function: Definition
	Learning with Errors
	One-Dimensional Short Integer Solution (SIS) and Variants
	Admissible Hash Functions
	Attribute-Based Encryption

	Embedding Circuits into Matrices
	Constrained PRF
	Construction
	Setting the Parameters
	Security
	Computational Functionality Preserving
	Other Properties

	Succinct Constrained Keys

	MPC-Locality-TCC13.pdf
	Communication Locality in Secure Multi-party Computation
	Introduction
	Our Results
	Further Related Work

	Preliminaries
	Basic Tools
	Random Switching Networks and Random Permutations
	Sublinear Algorithms

	Multi-party Computation for Sublinear Algorithms
	References

	Blank Page
	Blank Page

